1
|
Ozelin SD, Esperandim TR, Dias FGG, Pereira LDF, Garcia CB, de Souza TO, Magalhães LF, Barud HDS, Sábio RM, Tavares DC. Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles Improve Wound Healing Without Exhibiting Toxic Effect. J Pharm Sci 2024; 113:2383-2393. [PMID: 38615814 DOI: 10.1016/j.xphs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Wound healing is an important and complex process, containing a multifaceted process governed by sequential yet overlapping phases. Certain treatments can optimize local physiological conditions and improve wound healing. Silver nanoparticles (AgNP) are widely known for their antimicrobial activity. On the other hand, bacterial cellulose (BC) films have been used as a dressing that temporarily substitutes the skin, offering many advantages in optimizing wound healing, in addition to being highly biocompatible. Considering the promising activities of AgNP and BC films, the present study aimed to evaluate the wound healing activity in Wistar Hannover rats using a nanocomposite based on bacterial cellulose containing AgNP (AgBC). In a period of 21 days, its influence on the wound area, microbial growth, histopathological parameters, and collagen content were analyzed. In addition, toxicity indicators were assessed, such as weight gain, water consumption, and creatinine and alanine transaminase levels. After 14 days of injury, the animals treated with AgBC showed a significant increase in wound contraction. The treatment with AgBC significantly reduced the number of microbial colonies compared to other treatments in the first 48 h after the injury. At the end of the 21 experimental days, an average wound contraction rate greater than 97 % in relation to the initial area was observed, in addition to a significant increase in the amount of collagen fibers at the edge of the wounds, lower scores of necrosis, angiogenesis and inflammation, associated with no systemic toxicity. Therefore, it is concluded that the combination of preexisting products to form a new nanocomposite based on BC and AgNP amplified the biological activity of these products, increasing the effectiveness of wound healing and minimizing possible toxic effects of silver.
Collapse
Affiliation(s)
- Saulo Duarte Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | | | - Lucas de Freitas Pereira
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Cristiane Buzatto Garcia
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Thiago Olímpio de Souza
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | - Hernane da Silva Barud
- University of Araraquara, Biopolymers and Biomaterials Laboratory, Rua Carlos Gomes, 1338, 14801-320, Araraquara, São Paulo, Brazil; BioSmart Nano, Av. Jorge Fernandes de Mattos, 311, 14808-162 Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01, 14800-903, Araraquara, São Paulo, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| |
Collapse
|
2
|
Li S, Wu Y, Peng X, Chen H, Zhang T, Chen H, Yang J, Xie Y, Qi H, Xiang W, Huang B, Zhou S, Hu Y, Tan Q, Du X, Huang J, Zhang R, Li X, Luo F, Jin M, Su N, Luo X, Huang S, Yang P, Yan X, Lian J, Zhu Y, Xiong Y, Xiao G, Liu Y, Shen C, Kuang L, Ni Z, Chen L. A Novel Cargo Delivery System-AnCar-Exo LaIMTS Ameliorates Arthritis via Specifically Targeting Pro-Inflammatory Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306143. [PMID: 38083984 PMCID: PMC10870055 DOI: 10.1002/advs.202306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.
Collapse
|
3
|
Tong MQ, Lu CT, Huang LT, Yang JJ, Yang ST, Chen HB, Xue PP, Luo LZ, Yao Q, Xu HL, Zhao YZ. Polyphenol-driven facile assembly of a nanosized acid fibroblast growth factor-containing coacervate accelerates the healing of diabetic wounds. Acta Biomater 2023; 157:467-486. [PMID: 36460288 DOI: 10.1016/j.actbio.2022.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Diabetic wounds are challenging to heal due to complex pathogenic abnormalities. Routine treatment with acid fibroblast growth factor (aFGF) is widely used for diabetic wounds but hardly offers a satisfying outcome due to its instability. Despite the emergence of various nanoparticle-based protein delivery approaches, it remains challenging to engineer a versatile delivery system capable of enhancing protein stability without the need for complex preparation. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and Epigallocatechin-3-gallate (EGCG) was constructed and applied in the healing of diabetic wounds. First, the binding patterns of EGCG and aFGF were predicted by molecular docking analysis. Then, the characterizations demonstrated that AE-NPs displayed higher stability in hostile conditions than free aFGF by enhancing the binding activity of aFGF to cell surface receptors. Meanwhile, the AE-NPs also had a powerful ability to scavenge reactive oxygen species (ROS) and promote angiogenesis, which significantly accelerated full-thickness excisional wound healing in diabetic mice. Besides, the AE-NPs suppressed the early scar formation by improving collagen remodeling and the mechanism was associated with the TGF-β/Smad signaling pathway. Conclusively, AE-NPs might be a potential and facile strategy for stabilizing protein drugs and achieving the scar-free healing of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic chronic wound is among the serious complications of diabetes that eventually cause the amputation of limbs. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and EGCG was constructed. The EGCG not only acted as a carrier but also possessed a therapeutic effect of ROS scavenging. The AE-NPs enhanced the binding activity of aFGF to cell surface receptors on the cell surface, which improved the stability of aFGF in hostile conditions. Moreover, AE-NPs significantly accelerated wound healing and improved collagen remodeling by regulating the TGF-β/Smad signaling pathway. Our results bring new insights into the field of polyphenol-containing nanoparticles, showing their potential as drug delivery systems of macromolecules to treat diabetic wounds.
Collapse
Affiliation(s)
- Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lan-Tian Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiao-Jiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Si-Ting Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hang-Bo Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng-Peng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lan-Zi Luo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang 325000, China.
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang 325000, China.
| |
Collapse
|
4
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
5
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
6
|
Haidari H, Bright R, Strudwick XL, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater 2021; 128:420-434. [PMID: 33857695 DOI: 10.1016/j.actbio.2021.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance coupled with the limited effectiveness of current treatments highlights the need for the development of new treatment modalities. Silver nanoparticles (AgNPs) are a promising alternative with broad-spectrum antibacterial activity. However, the clinical translation of AgNPs have been hampered primarily due to the delivery of unsafe levels of silver ions (Ag+) resulting in cellular toxicity and their susceptibility to aggregation resulting in loss of efficacy. Here, we describe a safe and effective, thermo-responsive AgNP hydrogel that provides antibacterial effects in conjunction with wound promoting properties. Using a murine model of wound infection, we demonstrate that the applied AgNP hydrogel to the wound (12 µg silver) not only provides superior bactericidal activity but also reduces inflammation leading to accelerated wound closure when compared to industry-standard silver sulfadiazine (302 µg silver). The AgNP hydrogel-treatment significantly accelerated wound closure at day 4 post-infection (56 closure) compared to both blank hydrogel or Ag SD (74% and 91% closure respectively) with a concurrent increase in PCNA-positive proliferating cells corresponding with a significant 32% improvement in wound re-epithelization compared to the blank hydrogel. Treatment of infected wounds with AgNP hydrogel also decreased neutrophil infiltration, increased anti-inflammatory Ym-1 positive M2 macrophages, and reduced the number of caspase-1 positive apoptotic cells. Therefore, this novel multifunctional AgNP thermo-responsive hydrogel is potentially a safe and effective treatment at much lower concentration for the treatment of wound infections. STATEMENT OF SIGNIFICANCE: In this study, we describe the development of a multifunctional thermo-responsive hydrogel of ultrasmall silver nanoparticles (AgNPs) for controlled and optimized delivery of silver to infected wounds. The in vivo biological effects of the developed hydrogel showed significant S. aureus elimination from infected mouse wounds compared to a commercial antibacterial formulation. The developed AgNP hydrogel optimally regulates inflammatory responses to promote wound healing as indicated by increased cell proliferation and wound re-epithelization. Additionally, AgNP hydrogel shows significant potential in regulating neutrophil infiltration while increasing levels of anti-inflammatory M2 macrophages and reduces the number of apoptotic cells. Therefore, the multifunctional properties of the developed AgNP thermo-responsive hydrogel offers great clinical potential to control bacterial infections and promote wound healing.
Collapse
|
7
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
8
|
Cowin AJ. New Innovations in Wound Healing and Repair. Int J Mol Sci 2019; 20:ijms20071724. [PMID: 30965550 PMCID: PMC6479748 DOI: 10.3390/ijms20071724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| |
Collapse
|
9
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|