1
|
Yeung V, Boychev N, Kanu LN, Ng V, Ross AE, Hutcheon AEK, Ciolino JB. Proteomic Characterization of Corneal Epithelial and Stromal Cell-Derived Extracellular Vesicles. Int J Mol Sci 2024; 25:10338. [PMID: 39408670 PMCID: PMC11477500 DOI: 10.3390/ijms251910338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Communication between the different layers of the cornea (epithelium and stroma) is a complex, yet crucial element in the corneal healing process. Upon corneal injury, it has been reported that the bi-directional cross talk between the epithelium and stroma via the vesicular secretome, namely, extracellular vesicles (EVs), can lead to accelerated wound closure upon injury. However, the distinct protein markers of EVs derived from human corneal epithelial (HCE) cells, keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) remain poorly understood. All EVs were enriched for CD81 and showed increased expression levels of ITGAV and FN1 in HCM-EVs compared to HCE- and HCF-EVs. All EVs were negative for GM130 and showed minimal differences in biophysical properties (particle concentration, median particle size, and zeta potential). At the proteomic level, we show that HCM-EVs are enriched with proteins associated with fibrosis pathways, such as COL6A1, COL6A2, MMP1, MMP2, TIMP1, and TIMP2, compared to HCE-, HCK-, and HCF-EVs. Interestingly, HCE-EVs express proteins involved with the EIF-2 signaling pathway (stress-induced signals to regulate mRNA translation), such as RPS21, RALB, EIF3H, RALA, and others, compared to HCK-, HCF-, and HCM-EVs. In this study, we isolated EVs from cell-conditioned media from HCE, HCKs, HCFs, and HCMs and characterized their biophysical and protein composition by Western blot, nanoparticle tracking analysis, and proteomics. This study supports the view that EVs from the corneal epithelium and stroma have a distinct molecular composition and may provide novel protein markers to distinguish the difference between HCE-, HCK-, HCF-, and HCM-EVs.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (N.B.); (L.N.K.); (V.N.); (A.E.R.); (A.E.K.H.); (J.B.C.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Liu WJ, Lu J, Zhou WX, Liu JZ, Zhou L. MLH1 Inhibits Metastatic Potential of Pancreatic Ductal Adenocarcinoma via Downregulation of GPRC5C. J Transl Med 2024; 104:102107. [PMID: 38964504 DOI: 10.1016/j.labinv.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers; however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sublines were established. Wound healing and transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (severe combined immunodeficiency mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 downstream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sublines, OE cells presented weaker migration/invasion abilities, compared with controls, whereas in KD cells, these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G protein-coupled receptor, family C, group 5, member C (GPRC5C) was a key downstream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion and remarkably reversed the proinvasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histologic grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via downregulation of GPRC5C.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wei-Xun Zhou
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian-Zhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Wang Y, Gao L, Wang F, Yu C, Chen C, Xia C. GPRC5A promotes paclitaxel resistance and glucose content in NSCLC. Anticancer Drugs 2024; 35:606-614. [PMID: 38602327 DOI: 10.1097/cad.0000000000001610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lung cancer is one of the most common and malignant cancers worldwide. Chemotherapy has been widely used in the clinical setting, and paclitaxel is the first-line therapy for lung cancer patients but paclitaxel resistance is the main problem. First, we successfully established paclitaxel-resistant lung cancer cells treated with elevated doses of paclitaxel for 3 months, as confirmed by the CCK-8 assay. Paclitaxel-resistant cancer cells increased glucose content. Second, Gtex, Oncomine, and gene expression omnibus database data mining identified GPRC5A, G protein-coupled receptor, as the most prominent differentially expressed gene in drug-resistant datasets including gemcitabine, paclitaxel, and gefitinib overlapped with the microarray data from cancer cell metabolism. Third, qPCR analysis and western blot technique showed that GPRC5A mRNA and protein levels were significantly enhanced in paclitaxel-resistant lung cancer cells. Fourth, functional analysis was conducted by siRNA-mediated transient knockdown of GPRC5A. Silencing GPRC5A significantly decreased paclitaxel resistance and glucose content. In the end, retinoic acid substantially upregulated GPRC5A proteins and promoted glucose content in two lung cancer cells. Kaplan-Meier plot also confirmed that lung cancer patients with high expression of GPRC5A had a relatively lower survival rate. Our study provided a potential drug target GPRC5A, which may benefit lung cancer patients with acquired paclitaxel resistance in the future and a theoretical basis for future preclinical trials.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Drug Resistance, Neoplasm
- Glucose/metabolism
- Cell Line, Tumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yan Wang
- Intensive Care Unit, Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing
| | - Liang Gao
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Feiyu Wang
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Cunjun Yu
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Chunwei Xia
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Hu S, Chen Y, Sun B. Exploring the Prognostic Value and Immune Infiltration Patterns of GPRC5A Across Multiple Cancer Types. J Cancer 2024; 15:4749-4758. [PMID: 39006081 PMCID: PMC11242343 DOI: 10.7150/jca.93217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 07/16/2024] Open
Abstract
Objective: This study aimed to investigate the expression of GPRC5A in pan-cancer and its correlation with clinical outcomes, tumor immune microenvironment, and biological functions. Methods: The expression of GPRC5A was analyzed using 33 tumor datasets from the TCGA, GTEx and TCGA databases. Immunohistochemical images from the HPA database were also examined. Kaplan-Meier survival analysis was conducted to assess the prognostic value of GPRC5A. Correlations between GPRC5A expression and clinical parameters were investigated. Nomogram models were developed to predict survival probabilities. The correlation between GPRC5A expression and tumor immune microenvironment was analyzed using the GEPIA2 database. Functional enrichment analysis and Gene Set Enrichment Analysis were performed to explore the biological functions associated with GPRC5A. Results: GPRC5A exhibited varying expression levels across different types of tumors, with high expression observed in 11 types of cancer tissues. Aberrant GPRC5A expression was correlated with overall survival, disease-specific survival, and progression-free interval in specific cancers. Specific clinicopathological features were found to be associated with GPRC5A expression in six tumors. Nomogram models incorporating GPRC5A expression demonstrated significant clinical utility in predicting survival probabilities for patients with ACC, KIRC, LGG, and PAAD. GPRC5A was also found to be associated with the tumor immune microenvironment. Functional enrichment analysis revealed the involvement of GPRC5A-related genes in various biological processes and functions. Conclusion: This study highlights the differential expression of GPRC5A in pan-cancer and its correlation with clinical outcomes. GPRC5A shows potential as a prognostic biomarker and therapeutic target in specific cancers. Moreover, its association with the tumor immune microenvironment suggests its involvement in the tumor immune response. The findings provide valuable insights into the biological roles of GPRC5A in tumors and contribute to our understanding of its clinical implications.
Collapse
Affiliation(s)
- Song Hu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| | - Beibei Sun
- Institute for Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Dong C, Ma H, Mi N, Fu W, Yi J, Gao L, Wang H, Ren Y, Lin Y, Han F, Chen Z, Zhou W. Integrated analysis of scRNA-seq and bulk RNA-seq reveals that GPRC5A is an important prognostic gene in pancreatic cancer and is associated with B-cell Infiltration in pancreatic cancer. Front Oncol 2024; 14:1283164. [PMID: 38634049 PMCID: PMC11021786 DOI: 10.3389/fonc.2024.1283164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/23/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Pancreatic cancer (PC) is a malignancy with poor prognosis. This investigation aimed to determine the relevant genes that affect the prognosis of PC and investigate their relationship with immune infiltration. Methods : First, we acquired PC single-cell chip data from the GEO database to scrutinize dissimilarities in immune cell infiltration and differential genes between cancerous and adjacent tissues. Subsequently, we combined clinical data from TCGA to identify genes relevant to PC prognosis. Employing Cox and Lasso regression analyses, we constructed a multifactorial Cox prognostic model, which we subsequently confirmed. The prognostic gene expression in PC was authenticated using RT-PCR. Moreover, we employed the TIMER online database to examine the relationship between the expression of prognostic genes and T and B cell infiltration. Additionally, the expression of GPRC5A and its correlation with B cells infiltration and patient prognosis were ascertained in tissue chips using multiple immune fluorescence staining. Results The single-cell analysis unveiled dissimilarities in B-cell infiltration between cancerous and neighboring tissues. We developed a prognostic model utilizing three genes, indicating that patients with high-risk scores experienced a more unfavorable prognosis. Immune infiltration analysis revealed a significant correlation among YWHAZ, GPRC5A, and B cell immune infiltration. In tissue samples, GPRC5A exhibited substantial overexpression and a robust association with an adverse prognosis, demonstrating a positive correlation with B cell infiltration. Conclusion GPRC5A is an independent risk factor in PC and correlated with B cell immune infiltration in PC. These outcomes indicated that GPRC5A is a viable target for treating PC.
Collapse
Affiliation(s)
- Chunlu Dong
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Jianfeng Yi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- Department of Surgery, The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Long Gao
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Haiping Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanyan Lin
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhou Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Dai YW, Pan YT, Lin DF, Chen XH, Zhou X, Wang WM. Bulk anda single-cell transcriptome profiling reveals the molecular characteristics of T cell-mediated tumor killing in pancreatic cancer. Heliyon 2024; 10:e27216. [PMID: 38449660 PMCID: PMC10915414 DOI: 10.1016/j.heliyon.2024.e27216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Background Despite the potential of immune checkpoint blockade (ICB) as a promising treatment for Pancreatic adenocarcinoma (PAAD), there is still a need to identify specific subgroups of PAAD patients who may benefit more from ICB. T cell-mediated tumor killing (TTK) is the primary concept behind ICB. We explored subtypes according to genes correlated with the sensitivity to TKK and unraveled their underlying associations for PAAD immunotherapies. Methods Genes that control the responsiveness of T cell-induced tumor destruction (GSTTK) were examined in PAAD, focusing on their varying expression levels and association with survival results. Moreover, samples with PAAD were separated into two subsets using unsupervised clustering based on GSTTK. Variability was evident in the tumor immune microenvironment, genetic mutation, and response to immunotherapy among different groups. In the end, we developed TRGscore, an innovative scoring system, and investigated its clinical and predictive significance in determining sensitivity to immunotherapy. Results Patients with PAAD were categorized into 2 clusters based on the expression of 52 GSTTKs, which showed varying levels and prognostic relevance, revealing unique TTK patterns. Survival outcome, immune cell infiltration, immunotherapy responses, and functional enrichment are also distinguished among the two clusters. Moreover, we found the CATSPER1 gene promotes the progression of PAAD through experiments. In addition, the TRGscore effectively predicted the responses to chemotherapeutics or immunotherapy in patients with PAAD and overall survival. Conclusions TTK exerted a vital influence on the tumor immune environment in PAAD. A greater understanding of TIME characteristics was gained through the evaluation of the variations in TTK modes across different tumor types. It highlights variations in the performance of T cells in PAAD and provides direction for improved treatment approaches.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-ting Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-feng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-hu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Ou X, Tan Y, Xie J, Yuan J, Deng X, Shao R, Song C, Cao X, Xie X, He R, Li Y, Tang H. Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist Updat 2024; 73:101063. [PMID: 38335844 DOI: 10.1016/j.drup.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
AIMS This study aims to explore the function and mechanism of G Protein-coupled receptor class C group 5 member A (GPRC5A) in docetaxel-resistance and liver metastasis of breast cancer. METHODS Single-cell RNA transcriptomic analysis and bioinformatic analysis are used to screen relevant genes in breast cancer metastatic hepatic specimens. MeRIP, dual-luciferase analysis and bioinformation were used to detect m6A modulation. Mass spectrometry (MS), co-inmunoprecipitation (co-IP) and immunofluorescence colocalization were executed to explore the mechanism of GPRC5A in breast cancer cells. RESULT GPRC5A was upregulated in triple-negative breast cancer (TNBC) and was associated with a poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of GPRC5A alleviated metastasis and resistance to docetaxel in TNBC. Overexpression of GPRC5A had the opposite effects. The m6A methylation of GPRC5A mRNA was modulated by METTL3 and YTHDF1, which facilitates its translation. GPRC5A inhibited the ubiquitination-dependent degradation of LAMTOR1, resulting in the recruitment of mTORC1 to lysosomes and activating the mTORC1/p70s6k signaling pathway. CONCLUSION METTL3/YTHDF1 axis up-regulates GPRC5A expression by m6A methylation. GPRC5A activates mTORC1/p70s6k signaling pathway by recruiting mTORC1 to lysosomes, consequently promotes docetaxel-resistance and liver metastasis.
Collapse
Affiliation(s)
- Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ruonan Shao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi Cao
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rongfang He
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
8
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
9
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
10
|
Aguilar-Valdés A, González-Vela F, Sánchez-Vidal H, Martínez-Aguilar J. A proteomic signature and potential pharmacological opportunities in the adaptive resistance to MEK and PI3K kinase inhibition in pancreatic cancer cells. Proteomics 2023; 23:e2300041. [PMID: 37140101 DOI: 10.1002/pmic.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Pancreatic cancer is one of the most lethal cancer types and is becoming a leading cause of cancer-related deaths. The limited benefit offered by chemotherapy agents has propelled the search for alternative approaches that target specific molecular drivers of cancer growth and progression. Mutant KRas and effector pathways Raf/MEK/ERK and PI3K/Akt are key players in pancreatic cancer; however, preclinical studies have shown adaptive tumour response to combined MEK and PI3K kinase inhibition leading to treatment resistance. There is a critical unmet need to decipher the molecular basis underlying adaptation to this targeted approach. Here, we aimed to identify common protein expression alterations associated with adaptive resistance in KRas-mutant pancreatic cancer cells, and test if it can be overcome by selected already available small molecule drugs. We found a group of 14 proteins with common expression change in resistant cells, including KRas, caveolin-1, filamin-a, eplin, IGF2R and cytokeratins CK-8, -18 and -19. Notably, several proteins have previously been observed in pancreatic cancer cells with intrinsic resistance to the combined kinase inhibition treatment, suggesting a proteomic signature. We also found that resistant cells are sensitive to small molecule drugs ERK inhibitor GDC-0994, S6K1 inhibitor DG2 and statins.
Collapse
Affiliation(s)
- Alain Aguilar-Valdés
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco González-Vela
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hilda Sánchez-Vidal
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Martínez-Aguilar
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Fang W, Yu X, Deng J, Yu B, Xiong J, Ma M. Upregulated GPRC5A disrupting the Hippo pathway promotes the proliferation and migration of pancreatic cancer cells via the cAMP-CREB axis. Discov Oncol 2023; 14:17. [PMID: 36735162 PMCID: PMC9898488 DOI: 10.1007/s12672-023-00626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a high mortality rate worldwide, and is predicted to be third leading cause of death in the near future. However, the regulatory mechanisms that inhibit the progression of pancreatic cancer remain elusive. Currently, exploring the function and mechanisms of GPCRs (G-protein coupled receptors) is an important way to discover promising therapeutic targets for cancer. METHODS GPRC5A expression was measured using real-time quantitative PCR, immunohistochemistry and western blot assays. Cell proliferation and migration were assessed using CCK-8, clone formation, wound-healing and transwell assays. A cytosolic/nuclear distribution experiment was used to detect the protein location transfer. A xenograft model of pancreatic cancer was established to explore the role of GPRC5A in vivo. RESULTS GPRC5A expression was increased in pancreatic cancer, and disruption of GPRC5A expression inhibited tumor growth in vivo. Mechanistically, GPRC5A positively regulated the transcription of YAP1 through cAMP-CREB signaling. Moreover, we show that the proliferation and migration induced by GPRC5A in pancreatic cancer could be rescued by inhibiting YAP1 expression. CONCLUSIONS GPRC5A interacts with the Hippo pathway to promote the progression of pancreatic cancer. These findings reveal an important crosstalk model and provide potential targets for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Weidan Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Xin Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China.
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China.
| |
Collapse
|
12
|
Zeng S, Lan B, Ren X, Zhang S, Schreyer D, Eckstein M, Yang H, Britzen-Laurent N, Dahl A, Mukhopadhyay D, Chang D, Kutschick I, Pfeffer S, Bailey P, Biankin A, Grützmann R, Pilarsky C. CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. J Exp Clin Cancer Res 2022; 41:241. [PMID: 35945614 PMCID: PMC9364549 DOI: 10.1186/s13046-022-02443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Although combined treatment with gemcitabine and albumin-bound paclitaxel has improved the prognosis of PDAC, both intrinsic and acquired chemoresistance remain as severe hurtles towards improved prognosis. Thus, new therapeutic targets and innovative strategies are urgently needed. METHODS In this study, we used the KPC mouse model-derived PDAC cell line TB32047 to perform kinome-wide CRISPR-Cas9 loss-of-function screening. Next-generation sequencing and MAGeCK-VISPR analysis were performed to identify candidate genes. We then conducted cell viability, clonogenic, and apoptosis assays and evaluated the synergistic therapeutic effects of cyclin-dependent kinase 7 (CDK7) depletion or inhibition with gemcitabine (GEM) and paclitaxel (PTX) in a murine orthotopic pancreatic cancer model. For mechanistic studies, we performed genome enrichment analysis (GSEA) and Western blotting to identify and verify the pathways that render PDAC sensitive to GEM/PTX therapy. RESULTS We identified several cell cycle checkpoint kinases and DNA damage-related kinases as targets for overcoming chemoresistance. Among them, CDK7 ranked highly in both screenings. We demonstrated that both gene knockout and pharmacological inhibition of CDK7 by THZ1 result in cell cycle arrest, apoptosis induction, and DNA damage at least predominantly through the STAT3-MCL1-CHK1 axis. Furthermore, THZ1 synergized with GEM and PTX in vitro and in vivo, resulting in enhanced antitumor effects. CONCLUSIONS Our findings support the application of CRISPR-Cas9 screening in identifying novel therapeutic targets and suggest new strategies for overcoming chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Daniel Schreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center a DFG NGS Competence Center, TU Dresden, 01307, Dresden, Germany
| | - Debabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany.
| |
Collapse
|
13
|
Ba-Alawi W, Kadambat Nair S, Li B, Mammoliti A, Smirnov P, Mer AS, Penn LZ, Haibe-Kains B. Bimodal gene expression in cancer patients provides interpretable biomarkers for drug sensitivity. Cancer Res 2022; 82:2378-2387. [PMID: 35536872 DOI: 10.1158/0008-5472.can-21-2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Identifying biomarkers predictive of cancer cell response to drug treatment constitutes one of the main challenges in precision oncology. Recent large-scale cancer pharmacogenomic studies have opened new avenues of research to develop predictive biomarkers by profiling thousands of human cancer cell lines at the molecular level and screening them with hundreds of approved drugs and experimental chemical compounds. Many studies have leveraged these data to build predictive models of response using various statistical and machine learning methods. However, a common pitfall to these methods is the lack of interpretability as to how they make predictions, hindering the clinical translation of these models. To alleviate this issue, we used the recent logic modeling approach to develop a new machine learning pipeline that explores the space of bimodally expressed genes in multiple large in vitro pharmacogenomic studies and builds multivariate, nonlinear, yet interpretable logic-based models predictive of drug response. The performance of this approach was showcased in a compendium of the three largest in vitro pharmacogenomic data sets to build robust and interpretable models for 101 drugs that span 17 drug classes with high validation rates in independent datasets. These results along with in vivo and clinical validation, support a better translation of gene expression biomarkers between model systems using bimodal gene expression.
Collapse
Affiliation(s)
| | | | - Bo Li
- University of Toronto, Toronto, Canada
| | | | | | | | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Li W, Li T, Sun C, Du Y, Chen L, Du C, Shi J, Wang W. Identification and prognostic analysis of biomarkers to predict the progression of pancreatic cancer patients. Mol Med 2022; 28:43. [PMID: 35428170 PMCID: PMC9013045 DOI: 10.1186/s10020-022-00467-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a malignancy with a poor prognosis and high mortality. Surgical resection is the only "curative" treatment. However, only a minority of patients with PC can obtain surgery. Improving the overall survival (OS) rate of patients with PC is still a major challenge. Molecular biomarkers are a significant approach for diagnostic and predictive use in PCs. Several prediction models have been developed for patients newly diagnosed with PC that is operable or patients with advanced and metastatic PC; however, these models require further validation. Therefore, precise biomarkers are urgently required to increase the efficiency of predicting a disease-free survival (DFS), OS, and sensitivity to immunotherapy in PC patients and to improve the prognosis of PC. METHODS In the present study, we first evaluated the highly and selectively expressed targets in PC, using the GeoMxTM Digital Spatial Profiler (DSP) and then, we analyzed the roles of these targets in PCs using TCGA database. RESULTS LAMB3, FN1, KRT17, KRT19, and ANXA1 were defined as the top five upregulated targets in PC compared with paracancer. The TCGA database results confirmed the expression pattern of LAMB3, FN1, KRT17, KRT19, and ANXA1 in PCs. Significantly, LAMB3, FN1, KRT19, and ANXA1 but not KRT17 can be considered as biomarkers for survival analysis, univariate and multivariate Cox proportional hazards model, and risk model analysis. Furthermore, in combination, LAMB3, FN1, KRT19, and ANXA1 predict the DFS and, in combination, LAMB3, KRT19, and ANXA1 predict the OS. Immunotherapy is significant for PCs that are inoperable. The immune checkpoint blockade (ICB) analysis indicated that higher expressions of FN1 or ANXA1 are correlated with lower ICB response. In contrast, there are no significant differences in the ICB response between high and low expression of LAMB3 and KRT19. CONCLUSIONS In conclusion, LAMB3, FN1, KRT19, and ANXA1 are good predictors of PC prognosis. Furthermore, FN1 and ANXA1 can be predictors of immunotherapy in PCs.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenguang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yimeng Du
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linna Chen
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jianxiang Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Weijie Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Wei R, Qi G, Zeng Z, Shen N, Wang Z, Shen H, Gao L, Song C, Ma W, Wang C. IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma. Cancer Cell Int 2021; 21:620. [PMID: 34819098 PMCID: PMC8613923 DOI: 10.1186/s12935-021-02324-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic cancer has been a threateningly lethal malignant tumor worldwide. Despite the promising survival improvement in other cancer types attributing to the fast development of molecular precise medicine, the current treatment situation of pancreatic cancer is still woefully challenging since its limited response to neither traditional radiotherapy and chemotherapy nor emerging immunotherapy. The study is to explore potential responsible genes during the development of pancreatic cancer, thus identifying promising gene indicators and probable drug targets. Methods Different bioinformatic analysis were used to interpret the genetic events in pancreatic cancer development. Firstly, based on multiple cDNA microarray profiles from Gene Expression Omnibus (GEO) database, the genes with differently mRNA expression in cancer comparing to normal pancreatic tissues were identified, followed by being grouped based on the difference level. Then, GO and KEGG were performed to separately interpret the multiple groups of genes, and further Kaplan–Meier survival and Cox Regression analysis assisted us to scale down the candidate genes and select the potential key genes. Further, the basic physicochemical properties, the association with immune cells infiltration, mutation or other types variations besides expression gap in pancreatic cancer comparing to normal tissues of the selected key genes were analyzed. Moreover, the aberrant changed expression of key genes was validated by immunohistochemistry (IHC) experiment using local hospital tissue microarray samples and the clinical significance was explored based on TCGA clinical data. Results Firstly, a total of 22,491 genes were identified to express differently in cancer comparing to normal pancreatic tissues based on 5 cDNA expression profiles, and the difference of 487/22491 genes was over eightfold, and 55/487 genes were shared in multi profiles. Moreover, after genes interpretation which showed the > eightfold genes were mainly related to extracellular matrix structural constituent regulation, Kaplan–Meier survival and Cox-regression analysis were performed continually, and the result indicated that of the 55 extracellular locating genes, GPRC5A and IMUP were the only two independent prognostic indicators of pancreatic cancer. Further, detailed information of IMUP and GPRC5A were analyzed including their physicochemical properties, their expression and variation ratio and their association with immune cells infiltration in cancer, as well as the probable signaling pathways of genes regulation on pancreatic cancer development. Lastly, local IHC experiment performed on PAAD tissue array which was produced with 62 local hospital patients samples confirmed that GPRC5A and IMUP were abnormally up-regulated in pancreatic cancer, which directly associated with worse patients both overall (OS) and recurrence free survival (RFS). Conclusions Using multiple bioinformatic analysis as well as local hospital samples validation, we revealed that GPRC5A and IMUP expression were abnormally up-regulated in pancreatic cancer which associated statistical significantly with patients survival, and the genes’ biological features and clinical significance were also explored. However, more detailed experiments and clinical trials are obligatory to support their further potential drug-target role in clinical medical treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02324-w.
Collapse
Affiliation(s)
- Rong Wei
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China
| | - Guoye Qi
- Department of Pathology, The Basic Medical College of ShanXi Medical University, Tai Yuan, ShanXi, China
| | - Zixin Zeng
- Department of Pathology, The Basic Medical College of ShanXi Medical University, Tai Yuan, ShanXi, China
| | - Ningning Shen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China
| | - Ziyue Wang
- Department of Pathology, The Basic Medical College of ShanXi Medical University, Tai Yuan, ShanXi, China
| | - Honghong Shen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China
| | - Chen Song
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China
| | - Wenxia Ma
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China.
| | - Chen Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, 030000, ShanXi, China.
| |
Collapse
|
16
|
Mashayekhi V, Mocellin O, Fens MH, Krijger GC, Brosens LA, Oliveira S. Targeting of promising transmembrane proteins for diagnosis and treatment of pancreatic ductal adenocarcinoma. Theranostics 2021; 11:9022-9037. [PMID: 34522225 PMCID: PMC8419040 DOI: 10.7150/thno.60350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer due to the relatively late diagnosis and the limited therapeutic options. Current treatment regimens mainly comprise the cytotoxic agents gemcitabine and FOLFIRINOX. These compounds have shown limited efficacy and severe side effects, highlighting the necessity for earlier detection and the development of more effective, and better-tolerated treatments. Although targeted therapies are promising for the treatment of several types of cancer, identification of suitable targets for early diagnosis and targeted therapy of PDAC is challenging. Interestingly, several transmembrane proteins are overexpressed in PDAC cells that show low expression in healthy pancreas and may therefore serve as potential targets for treatment and/or diagnostic purposes. In this review we describe the 11 most promising transmembrane proteins, carefully selected after a thorough literature search. Favorable features and potential applications of each target, as well as the results of the preclinical and clinical studies conducted in the past ten years, are discussed in detail.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Orsola Mocellin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Marcel H.A.M. Fens
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gerard C. Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
17
|
Transmembrane protein 45A regulates the proliferation, migration, and invasion of glioma cells through nuclear factor kappa-B. Anticancer Drugs 2021; 31:900-907. [PMID: 32568829 DOI: 10.1097/cad.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gliomas are the most common and aggressive type of primary brain cancer in adults. The expression of transmembrane protein 45A (TMEM45A) in glioma patients and glioma cell lines was analyzed by quantitative real-time PCR. The influence of TMEM45A on the survival of glioma patients was also explored in this study. To verify the interaction between TMEM45A and key genes, correlation analysis of expression levels and the siRNA knock down method were performed. TMEM45A was upregulated in glioma tissues, and its overexpression was strongly correlated with the poor survival of glioma patients. Experiments using the overexpression and knock down of TMEM45A were carried out to demonstrate its correlation with enhanced proliferation, migration, and invasion in glioma cells. Nuclear factor kappa-B (NFκB) expression was shown to be a downstream factor of TMEM45A in glioma cells. In conclusion, TMEM45A is an oncogenic gene in glioma. The proliferation, migration, and invasion of gliomas could be effectively impeded by inhibition of TMEM45A, and the cancer-promoting effect of TMEM45A on gliomas was involved with the NFκB pathway.
Collapse
|
18
|
Ghafouri-Fard S, Abak A, Tondro Anamag F, Shoorei H, Fattahi F, Javadinia SA, Basiri A, Taheri M. 5-Fluorouracil: A Narrative Review on the Role of Regulatory Mechanisms in Driving Resistance to This Chemotherapeutic Agent. Front Oncol 2021; 11:658636. [PMID: 33954114 PMCID: PMC8092118 DOI: 10.3389/fonc.2021.658636] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
5-fluorouracil (5-FU) is among the mostly administrated chemotherapeutic agents for a wide variety of neoplasms. Non-coding RNAs have a central impact on the determination of the response of patients to 5-FU. These transcripts via modulation of cancer-related pathways, cell apoptosis, autophagy, epithelial-mesenchymal transition, and other aspects of cell behavior can affect cell response to 5-FU. Modulation of expression levels of microRNAs or long non-coding RNAs may be a suitable approach to sensitize tumor cells to 5-FU treatment via modulating multiple biological signaling pathways such as Hippo/YAP, Wnt/β-catenin, Hedgehog, NF-kB, and Notch cascades. Moreover, there is an increasing interest in targeting these transcripts in various kinds of cancers that are treated by 5-FU. In the present article, we provide a review of the function of non-coding transcripts in the modulation of response of neoplastic cells to 5-FU.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Fattahi
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Yang L, Zhao S, Zhu T, Zhang J. GPRC5A Is a Negative Regulator of the Pro-Survival PI3K/Akt Signaling Pathway in Triple-Negative Breast Cancer. Front Oncol 2021; 10:624493. [PMID: 33680947 PMCID: PMC7928339 DOI: 10.3389/fonc.2020.624493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common types of malignancy worldwide; however, its underlying mechanisms remain unclear. In the present study, we investigated the roles of G-protein-coupled receptor family C, member 5, group A (GPRC5A) in cell apoptosis in triple-negative breast cancer (TNBC). The expression of GPRC5A in breast cancer cell lines was detected by real time PCR and western blot. And the results suggested that GPRC5A was downregulated in breast cancer cell lines compared to normal breast epithelial cell lines. Additionally, the expression of GPRC5A in TCGA database was analyzed in silico. GPRC5A exhibited the lowest expression levels in TNBC compared to ER+ and HER2+ breast cancer. Overexpression of GPRC5A in MDA-MB-231 and MDA-MB-468 cells promoted apoptosis, whereas depletion of GPRC5A in T47D and MCF7 cells inhibited cell apoptosis via the intrinsic apoptotic pathway. We performed RNA-sequencing in GPRC5A overexpressed MDA-MB-231 and the control cells. The results facilitated the identification of a number of signaling pathways involved in this process, and the PI3K/Akt signaling pathway was found to be one the most important. A specific activator of the PI3K/Akt signaling pathway inhibited apoptosis of breast cancer cells, whereas cotreatment of this activator with a GPRC5A-expressing plasmid reduced this effect. Similarly, a specific inhibitor of the PI3K/Akt signaling pathway increased cell apoptosis by activating caspase-3 and caspase-9, whereas co-incubation of the inhibitor with a short hairpin RNA targeting GPRC5A significantly reduced the cell apoptotic rate. Additionally, the overexpression of GPRC5A suppressed tumor growth by inducing cell apoptosis in vivo. Taken together, the present study identified GPRC5A as a protective factor against the progression of human triple-negative breast cancer by increasing cell apoptosis via the regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Shaorong Zhao
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Tong Zhu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
20
|
Qian X, Jiang C, Shen S, Zou X. GPRC5A: An emerging prognostic biomarker for predicting malignancy of Pancreatic Cancer based on bioinformatics analysis. J Cancer 2021; 12:2010-2022. [PMID: 33753999 PMCID: PMC7974517 DOI: 10.7150/jca.52578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Pancreatic cancer (PaCa) is a highly lethal malignancy. The treatment options for PaCa lack efficacy. The study aimed to explore the molecular biomarkers for predicting survival of PaCa and identify the potential carcinogenic mechanisms of the selected gene. Methods: Based on public databases of PaCa, differentially expressed genes (DEGs) were identified using Networkanalyst. Survival analyses were exerted on GEPIA. Oncomine and The Human Protein Atlas were used for verifying the expression on mRNA and protein levels. Enrichment analyses were generated on Metascape and gene set enrichment analysis (GSEA). Univariate analyses were performed to determine the clinical factors associated with the expression of GPRC5A. Results: GPRC5A was identified as the most valuable gene in predicting survival of PaCa patients. Patients with high expression of GPRC5A showed larger tumor size, higher TNM stages, higher tumor grade, and more positive resection margin. In mutant KRAS, TP53, CDKN2A and SMAD4 group, the expression of GPRC5A was higher than non-mutant group. Mechanistically, GPRC5A may promote metastasis of PaCa mainly via regulating epithelial-mesenchymal transition (EMT) and neuroactive ligand-receptor interaction. Conclusion: GPRC5A may act as an oncogene in the progression of PaCa and could be a prognostic biomarker in predicting survival of PaCa.
Collapse
Affiliation(s)
- Xuetian Qian
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Chengfei Jiang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shanshan Shen
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xiaoping Zou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
21
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Sriram K, Salmerón C, Wiley SZ, Insel PA. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol 2020; 177:2434-2455. [PMID: 32060895 DOI: 10.1111/bph.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates (5-year survival ~9%) among cancers. Pancreatic adenocarcinoma (PAAD) is the most common (>80%) and the most lethal type of pancreatic cancer. A need exists for new approaches to treat pancreatic adenocarcinoma. GPCRs, the largest family of cell-surface receptors and drug targets, account for ~35% of approved drugs. Recent studies have revealed roles for GPCRs in PAAD cells and cells in the tumour micro-environment. This review assesses current information regarding GPCRs in PAAD by summarizing omics data for GPCRs expression in PAAD. The PAAD "GPCRome" includes GPCRs with approved agents, thereby offering potential for their repurposing/repositioning. We then reviewed the evidence for functional roles of specific GPCRs in PAAD. We also highlight gaps in understanding the contribution of GPCRs to PAAD biology and identify several GPCRs that may be novel therapeutic targets for future work in search of GPCR-targeted drugs to treat PAAD tumours.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Cristina Salmerón
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shu Z Wiley
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
23
|
Moyano-Galceran L, Pietilä EA, Turunen SP, Corvigno S, Hjerpe E, Bulanova D, Joneborg U, Alkasalias T, Miki Y, Yashiro M, Chernenko A, Jukonen J, Singh M, Dahlstrand H, Carlson JW, Lehti K. Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer. EMBO Mol Med 2020; 12:e11177. [PMID: 32115889 PMCID: PMC7136956 DOI: 10.15252/emmm.201911177] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Metastatic cancers commonly activate adaptive chemotherapy resistance, attributed to both microenvironment‐dependent phenotypic plasticity and genetic characteristics of cancer cells. However, the contribution of chemotherapy itself to the non‐genetic resistance mechanisms was long neglected. Using high‐grade serous ovarian cancer (HGSC) patient material and cell lines, we describe here an unexpectedly robust cisplatin and carboplatin chemotherapy‐induced ERK1/2‐RSK1/2‐EphA2‐GPRC5A signaling switch associated with cancer cell intrinsic and acquired chemoresistance. Mechanistically, pharmacological inhibition or knockdown of RSK1/2 prevented oncogenic EphA2‐S897 phosphorylation and EphA2‐GPRC5A co‐regulation, thereby facilitating a signaling shift to the canonical tumor‐suppressive tyrosine phosphorylation and consequent downregulation of EphA2. In combination with platinum, RSK inhibitors effectively sensitized even the most platinum‐resistant EphA2high, GPRC5Ahigh cells to the therapy‐induced apoptosis. In HGSC patient tumors, this orphan receptor GPRC5A was expressed exclusively in cancer cells and associated with chemotherapy resistance and poor survival. Our results reveal a kinase signaling pathway uniquely activated by platinum to elicit adaptive resistance. They further identify GPRC5A as a marker for abysmal HGSC outcome and putative vulnerability of the chemo‐resistant cells to RSK1/2‐EphA2‐pS897 pathway inhibition.
Collapse
Affiliation(s)
- Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina A Pietilä
- Research Programs Unit, Individualized Drug Therapy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Corvigno
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elisabet Hjerpe
- Department of Obstetrics and Gynecology, Visby Hospital, Visby, Sweden
| | - Daria Bulanova
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Ulrika Joneborg
- Division of Pelvic Cancer, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Research Centre, Salahaddin University-Erbil, Erbil, Iraq
| | - Yuichiro Miki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anastasiya Chernenko
- Research Programs Unit, Individualized Drug Therapy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joonas Jukonen
- Research Programs Unit, Individualized Drug Therapy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Joseph W Carlson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Research Programs Unit, Individualized Drug Therapy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Zhou YY, Chen LP, Zhang Y, Hu SK, Dong ZJ, Wu M, Chen QX, Zhuang ZZ, Du XJ. Integrated transcriptomic analysis reveals hub genes involved in diagnosis and prognosis of pancreatic cancer. Mol Med 2019; 25:47. [PMID: 31706267 PMCID: PMC6842480 DOI: 10.1186/s10020-019-0113-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which makes it more urgent to find the ideal tumor markers. METHODS Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes (DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to build a prognostic model. RESULTS Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP), log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = - 1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count). CONCLUSION Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.
Collapse
Affiliation(s)
- Yang-Yang Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Li-Ping Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yi Zhang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Sun-Kuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhao-Jun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Ming Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Qiu-Xiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhi-Zhi Zhuang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Xiao-Jing Du
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
25
|
Yang H, Bailey P, Pilarsky C. CRISPR Cas9 in Pancreatic Cancer Research. Front Cell Dev Biol 2019; 7:239. [PMID: 31681770 PMCID: PMC6813368 DOI: 10.3389/fcell.2019.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is now becoming a common cause of cancer death with no significant change in patient survival over the last 10 years. The main treatment options for pancreatic cancer patients are surgery, radiation therapy and chemotherapy, but there is now considerable effort to develop new and effective treatments. In recent years, CRISPR/Cas9 technology has emerged as a powerful gene editing tool with promise, not only as an important research methodology, but also as a new and effective method for targeted therapy. In this review, we summarize current advances in CRISPR/Cas9 technology and its application to pancreatic cancer research, and importantly as a means of selectively targeting key drivers of pancreatic cancer.
Collapse
Affiliation(s)
- Hai Yang
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter Bailey
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Pilarsky
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Brunner M, Wu Z, Krautz C, Pilarsky C, Grützmann R, Weber GF. Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int J Mol Sci 2019; 20:E4543. [PMID: 31540286 PMCID: PMC6770743 DOI: 10.3390/ijms20184543] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies and is associated with a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients with non-metastatic resectable tumors. In the future, neoadjuvant treatment strategies based on molecular testing of tumor biopsies may increase the amount of patients becoming eligible for surgery. In the context of non-metastatic disease, patients with resectable or borderline resectable pancreatic carcinoma might benefit from neoadjuvant chemo- or chemoradiotherapy followed by surgeryPatients with locally advanced or (oligo-/poly-)metastatic tumors presenting significant response to (neoadjuvant) chemotherapy should undergo surgery if R0 resection seems to be achievable. New immunotherapeutic strategies to induce potent immune response to the tumors and investigation in molecular mechanisms driving tumorigenesis of pancreatic cancer may provide novel therapeutic opportunities in patients with pancreatic carcinoma and help patient selection for optimal treatment.
Collapse
Affiliation(s)
- Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Zhiyuan Wu
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
27
|
Sawada Y, Kikugawa T, Iio H, Sakakibara I, Yoshida S, Ikedo A, Yanagihara Y, Saeki N, Győrffy B, Kishida T, Okubo Y, Nakamura Y, Miyagi Y, Saika T, Imai Y. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer. Int J Cancer 2019; 146:1369-1382. [PMID: 31276604 DOI: 10.1002/ijc.32554] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer.
Collapse
Affiliation(s)
- Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Iio
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Yuta Yanagihara
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| |
Collapse
|
28
|
Addendum: Liu, B. et al. The Effect of GPRC5a on the Proliferation, Migration Ability, Chemotherapy Resistance, and Phosphorylation of GSK-3β in Pancreatic Cancer. Int. J. Mol. Sci. 2018, 19, 1870. Int J Mol Sci 2019. [PMCID: PMC6480470 DOI: 10.3390/ijms20071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Li L, Yu S, Wu Q, Dou N, Li Y, Gao Y. KLF4-Mediated CDH3 Upregulation Suppresses Human Hepatoma Cell Growth and Migration via GSK-3β Signaling. Int J Biol Sci 2019; 15:953-961. [PMID: 31182916 PMCID: PMC6535787 DOI: 10.7150/ijbs.30857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
P-cadherin (CDH3), a classical cell adhesion molecule involved in tissue integrity and cell localization, has been implicated in many types of cancer. However, little is known about its function and regulatory mechanism in hepatocellular carcinoma (HCC). Here we report that CDH3 was positively regulated by kr¨uppel-like transcription factor 4 (KLF4), which is a crucial tumor suppressor gene in HCC, at mRNA level in HCC cell lines. Luciferase reporter assay and chromatin immunoprecipitation assay indicated that KLF4 directly bound to CDH3 promoter and transcriptionally activated CDH3 expression. Consistently, CDH3 expression was closely related with KLF4 expression in patients' samples and both proteins exhibited a downregulated expression pattern in cancer samples. Functionally, enforced CDH3 expression suppressed and silenced CDH3 expression promoted HCC cell growth and migration in vitro. Mechanistically, we observed that GSK-3β was regulated by CDH3 and may function as a possible downstream effector of CDH3. Knockdown of GSK-3β showed a similar phenotype with CDH3 silencing. Taken together, these findings establish the KLF4/CDH3/GSK-3β axis as an important regulatory mechanism in HCC development.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
30
|
Gene Therapy for Pancreatic Diseases: Current Status. Int J Mol Sci 2018; 19:ijms19113415. [PMID: 30384450 PMCID: PMC6275054 DOI: 10.3390/ijms19113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The pancreas is a key organ involved in digestion and endocrine functions in the body. The major diseases of the pancreas include pancreatitis, pancreatic cancer, cystic diseases, pancreatic divisum, islet cell tumors, endocrine tumors, diabetes mellitus, and pancreatic pain induced by these diseases. While various therapeutic methodologies have been established to date, however, the improvement of conventional treatments and establishment of novel therapies are essential to improve the efficacy. For example, conventional therapeutic options, including chemotherapy, are not effective against pancreatic cancer, and despite improvements in the last decade, the mortality rate has not declined and is estimated to become the second cause of cancer-related deaths by 2030. Therefore, continuous efforts focus on the development of novel therapeutic options. In this review, we will summarize the progress toward the development of gene therapies for pancreatic diseases, with an emphasis on recent preclinical studies and clinical trials. We aim to identify new areas for improvement of the current methodologies and new strategies that will lead to safe and effective gene therapeutic approaches in pancreatic diseases.
Collapse
|
31
|
GPRC5A: An Emerging Biomarker in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1823726. [PMID: 30417009 PMCID: PMC6207857 DOI: 10.1155/2018/1823726] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues, and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in various human cancers and is related to many tumor-associated signaling pathways, including the cyclic adenosine monophosphate (cAMP), nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.
Collapse
|