1
|
Tzeng WS, Teng WL, Huang PH, Yen FL, Shiue YL. Anti-cancer activity and cellular uptake of 7,3',4'- and 7,8,4'-trihydroxyisoflavone in HepG2 cells under hypoxic conditions. J Enzyme Inhib Med Chem 2024; 39:2288806. [PMID: 38153119 PMCID: PMC10763887 DOI: 10.1080/14756366.2023.2288806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 μM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 μM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 μM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.
Collapse
Affiliation(s)
- Wen-Sheng Tzeng
- Department of Radiology, Pingtung Christian Hospital, Pingtung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Lin Teng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pao-Hsien Huang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Lin Yen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Chang TS, Wu JY, Ding HY, Lin HY, Wang TY. Exploring gingerol glucosides with enhanced anti-inflammatory activity through a newly identified α-glucosidase (ArG) from Agrobacterium radiobacter DSM 30147. J Biosci Bioeng 2024:S1389-1723(24)00167-1. [PMID: 38997871 DOI: 10.1016/j.jbiosc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 μM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 μM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Ying Lin
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Bouhend A, Keddari S, Yahla I, Sadouki O, Bououdina M. Therapeutic Benefits of Tuna Oil by In Vitro and In Vivo Studies Using a Rat Model of Acetic Acid-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2024; 196:3817-3843. [PMID: 37787891 DOI: 10.1007/s12010-023-04736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Ulcerative colitis (UC), an inflammation of the colon lining, represents the main form of inflammatory bowel disease IBD. Nutritional therapy is extremely important in the management of ulcerative colitis. Fish oil contains long-chain omega-3 polyunsaturated fatty acids, which have beneficial effects on health, including anti-inflammatory effects. This study aims to investigate the benefits of bluefin tuna oil extracted by the Soxhlet method in vitro by determining the anti-radical and anti-inflammatory activities and in vivo by evaluating the preventive and curative effects. The experiments were carried out using two doses of oil (100 and 260 mg/kg) and glutamine (400 and 1000 mg/kg) on the acetic acid-induced UC model. UC has been induced in Wistar rats by intrarectal administration of a single dose of 1 mL acetic acid (5% v/v in distilled water). The obtained results indicate that tuna oil and glutamine have a significant anti-free radical effect. Tuna oil has a marked anti-inflammatory power based on membrane stabilization and inhibiting protein denaturation. The reduction of various UC parameters, such as weight loss, disease activity score DAS, and colonic ulceration in rats pre-treated with tuna oil and glutamine, demonstrate that these treatments have a significant effect on UC. Total glutathione GSH, superoxide dismutase SOD, and catalase activities are significantly restored in the tuna oil and glutamine groups, while lipid peroxidation has been markedly reduced.
Collapse
Affiliation(s)
- Abla Bouhend
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria
| | - Soumia Keddari
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria.
| | - Imen Yahla
- Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Omar Sadouki
- Laboratory of Anapathology Histology, University Hospital Centre, Mostaganem, Algeria
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Yang R, Lu Y, Yin N, Faiola F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19156-19168. [PMID: 37978927 DOI: 10.1021/acs.est.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
You Y, Kim SH, Kim CH, Kim IH, Shin Y, Kim TR, Sohn M, Park J. Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide. Microorganisms 2023; 11:2312. [PMID: 37764156 PMCID: PMC10535240 DOI: 10.3390/microorganisms11092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Probiotics, including Lacticaseibacillus rhamnosus (L. rhamnosus), have gained recognition for their potential health benefits, such as enhancing immune function, maintaining gut health, and improving nutrient absorption. This study investigated the effectiveness of L. rhamnosus LM1019 (LM1019) in enhancing immune function. In RAW 264.7 cells, LM1019 demonstrated dose-dependent immune stimulation by increasing nitric oxide production, gene expression of proinflammatory cytokines, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These effects were mediated through the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) translocation without inducing cytotoxicity. Furthermore, orally administered LM1019 was evaluated in immunosuppressed mice induced by cyclophosphamide (CTX). High-dose administration of LM1019 significantly increased the subpopulations of lymphocytes, specifically helper T cells (CD4+), as well as two subtypes of natural killer (NK) cells, namely, IFN-γ+ and granzyme B+ NK cells. Additionally, LM1019 at a high dose led to elevated levels of proinflammatory cytokines, including IFN-γ and IL-12, compared to CTX-treated mice. These findings highlight the potential of LM1019 in enhancing the immune system. The study contributes to the growing body of research on the beneficial effects of probiotics on immune function.
Collapse
Affiliation(s)
- Yeji You
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Sung-Hwan Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - Chul-Hong Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - In-Hwan Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - YoungSup Shin
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Minn Sohn
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Jeseong Park
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| |
Collapse
|
6
|
Fu X, Zhang M, Yuan Y, Chen Y, Ou Z, Hashim Z, Hashim JH, Zhang X, Zhao Z, Norbäck D, Sun Y. Microbial Virulence Factors, Antimicrobial Resistance Genes, Metabolites, and Synthetic Chemicals in Cabins of Commercial Aircraft. Metabolites 2023; 13:343. [PMID: 36984783 PMCID: PMC10058785 DOI: 10.3390/metabo13030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Passengers are at a higher risk of respiratory infections and chronic diseases due to microbial exposure in airline cabins. However, the presence of virulence factors (VFs), antimicrobial resistance genes (ARGs), metabolites, and chemicals are yet to be studied. To address this gap, we collected dust samples from the cabins of two airlines, one with textile seats (TSC) and one with leather seats (LSC), and analyzed the exposure using shotgun metagenomics and LC/MS. Results showed that the abundances of 17 VFs and 11 risk chemicals were significantly higher in TSC than LSC (p < 0.01). The predominant VFs in TSC were related to adherence, biofilm formation, and immune modulation, mainly derived from facultative pathogens such as Haemophilus parainfluenzae and Streptococcus pneumoniae. The predominant risk chemicals in TSC included pesticides/herbicides (carbofuran, bromacil, and propazine) and detergents (triethanolamine, diethanolamine, and diethyl phthalate). The abundances of these VFs and detergents followed the trend of TSC > LSC > school classrooms (p < 0.01), potentially explaining the higher incidence of infectious and chronic inflammatory diseases in aircraft. The level of ARGs in aircraft was similar to that in school environments. This is the first multi-omic survey in commercial aircraft, highlighting that surface material choice is a potential intervention strategy for improving passenger health.
Collapse
Affiliation(s)
- Xi Fu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwen Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | | | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhuohui Zhao
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Meteorology and Health, Typhoon Institute/CMA, Shanghai 200030, China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Abstract
Legumes are a staple of diets all around the world. In some least developed countries, they are the primary source of protein; however, their beneficial properties go beyond their nutritional value. Recent research has shown that legumes have bioactive compounds like peptides, polyphenols and saponins, which exhibit antioxidant, antihypertensive, anti-inflammatory and other biological activities. Thus, these compounds could be an alternative treatment for inflammatory diseases, in particular, chronic inflammation such as arthritis, obesity and cancer. Nowadays, there is a growing interest in alternative therapies derived from natural products; accordingly, the present review has compiled the bioactive compounds found in legumes that have demonstrated an anti-inflammatory effect in non-clinical studies.
Collapse
|
8
|
Kim HG, Jeong SG, Kim JH, Cho JY. Phosphatase inhibition by sodium orthovanadate displays anti-inflammatory action by suppressing AKT-IKKβ signaling in RAW264.7 cells. Toxicol Rep 2022; 9:1883-1893. [PMID: 36518371 PMCID: PMC9742970 DOI: 10.1016/j.toxrep.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Sodium orthovanadate (Na3VO4) is an inhibitor of phosphatases that acts as a phosphate analog and is being developed as an anti-diabetes drug. Phosphatases play important roles in inflammatory signal pathways by modulating the removal of phosphate moieties of key signaling proteins. However, the role of protein phosphatases on the inflammatory response has not been fully established. In this study, we investigated how phosphatases can control the inflammatory response using Na3VO4 in LPS-stimulated RAW264.7 cells and explored the molecular mechanisms by NO assay, mRNA analysis, immunoblotting analysis, kinase assay, luciferase reporter gene assay, and mutation strategy. Na3VO4 decreased the release of nitric oxide (NO) and suppressed the expression of pro-inflammatory genes at the transcriptional level, without cytotoxicity. The translocation of nuclear factor (NF)-κB subunits into the nucleus and the level of p-IκBα were reduced by Na3VO4, as was IKKβ activity. Na3VO4 inhibited NF-κB-Luc activity under AKT1/2 and IKKβ overexpression. However, the inhibitory effect of Na3VO4 against NF-κB-Luc was not observed in the group overexpressing both AKT2 and IKKβ-M10, a mutant in which the 10 serine residues in the autophosphorylated region of the C-terminal were replaced with alanine. Na3VO4 directly decreased the activity of protein phosphatase 1α (PP1α) and protein phosphatase 2 A (PP2A) by 95%. Phosphatase inhibition by Na3VO4 also selectively suppressed AKT-IKKβ signaling by directly blocking the phosphatase activity of PP1 and PP2A, consequently down-regulating NF-κB and inflammatory gene expression. Therefore, these results suggest that vanadium compounds including Na3VO4 can be developed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Tan H, Shao J, Zhang J, Ma H, Jing L. Synthesis, Antioxidant, and Antihypoxia Activities of 6,7,8,4′-Tetrahydroxyisoflavone and 6,7,8,3′,4′-Pentahydroxyisoflavone. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, 6,8-dihydroxydaidzein (6,8-DHD or 6,7,8,4′-tetrahydroxyisoflavone) and 6,8,3′-trihydroxydaidzein (6,8,3′-THD or 6,7,8,3′,4′-pentahydroxyisoflavone) were synthesized via a facile and efficient way using commercially available formononetin as starting material. Their structures were confirmed using spectroscopic analyses (infrared, nuclear magnetic resonance, and mass spectrometry). The purity was checked by ultra-high performance liquid chromatography. Their antioxidant activities were evaluated via 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay and reducing power assay using ascorbic acid (vitamin C) as a reference compound. The antihypoxia capacity was determined by a hypoxia injury model in PC12 cells. Our study revealed that 6,8-DHD and 6,8,3′-THD exhibited higher antioxidant activities than that of vitamin C and could protect PC12 cells against hypoxia-induced damage. These results indicate that 6,8-DHD and 6,8,3′-THD are excellent antioxidant agents and could be used for alleviating injury induced by hypoxia.
Collapse
Affiliation(s)
- Hongqiang Tan
- Center for Brain Science, Hospital of Xi'an Jiaotong University, Shaanxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Gansu, China
| | - Jin Shao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support force of PLA, Gansu, China
| | - Jie Zhang
- Center for Brain Science, Hospital of Xi'an Jiaotong University, Shaanxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Gansu, China
| | - Huiping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support force of PLA, Gansu, China
| | - Linlin Jing
- Center for Brain Science, Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
10
|
A Novel Soy Isoflavone Derivative, 3′-Hydroxyglycitin, with Potent Antioxidant and Anti-α-Glucosidase Activity. PLANTS 2022; 11:plants11172202. [PMID: 36079584 PMCID: PMC9460358 DOI: 10.3390/plants11172202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
This study demonstrated the enzymatic hydroxylation of glycitin to 3′-hydroxyglycitin, confirming the structure by mass and nucleic magnetic resonance spectral analyses. The bioactivity assays further revealed that the new compound possessed over 100-fold higher 1,1-diphenyl-2-picrylhydrazine free-radical scavenging activity than the original glycitin, although its half-time of stability was 22.3 min. Furthermore, the original glycitin lacked anti-α-glucosidase activity, whereas the low-toxic 3′-hydroxyglycitin displayed a 10-fold higher anti-α-glucosidase activity than acarbose, a standard clinical antidiabetic drug. The inhibition mode of 3′-hydroxyglycitin was noncompetitive, with a Ki value of 0.34 mM. These findings highlight the potential use of the new soy isoflavone 3′-hydroxyglycitin in biotechnology industries in the future.
Collapse
|
11
|
Fan Y, Wang M, Li Z, Jiang H, Shi J, Shi X, Liu S, Zhao J, Kong L, Zhang W, Ma L. Intake of Soy, Soy Isoflavones and Soy Protein and Risk of Cancer Incidence and Mortality. Front Nutr 2022; 9:847421. [PMID: 35308286 PMCID: PMC8931954 DOI: 10.3389/fnut.2022.847421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Associations between soy intake and risk of cancer have been evaluated in prospective observational studies with inconsistent results. Whether the potential anticancer effects offered by soy were attributed to soy isoflavones and soy protein still needs to be elucidated. This study aimed to comprehensively quantify the association of soy, soy isoflavones and soy protein intake with risk of cancer incidence and cancer mortality by conducting a meta-analysis of all available studies. Methods PubMed, Embase, Web of Science, and Cochrane Library databases were searched up to 16 September 2021. Prospective cohort studies that examined the effect of soy, soy isoflavones and soy protein on cancer incidence and cancer mortality were identified. Random-effects models were used to pool the multivariable-adjusted relative risks (RRs) and corresponding 95% confidence intervals (CIs). The potential dose-response relations were explored by using generalized least-squares trend estimation. Results Eighty one prospective cohort studies were included in the meta-analysis. A higher intake of soy was significantly associated with a 10% reduced risk of cancer incidence (RR, 0.90; 95% CI, 0.83–0.96). Each additional 25 g/d soy intake decreased the risk of cancer incidence by 4%. Intake of soy isoflavones was inversely associated with risk of cancer incidence (RR, 0.94; 95% CI, 0.89–0.99), whereas no significant association was observed for soy protein. The risk of cancer incidence was reduced by 4% with each 10 mg/d increment of soy isoflavones intake. Similar inverse associations were also found for soy in relation to site-specific cancers, particularly lung cancer (RR, 0.67; 95%CI, 0.52–0.86) and prostate cancer (RR, 0.88; 95%CI, 0.78–0.99). However, high intake of soy, soy isoflavones and soy protein were not associated with cancer mortality. Conclusions Higher intake of soy and soy isoflavones were inversely associated with risk of cancer incidence, which suggested that the beneficial role of soy against cancer might be primarily attributed to soy isoflavones. These findings support recommendations to include soy as part of a healthy dietary pattern for the prevention of cancer.
Collapse
Affiliation(s)
- Yahui Fan
- The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhaofang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jia Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sijiao Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinping Zhao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liyun Kong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
- Liyun Kong
| | - Wei Zhang
- The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Wei Zhang
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
- *Correspondence: Le Ma
| |
Collapse
|
12
|
Chen J, Jayachandran M, Bai W, Xu B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem 2022; 369:130874. [PMID: 34455321 DOI: 10.1016/j.foodchem.2021.130874] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
As one of food sources, fish provides sufficient nutrition to human. Diverse nutrients in fish make fish an important nutrient source available easily across the globe. Fish is proven to possess several health benefits, such as anti-oxidation, anti-inflammation, wound healing, neuroprotection, cardioprotection, and hepatoprotection properties. Fish proteins, such as immunoglobins, act as defense agents against viral and bacterial infections and prevent protein-calorie malnutrition. Besides, fish oil constituents, such as polyunsaturated fatty acids (PUFAs), regulate various signaling pathways, such as nuclear factor kappa B pathway, Toll-like receptor pathway, transforming growth factor-β (TGF-β) pathway, and peroxisome proliferators activated receptor (PPAR) pathways. In this review, the literature about health benefits of fish consumption are accumulated from PubMed, Google Scholar, Scopus, and the mechanistic action of health benefits are summarized. Fish consumption at least twice per week as part of a healthy diet is beneficial for a healthy heart. More advances in this field could pose fish as a major nutrients source of foods.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Baojun Xu
- Programme of Food Science and Technology, BNU-HKBU United International College, Zhuhai, China.
| |
Collapse
|
13
|
Jo M, Lee J, Kim HG, Kim JK, Kim H, Shin KK, Bach TT, Eum SM, Lee JS, Choung ES, Yang Y, Kim KH, Sung GH, Yoo BC, Cho JY. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:799-810. [PMID: 34190667 PMCID: PMC8253214 DOI: 10.1080/13880209.2021.1938613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1β, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | | | | | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Department of Microbiology, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
14
|
Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways. Molecules 2021; 26:molecules26216660. [PMID: 34771068 PMCID: PMC8586996 DOI: 10.3390/molecules26216660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023] Open
Abstract
Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/β and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.
Collapse
|
15
|
Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Hydroxydaidzein (8-OHDe) is a non-natural isoflavone polyphenol isolated from fermented soybean foods. 8-OHDe exhibits a wide range of pharmaceutical activities. However, both the poor solubility and instability of 8-OHDe limit its applications. To resolve the limitations of 8-OHDe, Deinococcus geothermalis amylosucrase (DgAS) has previously been used to glycosylate 8-OHDe to produce soluble and stable 8-OHDe-7-O-α-glucopyranoside (8-OHDe-7-G) in a 0.5 h reaction time. In this study, we aimed to use DgAS and an extended reaction time to produce 8-OHDe diglucosides. At least three 8-OHDe derivatives were produced after a 24 h reaction time, and two major products were successfully purified and identified as new compounds: 8-OHDe-7-O-[α-glucopyranosyl-(1→6)-α-glucopyranoside] (8-OHDe-7-G2) and 8-OHDe-7,4′-O-α-diglucopyranoside (8-OHDe-7-G-4′-G). 8-OHDe-7-G-4′-G showed a 4619-fold greater aqueous solubility than 8-OHDe. In addition, over 92% of the 8-OHDe diglucosides were stable after 96 h, while only 10% of the 8-OHDe could be detected after being subjected to the same conditions. The two stable 8-OHDe diglucoside derivatives have the potential for pharmacological usage in the future.
Collapse
|
16
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
17
|
Ha AT, Kim MY, Cho JY. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract. Molecules 2021; 26:molecules26103053. [PMID: 34065429 PMCID: PMC8160894 DOI: 10.3390/molecules26103053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Barringtonia augusta methanol extract (Ba-ME) is a folk medicine found in the wetlands of Thailand that acts through an anti-inflammatory mechanism that is not understood fully. Here, we examine how the methanol extract of Barringtonia augusta (B. augusta) can suppress the activator protein 1 (AP-1) signaling pathway and study the activities of Ba-ME in the lipopolysaccharide (LPS)-treated RAW264.7 macrophage cell line and an LPS-induced peritonitis mouse model. Non-toxic concentrations of Ba-ME downregulated the mRNA expression of cytokines, such as cyclooxygenase and chemokine ligand 12, in LPS-stimulated RAW264.7 cells. Transfection experiments with the AP-1-Luc construct, HEK293T cells, and luciferase assays were used to assess whether Ba-ME suppressed the AP-1 functional activation. A Western blot assay confirmed that C-Jun N-terminal kinase is a direct pharmacological target of Ba-ME action. The anti-inflammatory effect of Ba-ME, which functions by β-activated kinase 1 (TAK1) inhibition, was confirmed by using an overexpression strategy and a cellular thermal shift assay. In vivo experiments in a mouse model of LPS-induced peritonitis showed the anti-inflammatory effect of Ba-ME on LPS-stimulated macrophages and acute inflammatory mouse models. We conclude that Ba-ME is a promising anti-inflammatory drug targeting TAK1 in the AP-1 pathway.
Collapse
Affiliation(s)
- Anh Thu Ha
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
18
|
Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, Choung ES, Woo BY, Hong YD, Lee S, Lee BH, Bach TT, Kim JH, Kim JH, Cho JY. Syk/NF-κB-targeted anti-inflammatory activity of Melicope accedens (Blume) T.G. Hartley methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113887. [PMID: 33539951 DOI: 10.1016/j.jep.2021.113887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | | | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin, 17074, Republic of Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway. Molecules 2020; 25:molecules25235760. [PMID: 33297427 PMCID: PMC7730574 DOI: 10.3390/molecules25235760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.
Collapse
|
20
|
Hsiao YH, Ho CT, Pan MH. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Sorbaria kirilowii Ethanol Extract Exerts Anti-Inflammatory Effects In Vitro and In Vivo by Targeting Src/Nuclear Factor (NF)-κB. Biomolecules 2020; 10:biom10050741. [PMID: 32397672 PMCID: PMC7277364 DOI: 10.3390/biom10050741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.
Collapse
|
22
|
Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF- kB pathway. Biochem Pharmacol 2020; 177:113949. [PMID: 32251678 DOI: 10.1016/j.bcp.2020.113949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Loratadine is an antihistamine drug that shows promise as an anti-inflammatory drug, but supportive studies are lacking. We elucidated the effects and mechanisms by which loratadine inhibits inflammatory responses. Molecular components were evaluated in macrophages by nitric oxide assay, polymerase chain reaction, luciferase assay, immunoblotting, overexpression strategies and cellular thermal shift assay. At the molecular level, loratadine reduced the levels of nitric oxide, iNOS, IL-1β, TNF-α, IL-6, and COX-2 in RAW264.7 cells treated with lipopolysaccharide. Loratadine also specifically inhibited the NF-kB pathway, targeting the Syk and Src proteins. Furthermore, loratadine bound Src in the bridge between SH2 and SH3, and bound Syk in the protein tyrosine kinase domain. The NF-kB signaling pathway was assessed along with putative binding sites through a docking approach. The anti-inflammatory effect of loratadine was tested using mouse models of gastritis, hepatitis, colitis, and peritonitis. Stomach tissue histopathology, liver morphology, and colon length in the loratadine group were improved over the group without loratadine treatment. Taken together, loratadine inhibited the inflammatory response through the NF-kB pathway by binding with the Syk and Src proteins.
Collapse
|
23
|
Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int J Mol Sci 2020; 21:ijms21051620. [PMID: 32120828 PMCID: PMC7084287 DOI: 10.3390/ijms21051620] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
UVB irradiation can induce generation of reactive oxygen species (ROS) that cause skin aging or pigmentation. Lactobacillus acidophilus is a well-known probiotic strain that regulates skin health through antimicrobial peptides and organic products produced by metabolism and through immune responses. In this study, we investigated the antioxidative, antiwrinkle, and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P (AL). To analyze the effects of AL on UV irradiation-induced skin wrinkle formation in vitro, human keratinocytes and human dermal fibroblasts were exposed to UVB. Subsequent treatment with AL induced antiwrinkle effects by regulating wrinkle-related genes such as matrix metalloproteinases (MMPs), SIRT-1, and type 1 procollagen (COL1AL). In addition, Western blotting assays confirmed that regulation of MMPs by AL in keratinocytes was due to regulation of the AP-1 signaling pathway. Furthermore, we confirmed the ability of AL to regulate melanogenesis in B16F10 murine melanoma cells treated with α-melanocyte-stimulating hormone (α-MSH). In particular, AL reduced the mRNA expression of melanogenesis-related genes such as tyrosinase, TYRP-1, and TYRP-2. Finally, we used Western blotting assays to confirm that the antimelanogenesis role of AL was due to its regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway. Collectively, these results indicate that AL has an antiwrinkle activity in damaged skin and can inhibit melanogenesis. Thus, AL should be considered an important substance for potential use in anti-aging drugs or cosmetics.
Collapse
|
24
|
Aziz N, Kang YG, Kim YJ, Park WS, Jeong D, Lee J, Kim D, Cho JY. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages. Biomolecules 2020; 10:biom10020238. [PMID: 32033247 PMCID: PMC7072285 DOI: 10.3390/biom10020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cytokines and chemokines are transcriptionally regulated by inflammatory transcription factors such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor (IRF)-3. A daidzein derivative compound, 8-hydroxydaidzein (8-HD), isolated from soy products, has recently gained attention due to various pharmacological benefits, including anti-inflammatory activities. However, regulation of the inflammatory signaling mechanism for 8-HD is still poorly understood, particularly with respect to the IRF-3 signaling pathway. In this study, we explored the molecular mechanism of 8-HD in regulating inflammatory processes, with a focus on the IRF-3 signaling pathway using a lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid [Poly (I:C)] stimulated murine macrophage cell line (RAW264.7). The 8-HD downregulated the mRNA expression level of IRF-3-dependent genes by inhibiting phosphorylation of the IRF-3 transcription factor. The inhibitory mechanism of 8-HD in the IRF-3 signaling pathway was shown to inhibit the kinase activity of IKKε to phosphorylate IRF-3. This compound can also interfere with the TRIF-mediated complex formation composed of TRAF3, TANK, and IKKε leading to downregulation of AKT phosphorylation and reduction of IRF-3 activation, resulted in inhibition of IRF-3-dependent expression of genes including IFN-β, C-X-C motif chemokine 10 (CXCL10), and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Therefore, these results strongly suggest that 8-HD can act as a promising compound with the regulatory function of IRF-3-mediated inflammatory responses.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Won-Seok Park
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
25
|
Shin KK, Park JG, Hong YH, Aziz N, Park SH, Kim S, Kim E, Cho JY. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4873870. [PMID: 31611922 PMCID: PMC6757254 DOI: 10.1155/2019/4873870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1β. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/β, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Ko YH, Kim SK, Kwon SH, Seo JY, Lee BR, Kim YJ, Hur KH, Kim SY, Lee SY, Jang CG. 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Biomol Ther (Seoul) 2019; 27:363-372. [PMID: 30866601 PMCID: PMC6609108 DOI: 10.4062/biomolther.2018.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson' disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Choi E, Kim MY, Cho JY. Anti-inflammatory activities of Canarium subulatum Guillaumin methanol extract operate by targeting Src and Syk in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111848. [PMID: 30951845 DOI: 10.1016/j.jep.2019.111848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium subulatum Guillaumin is an herbal medicinal plant native to Southeast Asia. Ethnopharmacological evidence suggests that plants of the genus Canarium cure a variety of inflammatory diseases. AIM OF THE STUDY The pharmacological mechanisms of C. subulatum Guillaumin remain poorly understood. In this study, we investigate inflammatory mechanisms and target molecules using C. subulatum Guillaumin methanol extract (Cs-ME) in inflammatory reactions managed by macrophages. MATERIALS AND METHODS To identify the anti-inflammatory activities of Cs-ME, lipopolysaccharide (LPS)-stimulated macrophages and a murine HCl/EtOH-induced gastritis model were chosen. The luciferase reporter gene assay, Western blot analysis, overexpression strategy, and the cellular thermal shift assay (CETSA) were employed to investigate the molecular mechanisms and target enzymes of Cs-ME. The active ingredients of this extract were also determined by HPLC. RESULTS Released levels of nitric oxide (NO) and mRNA expression levels of iNOS and IL-6 were downregulated by Cs-ME without exhibiting cytotoxicity. This extract inhibited MyD88-induced promoter activity and the nuclear translocation of nuclear factor (NF)-κB. Moreover, we found that Cs-ME reduced the phosphorylation of NF-κB upstream signaling molecules including IκBα, IKKα/β, Src, and Syk in LPS-stimulated macrophage-like RAW264.7 cells. The results of Western blot and CETSA confirmed that Src and Syk are anti-inflammatory targets of Cs-ME. In addition, orally injected Cs-ME alleviated HCl/EtOH-induced gastric ulcers in mice. HPLC analysis indicated that quercetin, luteolin, and kaempferol are major active components of this extract with anti-inflammatory activity. CONCLUSIONS Cs-ME exhibits anti-inflammatory effects in vitro and in vivo by targeting Src and Syk in the NF-κB signaling pathway. Consequently, Cs-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Chang TS, Wang TY, Yang SY, Kao YH, Wu JY, Chiang CM. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019; 24:molecules24122236. [PMID: 31208027 PMCID: PMC6631725 DOI: 10.3390/molecules24122236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Szu-Yi Yang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Yu-Han Kao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan.
| | - Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| |
Collapse
|
29
|
Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2910278. [PMID: 31118953 PMCID: PMC6500672 DOI: 10.1155/2019/2910278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Protium javanicum Burm. f. is a medicinal plant used in traditional medicine. Gum and oleoresins from this plant have been used as anti-inflammatory agents for treating ulcers, headaches, eyelid inflammation, and rheumatic pain. However, its anti-inflammatory mechanism of action is still unknown. To better understand the mechanism, we used lipopolysaccharide- (LPS-) treated RAW264.7 cells to measure inflammatory mediators with the Griess assay and to identify target signaling molecules by immunoblot analysis. In this study, we report that the Protium javanicum methanol extract (Pj-ME) plays an important role in suppressing nitric oxide (NO) levels without cytotoxicity. The effect of Pj-ME in LPS-induced expression leads to reduced inflammatory cytokine expression, specifically inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor (TNF-α). Pj-ME significantly inhibited LPS-induced protein expression of the nuclear factor-kappa B (NF-κB) signaling pathway in a time-dependent manner. Syk and Src were identified as putative signaling molecules of Pj-ME-mediated anti-inflammatory activity, which were inhibited by Pj-ME. We demonstrated that Pj-ME controls the STAT3 signaling pathway by suppressing STAT3 and JAK phosphorylation and also downregulates the gene expression of IL-6. Therefore, these results elucidate Pj-ME as a novel anti-inflammatory naturally derived drug with anti-inflammatory and antioxidant properties which may be subject to therapeutic and prognostic relevance.
Collapse
|
30
|
Jeong SG, Kim S, Kim HG, Kim E, Jeong D, Kim JH, Yang WS, Oh J, Sung GH, Hossain MA, Lee J, Kim JH, Cho JY. Mycetia cauliflora methanol extract exerts anti-inflammatory activity by directly targeting PDK1 in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:1-9. [PMID: 30415059 DOI: 10.1016/j.jep.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mycetia cauliflora Reinw. (Rubiaceae) has been used as a traditional remedy to ameliorate clinical signs of inflammatory diseases, including pain, inflammation, ulcers, and wounds. Among the Mycetia subfamilies, the molecular and cellular mechanisms of Mycetia longifolia (Rubiaceae) have been studied. However, those of Mycetia cauliflora are not clearly understood. Comprehensive investigation of this plant is necessary to evaluate its potential for ethnopharmacological use. MATERIALS and methods: The activities of Mycetia cauliflora methanol extract (Mc-ME) on the secretion of inflammatory mediators, the mRNA expression of proinflammatory cytokines, and identification of its molecular targets were elucidated using lipopolysaccharide (LPS)-induced macrophage-like cells. Moreover, the suppressive actions of Mc-ME were examined in an LPS-induced peritonitis mouse model. RESULTS At nontoxic concentrations, Mc-ME downregulated the release of nitric oxide (NO), the mRNA expression of inducible nitric oxide synthase (iNOS), and the mRNA expression of interleukin (IL)-1β from LPS-activated RAW264.7 cells. This extract also inhibited the nuclear translocation of p65 and p50 and the phosphorylation of IκBα, IKK, and AKT. Western blot analysis and in vitro kinase assays confirmed that phosphoinositide-dependent kinase-1 (PDK1) is the direct immunopharmacological target of Mc-ME effect. In addition, Mc-ME significantly reduced inflammatory signs in an animal model of acute peritonitis. These effects were associated with decreased NO production and decreased AKT phosphorylation. CONCLUSION Our results suggest that Mc-ME displays anti-inflammatory actions in LPS-treated macrophage-like cells and in an animal model of acute inflammatory disease. These actions are preferentially managed by targeting PDK1 in the nuclear factor (NF)-κB signaling pathway.
Collapse
Affiliation(s)
- Seong-Gu Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junsang Oh
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Mohammad Amjad Hossain
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
31
|
Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts 2018. [DOI: 10.3390/catal8090387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe) has been proven to possess some important bioactivities; however, the low aqueous solubility and stability of 8-OHDe limit its pharmaceutical and cosmeceutical applications. The present study focuses on glycosylation of 8-OHDe to improve its drawbacks in solubility and stability. According to the results of phylogenetic analysis with several identified flavonoid-catalyzing glycosyltransferases (GTs), three glycosyltransferase genes (BsGT110, BsGT292 and BsGT296) from the genome of the Bacillus subtilis ATCC 6633 strain were cloned and expressed in Escherichia coli. The three BsGTs were then purified and the glycosylation activity determined toward 8-OHDe. The results showed that only BsGT110 possesses glycosylation activity. The glycosylated metabolites were then isolated with preparative high-performance liquid chromatography and identified as two new isoflavone glucosides, 8-OHDe-7-O-β-glucoside and8-OHDe-8-O-β-glucoside, whose identity was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. The aqueous solubility of 8-OHDe-7-O-β-glucoside and 8-OHDe-8-O-β-glucoside is 9.0- and 4.9-fold, respectively, higher than that of 8-OHDe. Moreover, more than 90% of the initial concentration of the two 8-OHDe glucoside derivatives remained after 96 h of incubation in 50 mM of Tris buffer at pH 8.0. In contrast, the concentration of 8-OHDe decreased to 0.8% of the initial concentration after 96 h of incubation. The two new isoflavone glucosides might have potential in pharmaceutical and cosmeceutical applications.
Collapse
|