1
|
Zhang M, Tang C, Li Y, Lv S, Xie Z, Liu Z, Zhang H, Zhang S, Wang P, Wu J. The MYC transcription factor PbrMYC8 negatively regulates PbrMSL5 expression to promote pollen germination in Pyrus. Int J Biol Macromol 2024; 278:134640. [PMID: 39142484 DOI: 10.1016/j.ijbiomac.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The successful germination of pollen is essential for double fertilization in flowering plants. Mechanosensitive channels of small conductance (MscS-like, MSL) inhibit pollen germination and maintains cellular integrity of pollen during this process. Therefore, it is vital to carefully regulate the expression of MSL to promote successful pollen germination. Despite its importance, the molecular mechanisms governing MSL expression in plants remain poorly understood. Here, we had identified 15 MSL genes in the pear, among which PbrMSL5 was expressed in pollen development. Subcellular localization experiments revealed that PbrMSL5 was located in both plasma membrane and cytoplasm. Functional investigations, including complementation experiments using the atmsl8 mutant background, demonstrated the involvement of PbrMSL5 in preserving pollen cell integrity and inhibiting germination. Antisense oligonucleotide experiments further confirmed that PbrMSL5 suppressed pear pollen germination by reducing osmotic pressure and Cl- content. Yeast one-hybrid, electrophoretic mobility shift assays, and dual luciferase reporter assay elucidated that PbrMYC8 interacts directly with the N-box element, leading to the suppression of PbrMSL5 expression and promoted pollen germination. These results represented a significant advancement in unraveling the molecular mechanisms controlling plant MSL expression. This study showed valuable contribution to advancing our comprehension of the mechanism underlying pollen germination.
Collapse
Affiliation(s)
- Mingliang Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouzheng Lv
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhu Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongqi Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
2
|
Wang H, Cheng Q, Zhai Z, Cui X, Li M, Ye R, Sun L, Shen H. Transcriptomic and Proteomic Analyses of Celery Cytoplasmic Male Sterile Line and Its Maintainer Line. Int J Mol Sci 2023; 24:ijms24044194. [PMID: 36835607 PMCID: PMC9967367 DOI: 10.3390/ijms24044194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/22/2023] Open
Abstract
Male sterility is a common phenomenon in the plant kingdom and based on the organelles harboring the male-sterility genes, it can be classified into the genic male sterility (GMS) and the cytoplasmic male sterility (CMS). In every generation, CMS can generate 100% male-sterile population, which is very important for the breeders to take advantage of the heterosis and for the seed producers to guarantee the seed purity. Celery is a cross-pollinated plant with the compound umbel type of inflorescence which carries hundreds of small flowers. These characteristics make CMS the only option to produce the commercial hybrid celery seeds. In this study, transcriptomic and proteomic analyses were performed to identify genes and proteins that are associated with celery CMS. A total of 1255 differentially expressed genes (DEGs) and 89 differentially expressed proteins (DEPs) were identified between the CMS and its maintainer line, then 25 genes were found to differentially expressed at both the transcript and protein levels. Ten DEGs involved in the fleece layer and outer pollen wall development were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of which were down-regulated in the sterile line W99A. These DEGs and DEPs were mainly enriched in the pathways of "phenylpropanoid/sporopollenin synthesis/metabolism", "energy metabolism", "redox enzyme activity" and "redox processes". Results obtained in this study laid a foundation for the future investigation of mechanisms of pollen development as well as the reasons for the CMS in celery.
Collapse
Affiliation(s)
- Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ziqi Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiangyun Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mingxuan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ruiquan Ye
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| |
Collapse
|
3
|
Dong J, Hu F, Guan W, Yuan F, Lai Z, Zhong J, Liu J, Wu Z, Cheng J, Hu K. A 163-bp insertion in the Capana10g000198 encoding a MYB transcription factor causes male sterility in pepper (Capsicum annuum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:521-535. [PMID: 36534067 DOI: 10.1111/tpj.16064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Male sterility provides an efficient approach for commercial exploitation of heterosis. Despite more than 20 genic male sterile (GMS) mutants documented in pepper (Capsicum annuum L.), only two causal genes have been successfully identified. Here, a novel spontaneous recessive GMS mutant, designated msc-3, is identified and characterized at both phenotypic and histological levels. Pollen abortion of msc-3 mutant may be due to the delayed tapetum degradation, leading to the non-degeneration of tetrads callosic wall. Then, a modified MutMap method and molecular marker linkage analysis were employed to fine mapping the msc-3 locus, which was delimited to the ~139.91-kb region harboring 10 annotated genes. Gene expression and structure variation analyses indicate the Capana10g000198, encoding a R2R3-MYB transcription factor, is the best candidate gene for the msc-3 locus. Expression profiling analysis shows the Capana10g000198 is an anther-specific gene, and a 163-bp insertion in the Capana10g000198 is highly correlated with the male sterile (MS) phenotype. Additionally, downregulation of Capana10g000198 in male fertile plants through virus-induced gene silencing resulted in male sterility. Finally, possible regulatory relationships of the msc-3 gene with the other two reported pepper GMS genes, msc-1 and msc-2, have been studied, and comparative transcriptome analysis reveals the expression of 16 GMS homologs are significantly downregulated in the MS anthers. Overall, our results reveal that Capana10g000198 is the causal gene underlying the msc-3 locus, providing important theoretical clues and basis for further in-depth study on the regulatory mechanisms of pollen development in pepper.
Collapse
Affiliation(s)
- Jichi Dong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, 512023, Guangdong, China
| | - Wendong Guan
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Fanchong Yuan
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Zepei Lai
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Jian Zhong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Jia Liu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
4
|
Cheng Z, Song W, Zhang X. Genic male and female sterility in vegetable crops. HORTICULTURE RESEARCH 2022; 10:uhac232. [PMID: 36643746 PMCID: PMC9832880 DOI: 10.1093/hr/uhac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Vegetable crops are greatly appreciated for their beneficial nutritional and health components. Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance, which require the participation of male (stamen) and female (pistil) reproductive organs. Male- or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables. In this review we will focus on the types of genic male sterility and factors affecting female fertility, summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops [mainly tomato (Solanum lycopersicum) and cucumber (Cucumis sativus)], and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production, in order to provide a reference for fertility-related germplasm innovation.
Collapse
Affiliation(s)
- Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Pei H, Xie H, Wang X, Yan X, Wang B, Feng H, Zhao Y, Gao J, Gao J. Proteomic analysis of differential anther development from sterile/fertile lines in Capsicum annuum L. PeerJ 2022; 10:e13168. [PMID: 35651745 PMCID: PMC9150696 DOI: 10.7717/peerj.13168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Pepper (Capsicum annuum L.) is a major cash crop throughout the world. Male sterility is an important characteristic in crop species that leads to a failure to produce functional pollen, and it has crucial roles in agricultural breeding and the utilization of heterosis. Objectives In this study, we identified many crucial factors and important components in metabolic pathways in anther and pollen development, and elucidated the molecular mechanism related to pollen abortion in pepper. Methods Pepper pollen was observed at different stages to detect the characteristics associated with male sterility and fertility. The phytohormone and oxidoreductase activities were detected in spectrophotometric and redox reaction assays, respectively. Proteins were extracted from male sterile and fertile pepper lines, and identified by TMT/iTRAQ (tandem mass tags/isobaric tags for relative and absolute quantitation) and LC-MS/MS (liquid chromatograph-mass spectrometer) analysis. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes database according to |fold change)| > 1.3 and P value < 0.05. DAPs were quantified in the meiosis, tetrad, and binucleate stages by parallel reaction monitoring (PRM). Results In this study, we screened and identified one male sterile pepper line with abnormal cytological characteristics in terms of pollen development. The peroxidase and catalase enzyme activities were significantly reduced and increased, respectively, in the male sterile line compared with the male fertile line. Phytohormone analysis demonstrated that the gibberellin, jasmonic acid, and auxin contents changed by different extents in the male sterile pepper line. Proteome analysis screened 1,645 DAPs in six clusters, which were mainly associated with the chloroplast and cytoplasm based on their similar expression levels. According to proteome analysis, 45 DAPs were quantitatively identified in the meiosis, tetrad, and binucleate stages by PRM, which were related to monoterpenoid biosynthesis, and starch and sucrose metabolism pathways. Conclusions We screened 1,645 DAPs by proteomic analysis and 45 DAPs were related to anther and pollen development in a male sterile pepper line. In addition, the activities of peroxidase and catalase as well as the abundances of phytohormones such as gibberellin, jasmonic acid, and auxin were related to male sterility. The results obtained in this study provide insights into the molecular mechanism responsible for male sterility and fertility in pepper.
Collapse
Affiliation(s)
- Hongxia Pei
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Hua Xie
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuemei Wang
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xiujuan Yan
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiping Feng
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yunxia Zhao
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jingxia Gao
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Bao H, Ding Y, Yang F, Zhang J, Xie J, Zhao C, Du K, Zeng Y, Zhao K, Li Z, Yang Z. Gene silencing, knockout and over-expression of a transcription factor ABORTED MICROSPORES (SlAMS) strongly affects pollen viability in tomato (Solanum lycopersicum). BMC Genomics 2022; 23:346. [PMID: 35513810 PMCID: PMC9069838 DOI: 10.1186/s12864-022-08549-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tomato (Solanum lycopersicum L.) is an economically valuable crop grown worldwide. Because the use of sterile males reduces the cost of F1 seed production, the innovation of male sterility is of great significance for tomato breeding. The ABORTED MICROSPORES gene (AMS), which encodes for a basic helix-loop-helix (bHLH) transcription factor, has been previously indicated as an essential gene for tapetum development in Arabidopsis and rice. To determine the function of the SlAMS gene (AMS gene from S. lycopersicum) and verify whether it is a potential candidate gene for generating the male sterility in tomato, we used virus-induced gene silencing (VIGS), CRISPR/Cas9-mediated genome editing and over-expression technology to transform tomato via Agrobacterium infection. RESULTS Here, the full-length SlAMS gene with 1806 bp from S. lycopersicum (Accession No. MK591950.1) was cloned from pollen cDNA. The results of pollen grains staining showed that, the non-viable pollen proportions of SlAMS-silenced (75%), -knockouted (89%) and -overexpressed plants (60%) were significantly higher than the wild type plants (less than 10%; P < 0.01). In three cases, the morphology of non-viable pollen grains appeared tetragonal, circular, atrophic, shriveled, or otherwise abnormally shaped, while those of wild type appeared oval and plump. Furthermore, the qRT-PCR analysis indicated that SlAMS in anthers of SlAMS-silenced and -knockouted plants had remarkably lower expression than in that of wild type (P < 0.01), and yet it had higher expression in SlAMS-overexpressed plants (P < 0.01). CONCLUSION In this paper, Our research suggested alternative approaches to generating male sterility in tomato, among which CRISPR/Cas9-mediated editing of SlAMS implied the best performance. We also demonstrated that the downregulation and upregulation of SlAMS both affected the pollen formation and notably led to reduction of pollen viability, suggesting SlAMS might be essential for regulating pollen development in tomato. These findings may facilitate studies on clarifying the SlAMS-associated molecular regulatory mechanism of pollen development in tomato.
Collapse
Affiliation(s)
- Huihui Bao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Yumei Ding
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agriculture Sciences, Kunming, Yunnan, 650205, People's Republic of China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Fei Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Jie Zhang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Junjun Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Chongyan Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Kanghua Du
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agriculture Sciences, Kunming, Yunnan, 650205, People's Republic of China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zuosen Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
7
|
Sui J, Jia W, Xin Y, Zhang Y. Transcriptomics-Based Identification of Genes Related to Tapetum Degradation and Microspore Development in Lily. Genes (Basel) 2022; 13:genes13020366. [PMID: 35205410 PMCID: PMC8872214 DOI: 10.3390/genes13020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Lily is a popular and economically ornamental crop around the world. However, its high production of pollen grains causes serious problems to consumers, including allergies and staining of clothes. During anther development, the tapetum is a crucial step for pollen formation and microspore release. Therefore, it is important to understand the mechanism of tapetum degradation and microspore development in lily where free pollen contamination occurs. Here, we used the cut lily cultivar ‘Siberia’ to characterize the process of tapetum degradation through the use of cytology and transcriptomic methods. The cytological observation indicated that, as the lily buds developed from 4 cm (Lo 4 cm) to 8 cm (Lo 8 cm), the tapetum completed the degradation process and the microspores matured. Furthermore, by comparing the transcriptome profiling among three developmental stages (Lo 4 cm, Lo 6 cm and Lo 8 cm), we identified 27 differentially expressed genes. These 27 genes were classed into 4 groups by function, namely, cell division and expansion, cell-wall morphogenesis, transcription factors, LRR-RLK (leucine-rich repeat receptor-like kinases), plant hormone biosynthesis and transduction. Quantitative real-time PCR was performed as validation of the transcriptome data. These selected genes are candidate genes for the tapetum degradation and microspore development of lily and our work provides a theoretical basis for breeding new lily cultivars without pollen.
Collapse
Affiliation(s)
- Juanjuan Sui
- Department of Biology, Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Wenjie Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.J.); (Y.X.)
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.J.); (Y.X.)
| | - Yuanyuan Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
8
|
Gangwar M, Shankar J. Molecular Mechanisms of the Floral Biology of Jatropha curcas: Opportunities and Challenges as an Energy Crop. FRONTIERS IN PLANT SCIENCE 2020; 11:609. [PMID: 32582231 PMCID: PMC7296989 DOI: 10.3389/fpls.2020.00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Fossil fuel sources are a limited resource and could eventually be depleted. Biofuels have emerged as a renewable alternative to fossil fuels. Jatropha has grown in significance as a potential bioenergy crop due to its high content of seed oil. However, Jatropha's lack of high-yielding seed genotypes limits its potential use for biofuel production. The main cause of lower seed yield is the low female to male flower ratio (1:25-10), which affects the total amount of seeds produced per plant. Here, we review the genetic factors responsible for floral transitions, floral organ development, and regulated gene products in Jatropha. We also summarize potential gene targets to increase seed production and discuss challenges ahead.
Collapse
|
9
|
Xiao K, Chen J, He Q, Wang Y, Shen H, Sun L. DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1928-1942. [PMID: 31907544 PMCID: PMC7242076 DOI: 10.1093/jxb/eraa003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/05/2020] [Indexed: 05/10/2023]
Abstract
There is growing evidence to suggest that epigenetic tags, especially DNA methylation, are critical regulators of fruit ripening. To examine whether this is the case in sweet pepper (Capsicum annuum) we conducted experiments at the transcriptional, epigenetic, and physiological levels. McrBC PCR, bisulfite sequencing, and real-time PCR demonstrated that DNA hypomethylation occurred in the upstream region of the transcription start site of some genes related to pepper ripening at the turning stage, which may be attributed to up-regulation of CaDML2-like and down-regulation of CaMET1-like1, CaMET1-like2, CaCMT2-like, and CaCMT4-like. Silencing of CaMET1-like1 by virus-induced gene silencing led to DNA hypomethylation, increased content of soluble solids, and accumulation of carotenoids in the fruit, which was accompanied by changes in expression of genes involved in capsanthin/capsorubin biosynthesis, cell wall degradation, and phytohormone metabolism and signaling. Endogenous ABA increased during fruit ripening, whereas endogenous IAA showed an opposite trend. No ethylene signal was detected during ripening. DNA hypomethylation repressed the expression of auxin and gibberellin biosynthesis genes as well as cytokinin degradation genes, but induced the expression of ABA biosynthesis genes. In mature-green pericarp, exogenous ABA induced expression of CaDML2-like but repressed that of CaCMT4-like. IAA treatment promoted the transcription of CaMET1-like1 and CaCMT3-like. Ethephon significantly up-regulated the expression of CaDML2-like. Treatment with GA3 and 6-BA showed indistinct effects on DNA methylation at the transcriptional level. On the basis of the results, a model is proposed that suggests a high likelihood of a role for DNA methylation in the regulation of ripening in the non-climacteric pepper fruit.
Collapse
Affiliation(s)
- Kai Xiao
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Jie Chen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Qixiumei He
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Yixin Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
- Correspondence:
| |
Collapse
|
10
|
Lei X, Liu B. Tapetum-Dependent Male Meiosis Progression in Plants: Increasing Evidence Emerges. FRONTIERS IN PLANT SCIENCE 2020; 10:1667. [PMID: 32010157 PMCID: PMC6979054 DOI: 10.3389/fpls.2019.01667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/27/2019] [Indexed: 05/28/2023]
Abstract
In higher plants, male meiosis is a key process during microsporogenesis and is crucial for male fertility and seed set. Meiosis involves a highly dynamic organization of chromosomes and cytoskeleton and specifically takes place within sexual cells. However, studies in multiple plant species have suggested that the normal development of tapetum, the somatic cell layer surrounding the developing male meiocytes, is indispensable for the completion of the male meiotic cell cycle. Disrupted tapetum development causes alterations in the expression of a large range of genes involved in male reproduction. Moreover, recent experiments suggest that small RNAs (sRNAs) present in the anthers, including microRNAs (miRNAs) and phased, secondary, small interfering RNAs (phasiRNAs), play a potential but important role in controlling male meiosis, either by influencing the expression of meiotic genes in the meiocytes or through other unclear mechanisms, supporting the hypothesis that male meiosis is non-cell autonomously regulated. In this mini review, we summarize the recorded meiotic defects that occur in plants with defective tapetum development in both Arabidopsis and crops. Thereafter, we outline the latest understanding on the molecular mechanisms that potentially underpin the tapetum-dependent regulation of male meiosis, and we especially discuss the regulatory role of sRNAs. At the end, we propose several outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Bing Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Complementary Transcriptomic and Proteomic Analysis Reveals a Complex Network Regulating Pollen Abortion in GMS ( msc-1) Pepper ( Capsicum annuum L.). Int J Mol Sci 2019; 20:ijms20071789. [PMID: 30978924 PMCID: PMC6480423 DOI: 10.3390/ijms20071789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pepper (Capsicum annuum L.) is a globally important horticultural crop. Use of the genic male-sterile (GMS) line enables efficient commercial hybrid pepper seed production. However, the mechanisms of pepper GMS functioning remain unclear. In this study, we used proteomic and transcriptomic analysis to identify proteins and genes related to genic male sterility. A total of 764 differentially expressed proteins (DEPs) and 1069 differentially expressed genes (DEGs) were identified in the proteomic and transcriptomic level respectively, and 52 genes (hereafter “cor-DEGs-DEPs” genes) were detected at both levels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 13 DEPs and 14 DEGs involved in tapetum and pollen development. Among the 13 DEPs identified, eight were involved in pollen exine formation, and they were all up-regulated in the fertile line 16C1369B. For the 14 DEGs identified, ABORTED MICROSPORES (AMS) and DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1 (TDF1) were involved in tapetum development, and both are possibly regulated by Msc-1. All of these genes were detected and confirmed by qRT-PCR. The presence of these genes suggests their possible role in tapetum and pollen exine formation in GMS pepper. Most key genes and transcription factors involved in these processes were down-regulated in the sterile line 16C1369A. This study provides a better understanding of GMS (msc-1) molecular functioning in pepper.
Collapse
|
12
|
Liu M, Li W, Zhao G, Fan X, Long H, Fan Y, Shi M, Tan X, Zhang L. New Insights of Salicylic Acid Into Stamen Abortion of Female Flowers in Tung Tree ( Vernicia fordii). Front Genet 2019; 10:316. [PMID: 31024626 PMCID: PMC6460477 DOI: 10.3389/fgene.2019.00316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/21/2019] [Indexed: 12/03/2022] Open
Abstract
Tung tree (Vernicia fordii), an economically important woody oil plant, is a monoecious and diclinous species with male and female flowers on the same inflorescence. The extremely low proportion of female flowers leads to low fruit yield in tung orchards. The female flower normally develops along with stamen abortion; otherwise sterile ovules will be produced. However, little knowledge is known about the molecular basis of the female flower development in tung tree. In this study, integrated analyses of morphological and cytological observations, endogenous phytohormone assay and RNA-seq were conducted to understand the molecular mechanism of the female flower development in tung tree. Cytological observation suggested that the abortion of stamens in female flowers (SFFs) belongs to the type of programmed cell death (PCD), which was caused by tapetum degeneration at microspore mother cell stage. A total of 1,366 differentially expressed genes (DEGs) were identified in female flowers by RNA-seq analysis, of which 279 (20.42%) DEGs were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Stage-specific transcript identification detected dynamically expressed genes of important transcription regulators in female flowers that may be involved in PCD and floral organ development. Gene expression patterns revealed that 17 anther and pollen development genes and 37 PCD-related genes might be involved in the abortion of SFF. Further analyses of phytohormone levels and co-expression networks suggested that salicylic acid (SA) accumulation could trigger PCD and inhibit the development of SFF in tung tree. This study provides new insights into the role of SA in regulating the abortion of SFF to develop normal female flowers.
Collapse
Affiliation(s)
- Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Guang Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoming Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanru Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Mingwang Shi
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|