1
|
Zhao Y, Yang H, Wu F, Luo X, Sun Q, Feng W, Ju X, Liu G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int J Mol Sci 2022; 23:ijms231810259. [PMID: 36142164 PMCID: PMC9499002 DOI: 10.3390/ijms231810259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.
Collapse
Affiliation(s)
- Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Honghao Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Sun
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Weiliang Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| |
Collapse
|
2
|
Shayanfar S, Shayanfar A. Comparison of various methods for validity evaluation of QSAR models. BMC Chem 2022; 16:63. [PMID: 35999611 PMCID: PMC9396839 DOI: 10.1186/s13065-022-00856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantitative structure-activity relationship (QSAR) modeling is one of the most important computational tools employed in drug discovery and development. The external validation of QSAR models is the main point to check the reliability of developed models for the prediction activity of not yet synthesized compounds. It was performed by different criteria in the literature. METHODS In this study, 44 reported QSAR models for biologically active compounds reported in scientific papers were collected. Various statistical parameters of external validation of a QSAR model were calculated, and the results were discussed. RESULTS The findings revealed that employing the coefficient of determination (r2) alone could not indicate the validity of a QSAR model. The established criteria for external validation have some advantages and disadvantages which should be considered in QSAR studies. CONCLUSION This study showed that these methods alone are not only enough to indicate the validity/invalidity of a QSAR model.
Collapse
Affiliation(s)
- Shadi Shayanfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Editorial Office of Pharmaceutical Sciences Journal, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Liu G, Zhou C, Zhang Z, Wang C, Luo X, Ju X, Zhao C, Ozoe Y. Novel insecticidal 1,6-dihydro-6-iminopyridazine derivatives as competitive antagonists of insect RDL GABA receptors. PEST MANAGEMENT SCIENCE 2022; 78:2872-2882. [PMID: 35396824 DOI: 10.1002/ps.6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The ionotropic γ-aminobutyric acid (GABA) receptor (iGABAR) is an important target for insecticides and parasiticides. Our previous studies showed that competitive antagonists (CAs) of insect iGABARs have the potential to be used for developing novel insecticides and that the structural modification of gabazine (a representative CA of mammalian iGABARs) could lead to the identification of novel CAs of insect iGABARs. RESULTS In the present study, a novel series of 1,3-di- and 1,3,5-trisubstituted 1,6-dihydro-6-iminopyridazines (DIPs) was designed using a versatile strategy and synthesized using facile methods. Electrophysiological studies showed that several target DIPs (30 μM) exhibited excellent antagonistic activities against common cutworm and housefly iGABARs consisting of RDL subunits. The IC50 values of 3-(4-methoxyphenyl), 3-(4-trifluoromethoxyphenyl), 3-(4-biphenylylphenyl), 3-(2-naphthyl), 3-(3,4-methylenedioxyphenyl), and 3,5-(4-methoxyphenyl) analogs ranged from 2.2 to 24.8 μM. Additionally, several 1,3-disubstituted DIPs, especially 3-(4-trifluoromethoxyphenyl) and 3-(3,4-methylenedioxyphenyl) analogs, exhibited moderate insecticidal activity against common cutworm larvae, with >60% mortality at a concentration of 100 mg kg-1 . Molecular docking studies showed that the oxygen atom on the three-substituted aromatic ring could form a hydrogen bond with Arg254, which may enhance the activity of these DIPs against housefly iGABARs. CONCLUSION This systematic study indicated that the presence of a carboxyl side chain shorter by one methylene than that of gabazine at the 1-position of the pyridazine ring is effective for maintaining the stable binding of these DIPs in insect iGABARs. Our study provides important information for the design of novel insect iGABAR CAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Congwei Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Zhisong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| |
Collapse
|
4
|
Wang H, Mulgaonkar N, Pérez LM, Fernando S. ELIXIR-A: An Interactive Visualization Tool for Multi-Target Pharmacophore Refinement. ACS OMEGA 2022; 7:12707-12715. [PMID: 35474832 PMCID: PMC9025992 DOI: 10.1021/acsomega.1c07144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Pharmacophore modeling is an important step in computer-aided drug design for identifying interaction points between the receptor and ligand complex. Pharmacophore-based models can be used for de novo drug design, lead identification, and optimization in virtual screening as well as for multi-target drug design. There is a need to develop a user-friendly interface to filter the pharmacophore points resulting from multiple ligand conformations. Here, we present ELIXIR-A, a Python-based pharmacophore refinement tool, to help refine the pharmacophores between multiple ligands from multiple receptors. Furthermore, the output can be easily used in virtual pharmacophore-based screening platforms, thereby contributing to the development of drug discovery.
Collapse
Affiliation(s)
- Haoqi Wang
- Biological
and Agricultural Engineering Department, Texas A&M University, College Station, Texas 77843, United States
| | - Nirmitee Mulgaonkar
- Biological
and Agricultural Engineering Department, Texas A&M University, College Station, Texas 77843, United States
| | - Lisa M. Pérez
- High
Performance Research Computing, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sandun Fernando
- Biological
and Agricultural Engineering Department, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Wang C, Zhai N, Zhao Y, Wu F, Luo X, Ju X, Liu G, Liu H. Exploration of Novel Hepatitis B Virus Capsid Assembly Modulators by Integrated Molecular Simulations. ChemistrySelect 2021. [DOI: 10.1002/slct.202102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
- School of Materials Science and Engineering Zhengzhou University No.100 Science Avenue Zhengzhou 450001 Henan P. R. China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Hui Liu
- Department of Hematology Renmin Hospital of Wuhan University Wuhan 430060 Hubei P. R. China
| |
Collapse
|
6
|
Zheng X, Wang C, Zhai N, Luo X, Liu G, Ju X. In Silico Screening of Novel α1-GABA A Receptor PAMs towards Schizophrenia Based on Combined Modeling Studies of Imidazo [1,2-a]-Pyridines. Int J Mol Sci 2021; 22:9645. [PMID: 34502550 PMCID: PMC8431797 DOI: 10.3390/ijms22179645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
The ionotropic GABAA receptor (GABAAR) has been proven to be an important target of atypical antipsychotics. A novel series of imidazo [1,2-a]-pyridine derivatives, as selective positive allosteric modulators (PAMs) of α1-containing GABAARs with potent antipsychotic activities, have been reported recently. To better clarify the pharmacological essentiality of these PAMs and explore novel antipsychotics hits, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) were performed on 33 imidazo [1,2-a]-pyridines. The constructed 3D-QSAR models exhibited good predictive abilities. The dockings results and MD simulations demonstrated that hydrogen bonds, π-π stackings, and hydrophobic interactions play essential roles in the binding of these novel PAMs in the GABAAR binding pocket. Four hit compounds (DS01-04) were then screened out by the combination of the constructed models and computations, including the pharmacophore model, Topomer Search, molecular dockings, ADME/T predictions, and MD simulations. The compounds DS03 and DS04, with higher docking scores and better predicted activities, were also found to be relatively stable in the binding pocket by MD simulations. These results might provide a significant theoretical direction or information for the rational design and development of novel α1-GABAAR PAMs with antipsychotic activities.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| |
Collapse
|
7
|
Zhai N, Wang C, Wu F, Xiong L, Luo X, Ju X, Liu G. Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. Int J Mol Sci 2021; 22:8122. [PMID: 34360886 PMCID: PMC8348919 DOI: 10.3390/ijms22158122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Xanthine oxidase (XO) is an important target for the effective treatment of hyperuricemia-associated diseases. A series of novel 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (ODCs) as XO inhibitors (XOIs) with remarkable activities have been reported recently. To better understand the key pharmacological characteristics of these XOIs and explore more hit compounds, in the present study, the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) studies were performed on 46 ODCs. The constructed 3D-QSAR models exhibited reliable predictability with satisfactory validation parameters, including q2 = 0.897, R2 = 0.983, rpred2 = 0.948 in a CoMFA model, and q2 = 0.922, R2 = 0.990, rpred2 = 0.840 in a CoMSIA model. Docking and MD simulations further gave insights into the binding modes of these ODCs with the XO protein. The results indicated that key residues Glu802, Arg880, Asn768, Thr1010, Phe914, and Phe1009 could interact with ODCs by hydrogen bonds, π-π stackings, or hydrophobic interactions, which might be significant for the activity of these XOIs. Four potential hits were virtually screened out using the constructed pharmacophore model in combination with molecular dockings and ADME predictions. The four hits were also found to be relatively stable in the binding pocket by MD simulations. The results in this study might provide effective information for the design and development of novel XOIs.
Collapse
Affiliation(s)
- Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Liwei Xiong
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| |
Collapse
|
8
|
In Silico Design of Peptide-Based SARS-CoV-2 Fusion Inhibitors That Target WT and Mutant Versions of SARS-CoV-2 HR1 Domains. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1030023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In 2019, novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began infecting humans, resulting in the COVID-19 pandemic. While the push for development of vaccines has yielded some positive results, the emergence of additional variants has led to concerns surrounding sustained vaccine effectiveness as the variants become the dominant strains. This work was undertaken to develop peptide-based antivirals capable of targeting both the wildtype (WT) heptad repeat 1 (HR1) domain of SARS-CoV-2 and the new HR1 variants which have developed. In silico protein mutagenesis, structural characterization, and protein–protein molecular docking were utilized to determine molecular interactions which facilitated binding of peptide-based antivirals targeting the HR1 domains. Molecular dynamics simulations were utilized to predict the final binding affinities of the top five peptide inhibitors designed. This work demonstrated the importance of hydrophobic interactions in the hydrophobic gorge and in the rim of the HR1 domain. Additionally, the placement of charged residues was shown to be essential in maximizing electrostatic interactions. The top five designed peptide inhibitors were all demonstrated to maintain good binding affinity to the WT and the variant HR1 SARS-CoV-2 domains. Therefore, the peptide inhibitors designed in this work could serve as potent antivirals which are effective in targeting both the original SARS-CoV-2 and the HR1 variants that have developed.
Collapse
|
9
|
Rasool N, Hussain W. Three Major Phosphoacceptor Sites in HIV-1 Capsid Protein Enhances its Structural Stability and Resistance Against the Inhibitor: Explication Through Molecular Dynamics Simulation, Molecular Docking and DFT Analysis. Comb Chem High Throughput Screen 2021; 23:41-54. [PMID: 31838993 DOI: 10.2174/1386207323666191213142223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human Immunodeficiency Virus 1 (HIV-1) is a lentivirus, which causes various HIV-associated infections. The HIV-1 core dissociation is essential for viral cDNA synthesis and phosphorylation of HIV-1 capsid protein (HIV-1 CA) plays an important role in it. OBJECTIVE The aim of this study was to explicate the role of three phosphoserine sites i.e. Ser109, Ser149 and Ser178 in the structural stability of HIV-1 CA, and it's binding with GS-CA1, a novel potent inhibitor. METHODS Eight complexes were analyzed and Molecular Dynamics (MD) simulations were performed to observe the stability of HIV-1 CA in the presence and absence of phosphorylation of serine residues at four different temperatures i.e. 300K, 325K, 340K and 350K, along with molecular docking and DFT analysis. RESULTS The structures showed maximum stability in the presence of phosphorylated serine residue. However, GS-CA1 docked most strongly with the native structure of HIV-1 CA i.e. binding affinity was -8.5 kcal/mol (Ki = 0.579 µM). CONCLUSION These results suggest that the phosphorylation of these three serine residues weakens the binding of GS-CA1 with CA and casts derogatory effect on inhibition potential of this inhibitor, but it supports the stability of HIV-1 CA structure that can enhance regulation and replication of HIV-1 in host cells.
Collapse
Affiliation(s)
- Nouman Rasool
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqar Hussain
- National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Chen L, Liu WG, Xiong F, Ma C, Sun C, Zhu YR, Zhang XG, Wang ZH. 3D-QSAR, molecular docking and molecular dynamics simulations analyses of a series of heteroaryldihydropyrimidine derivatives as hepatitis B virus capsid assembly inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02542b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In silico design of heteroaryldihydropyrimidine-based selective HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wen-Guang Liu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chao Ma
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chen Sun
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yi-Ren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Xing-Guang Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhong-Hua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Gu SX, Zhu YY, Wang C, Wang HF, Liu GY, Cao S, Huang L. Recent discoveries in HIV-1 reverse transcriptase inhibitors. Curr Opin Pharmacol 2020; 54:166-172. [PMID: 33176248 DOI: 10.1016/j.coph.2020.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
HIV-1 reverse transcriptase inhibitors (RTIs) are indispensable components of highly active antiretroviral therapy (HAART), which has achieved great success in controlling AIDS epidemic in reducing drastically the morbidity and mortality of HIV-infected patients. RTIs are divided into two categories, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). In this review, the recent discoveries in NRTIs and NNRTIs, including approved anti-HIV drugs and noteworthy drug candidates in different development stages, are summarized, and their future direction is prospected.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Yuan-Yuan Zhu
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hai-Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
12
|
Alharbi A, Alshaghdali K, Saeed A. Molecular docking based design of Inhibitors for viral Non-Nucleosidase as potential anti-retroviral agents. Bioinformation 2020; 16:736-741. [PMID: 34675458 PMCID: PMC8503775 DOI: 10.6026/97320630016736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 11/23/2022] Open
Abstract
Reverse Transcriptase (RT) inhibitors are highly promising agents for use as an effective anti-retroviral therapy (HAART) which is typically a combination of three or four antiretroviral drugs. We used direct drug design approach to discover new chemical entities for the target protein. The validated template of the protein targeting reverse transcriptase PDB ID 1JKH was extracted for three sites hydrophobic, steric, and electronic parameters explain the interactions at the active site by the inhibitors. We used the Zinc library of compounds to explore the possible leads for HAART through RT inhibition. We report 12 new chemical entities with possible activity against the targeted viral protein. These leads will provide new therapeutic means in antiretroviral therapy.
Collapse
Affiliation(s)
- Ahmed Alharbi
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Khalid Alshaghdali
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Amir Saeed
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum, Sudan
| |
Collapse
|
13
|
Stoddard SV, Stoddard SD, Oelkers BK, Fitts K, Whalum K, Whalum K, Hemphill AD, Manikonda J, Martinez LM, Riley EG, Roof CM, Sarwar N, Thomas DM, Ulmer E, Wallace FE, Pandey P, Roy S. Optimization Rules for SARS-CoV-2 M pro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses 2020; 12:v12090942. [PMID: 32859008 PMCID: PMC7552026 DOI: 10.3390/v12090942] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses are viral infections that have a significant ability to impact human health. Coronaviruses have produced two pandemics and one epidemic in the last two decades. The current pandemic has created a worldwide catastrophe threatening the lives of over 15 million as of July 2020. Current research efforts have been focused on producing a vaccine or repurposing current drug compounds to develop a therapeutic. There is, however, a need to study the active site preferences of relevant targets, such as the SARS-CoV-2 main protease (SARS-CoV-2 Mpro), to determine ways to optimize these drug compounds. The ensemble docking and characterization work described in this article demonstrates the multifaceted features of the SARS-CoV-2 Mpro active site, molecular guidelines to improving binding affinity, and ultimately the optimization of drug candidates. A total of 220 compounds were docked into both the 5R7Z and 6LU7 SARS-CoV-2 Mpro crystal structures. Several key preferences for strong binding to the four subsites (S1, S1′, S2, and S4) were identified, such as accessing hydrogen binding hotspots, hydrophobic patches, and utilization of primarily aliphatic instead of aromatic substituents. After optimization efforts using the design guidelines developed from the molecular docking studies, the average docking score of the parent compounds was improved by 6.59 −log10(Kd) in binding affinity which represents an increase of greater than six orders of magnitude. Using the optimization guidelines, the SARS-CoV-2 Mpro inhibitor cinanserin was optimized resulting in an increase in binding affinity of 4.59 −log10(Kd) and increased protease inhibitor bioactivity. The results of molecular dynamic (MD) simulation of cinanserin-optimized compounds CM02, CM06, and CM07 revealed that CM02 and CM06 fit well into the active site of SARS-CoV-2 Mpro [Protein Data Bank (PDB) accession number 6LU7] and formed strong and stable interactions with the key residues, Ser-144, His-163, and Glu-166. The enhanced binding affinity produced demonstrates the utility of the design guidelines described. The work described herein will assist scientists in developing potent COVID-19 antivirals.
Collapse
Affiliation(s)
- Shana V. Stoddard
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- Correspondence:
| | - Serena D. Stoddard
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- College of Veterinary Medicine, Tuskegee University, 201 Frederick D Patterson Dr, Tuskegee, AL 36088, USA
| | - Benjamin K. Oelkers
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kennedi Fitts
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kellen Whalum
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kaylah Whalum
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Alexander D. Hemphill
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Jithin Manikonda
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Linda Michelle Martinez
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Elizabeth G. Riley
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Caroline M. Roof
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Nowreen Sarwar
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Doni M. Thomas
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Emily Ulmer
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Felissa E. Wallace
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- Walnut Hills High School, 3250 Victory Pkwy, Cincinnati, OH 45207, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA;
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Schools of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
14
|
Feng YQ, Li BA, Feng F, Chen YS, Ren YX, Zhang H, Cao S. Novel mTOR Inhibitor Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeting Agents. Onco Targets Ther 2020; 13:7165-7176. [PMID: 32801748 PMCID: PMC7394584 DOI: 10.2147/ott.s244474] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background Although molecular-targeted agents are still the first choice for advanced hepatocellular carcinoma (HCC) treatment, the therapeutic efficacy of these agents is not satisfactory. Recently, the mammalian target of rapamycin (mTOR) is considered to be a promising molecular target that can enhance the sensitivity of HCC cells to antitumor therapy. However, the reported mTOR inhibitors have some shortcomings, and novel mTOR inhibitors need to be developed to enhance the antitumor effect of molecularly targeted agents on advanced HCC. Methods In this study, five small-molecular compounds that could serve as potential mTOR-specific inhibitors were identified by virtual screening. The activity of tert-butyl (4-(9-(2-(1,3-dioxolan-2-yl)ethyl)-6-morpholino-9H-purin-2-yl)phenyl)carbamate (compound 4) was measured by enzyme test and Western blot, and its antitumor effect on HCC was examined in nude mice subcutaneous tumor model. Results The results showed that 4 is the most effective one in inhibiting the activation of mTOR kinase (mTOR IC50 = 17.52±3.67 nmol/L) among the five lead compounds. Further research in this study indicated that treatment with 4 enhanced the sensitivity of HCC cells to the molecular-targeted agents, such as sorafenib, regorafenib, lenvatinib, anlotinib, and apatinib. In addition, this research indicated that mTOR was correlated with the poor prognosis in patients with advanced HCC who received sorafenib. Conclusion Our study identified a new type of small-molecular inhibitors of mTOR and confirmed their ability to enhance the antitumor effect of molecular-targeted agents on advanced HCC.
Collapse
Affiliation(s)
- Ying-Qi Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Bo-An Li
- Center for Clinical Laboratory, The Fifth Medical Center, General Hospital of Chinese PLA, Beijing 100039, People's Republic of China
| | - Fan Feng
- Center for Clinical Laboratory, The Fifth Medical Center, General Hospital of Chinese PLA, Beijing 100039, People's Republic of China
| | - Yong-Shou Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Yi-Xin Ren
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Heng Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| |
Collapse
|
15
|
Feng YQ, Gu SX, Chen YS, Gao XD, Ren YX, Chen JC, Lu YY, Zhang H, Cao S. Virtual Screening and Optimization of Novel mTOR Inhibitors for Radiosensitization of Hepatocellular Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1779-1798. [PMID: 32440103 PMCID: PMC7220363 DOI: 10.2147/dddt.s249156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Background Radiotherapy has an ameliorative effect on a wide variety of tumors, but hepatocellular carcinoma (HCC) is insensitive to this treatment. Overactivated mammalian target of rapamycin (mTOR) plays an important part in the resistance of HCC to radiotherapy; thus, mTOR inhibitors have potential as novel radiosensitizers to enhance the efficacy of radiotherapy for HCC. Methods A lead compound was found based on pharmacophore modeling and molecular docking, and optimized according to the differences between the ATP-binding pockets of mTOR and PI3K. The radiosensitizing effect of the optimized compound (2a) was confirmed by colony formation assays and DNA double-strand break assays in vitro. The discovery and preclinical characteristics of this compound are described. Results The key amino acid residues in mTOR were identified, and a precise virtual screening model was constructed. Compound 2a, with a 4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine scaffold, exhibited promising potency against mTOR (mTOR IC50=7.1 nmol/L (nM)) with 126-fold selectivity over PI3Kα. Moreover, 2a significantly enhanced the sensitivity of HCC to radiotherapy in vitro in a dose-dependent manner. Conclusion A new class of selective mTOR inhibitors was developed and their radiosensitization effects were confirmed. This study also provides a basis for developing mTOR-specific inhibitors for use as radiosensitizers for HCC radiotherapy.
Collapse
Affiliation(s)
- Ying-Qi Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Yong-Shou Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Xu-Dong Gao
- Comprehensive Liver Cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, People's Republic of China
| | - Yi-Xin Ren
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Jian-Chao Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China
| | - Yin-Ying Lu
- Comprehensive Liver Cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, People's Republic of China
| | - Heng Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China.,National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| |
Collapse
|
16
|
Chen Y, Tian Y, Gao Y, Wu F, Luo X, Ju X, Liu G. In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines. Front Chem 2020; 8:164. [PMID: 32266208 PMCID: PMC7105726 DOI: 10.3389/fchem.2020.00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
A novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) analogs have recently been recognized as promising HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) with potent antiviral activity. To better understand the pharmacological essentiality of these DHPYs and design novel NNRTI leads, in this work, a systematic in silico study was performed on 52 DHPYs using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, virtual screening, absorption-distribution-metabolism-excretion (ADME) prediction, and molecular dynamics (MD) methods. The generated 3D-QSAR models exhibited satisfactory parameters of internal validation and well-externally predictive capacity, for instance, the q2, R2, andr pred 2 of the optimal comparative molecular similarity indices analysis model were 0.647, 0.970, and 0.751, respectively. The docking results indicated that residues Lys101, Tyr181, Tyr188, Trp229, and Phe227 played important roles for the DHPY binding. Nine lead compounds were obtained by the virtual screening based on the docking and pharmacophore model, and three new compounds with higher docking scores and better ADME properties were subsequently designed based on the screening and 3D-QSAR results. The MD simulation studies further demonstrated that the newly designed compounds could stably bind with the HIV-1 RT. These hit compounds were supposed to be novel potential anti-HIV-1 inhibitors, and these findings could provide significant information for designing and developing novel HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
17
|
Monteiro AFM, de Oliveira Viana J, Muratov E, Scotti MT, Scotti L. In Silico Studies against Viral Sexually Transmitted Diseases. Curr Protein Pept Sci 2020; 20:1135-1150. [PMID: 30854957 DOI: 10.2174/1389203720666190311142747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Sexually Transmitted Diseases (STDs) refer to a variety of clinical syndromes and infections caused by pathogens that can be acquired and transmitted through sexual activity. Among STDs widely reported in the literature, viral sexual diseases have been increasing in a number of cases globally. This emphasizes the need for prevention and treatment. Among the methods widely used in drug planning are Computer-Aided Drug Design (CADD) studies and molecular docking which have the objective of investigating molecular interactions between two molecules to better understand the three -dimensional structural characteristics of the compounds. This review will discuss molecular docking studies applied to viral STDs, such as Ebola virus, Herpes virus and HIV, and reveal promising new drug candidates with high levels of specificity to their respective targets.
Collapse
Affiliation(s)
- Alex F M Monteiro
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Jessika de Oliveira Viana
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Engene Muratov
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Beard Hall 301, CB#7568, Chapel Hill, NC, 27599, United States
| | - Marcus T Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil.,Teaching and Research Management - University Hospital, Federal University of Paraíba, Campus I, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
18
|
Sun CC, Feng LJ, Sun XH, Yu RL, Chu YY, Kang CM. Study on the interactions of pyrimidine derivatives with FAK by 3D-QSAR, molecular docking and molecular dynamics simulation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02136a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Focal adhesion kinase (FAK) is a kind of tyrosine kinase that modulates integrin and growth factor signaling pathways.
Collapse
Affiliation(s)
- Chuan-ce Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Li-jun Feng
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Xiao-hua Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Ri-lei Yu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Yan-yan Chu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Cong-min Kang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
19
|
Tian Y, Gao Y, Chen Y, Liu G, Ju X. Identification of The Fipronil Resistance Associated Mutations in Nilaparvata lugens GABA Receptors by Molecular Modeling. Molecules 2019; 24:E4116. [PMID: 31739499 PMCID: PMC6891292 DOI: 10.3390/molecules24224116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Fipronil, as the first commercialized member of phenylpyrazole insecticides, has been widely used to control planthoppers in China due to its high insecticidal activity and low toxicity to mammals. However, insects have developed resistance to phenylpyrazoles after their long-term use. The resistance mechanism of insects to fipronil has not been well identified, which limited the development of phenylpyrazole insecticides. In the present study, we aimed to elucidate the related fipronil-resistance mechanism in N. lugens GABA receptors by homology modeling, molecular docking, and molecular dynamics. The results indicated that fipronil showed the weakest interaction with the mutant (R0'Q + A2'S) GABA receptors, which is consistent with the experimental study. The binding poses of fipronil were found to be changed when mutations were conducted. These findings verified the novel fipronil-resistance mechanism in silico and provide important information for the design of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
| | | | | | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (Y.T.); (Y.G.); (Y.C.)
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (Y.T.); (Y.G.); (Y.C.)
| |
Collapse
|
20
|
Gao Y, Chen Y, Tian Y, Zhao Y, Wu F, Luo X, Ju X, Liu G. In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. NEW J CHEM 2019. [DOI: 10.1039/c9nj03353j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rational design and virtual screening of novel inhibitors of HIV reverse transcriptase associated ribonuclease H based on a combined molecular modeling study.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yilan Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|
21
|
Liu G, Li H, Shi J, Wang W, Furuta K, Liu D, Zhao C, Ozoe F, Ju X, Ozoe Y. 4-Aryl-5-carbamoyl-3-isoxazolols as competitive antagonists of insect GABA receptors: Synthesis, biological activity, and molecular docking studies. Bioorg Med Chem 2018; 27:416-424. [PMID: 30579800 DOI: 10.1016/j.bmc.2018.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022]
Abstract
Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 μM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 μg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Huaguang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaying Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Kenjiro Furuta
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Di Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
22
|
Wan Y, Tian Y, Wang W, Gu S, Ju X, Liu G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Adv 2018; 8:40529-40543. [PMID: 35557880 PMCID: PMC9091378 DOI: 10.1039/c8ra06475j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Abstract
A series of novel diarylpyridine derivatives has recently been identified as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), and most of them exhibited potent activities against HIV-1 strains, with EC50 values in the low nanomolar range. However, the three-dimensional quantitative structure–activity relationships (3D-QSARs) and pharmacophore characteristics of these compounds remain to be studied. In the present study, forty-two diarylpyridine derivatives were firstly docked into HIV-1 reverse transcriptase, and molecular dynamics (10 ns) simulations were further performed to validate the reliability of the docking results, which indicated that residues Lys101, Tyr181, Tyr188, Phe227, and Trp229 might play important roles in binding with these diarylpyridines. The “U”-shaped docking conformations of all compounds were then used to construct 3D-QSAR and pharmacophore models. The satisfactory statistical parameters of CoMFA (qloo2 = 0.665, rncv2 = 0.989, rpred2 = 0.962, etc.) and CoMSIA (qloo2 = 0.727, rncv2 = 0.988, rpred2 = 0.912, etc.) models demonstrated that both constructed models had excellent predictability, and their contour maps gave insights into the structural requirements of the diarylpyridines for the anti-HIV-1 activity. A docking-conformation-based pharmacophore model, containing three hydrophobic centers, three hydrogen-bond acceptors, and three hydrogen-bond donors, was also established. The observations in this study might provide important information for the rational design and development of novel HIV-1 NNRTIs. Computational modeling approaches were successfully applied to a series of diarylpyridine derivatives as novel HIV-1 NNRTIs.![]()
Collapse
Affiliation(s)
- Youlan Wan
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|