1
|
Chen S, Chen H, Wang X, Zhang D, Zhang L, Cheng J, Zhang Q, Hua Z, Miao X, Shi J. Expression analysis and biological regulation of silencing regulatory protein 6 (SIRT6) in cutaneous squamous cell carcinoma. An Bras Dermatol 2024; 99:535-545. [PMID: 38548549 PMCID: PMC11220918 DOI: 10.1016/j.abd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (CSCC) is one of the most common types of skin cancer worldwide. Therefore, the identification of biomarkers associated with CSCC progression could aid in the early detection of high-risk squamous cell carcinoma and the development of novel therapeutic strategies. OBJECTIVE This study aimed to investigate the expression patterns of silent mating type Information Regulation 2 homolog 6 (SIRT6) in CSCC and its clinical significance. METHODS The protein expression level of SIRT6 in tissues was detected by immunohistochemistry, and the correlation between SIRT6 expression and clinicopathological parameters in CSCC patients was analyzed. The relative expression of SIRT6 in CSCC cell lineage and tissue specimens was determined by western blotting and PCR. The effect of SIRT6 silencing on cell proliferation was evaluated using cell counting kit 8. Wound healing, transwell method, and flow cytometry were used to investigate the migration, invasion, and cell cycle distribution/apoptosis of CSCC cells after SIRT6 silencing, respectively. Western blot was used to detect the expression of EMT (Epithelial-Mesenchymal Transition), cycle, apoptosis, and other related proteins. RESULTS The high expression of SIRT6 was correlated with the location of cancer tissue and Broder staging in CSCC patients. Knockdown of SIRT6 inhibited the proliferation, migration, invasion and EMT of CSCC cells, and promoted their apoptosis, with cells blocked in G1 phase. STUDY LIMITATIONS No animal experiments were conducted to further verify the results. CONCLUSION Decreased expression of SIRT6 can inhibit the occurrence and development of CSCC.
Collapse
Affiliation(s)
- Sai Chen
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Hongxia Chen
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Xu Wang
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Dongmei Zhang
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, People's Republic of China; Medical Research Center, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Li Zhang
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Jiawei Cheng
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Qi Zhang
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Zhixiang Hua
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Xu Miao
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China
| | - Jian Shi
- Department of Dermatology, Affiliated Hospital 2 of Nantong University, People's Republic of China.
| |
Collapse
|
2
|
Lu X, Yang Y, Chen J, Zhao T, Zhao X. RUNX1/miR-429 feedback loop promotes growth, metastasis, and epithelial-mesenchymal transition in oral squamous cell carcinoma by targeting ITGB1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5289-5302. [PMID: 38277041 DOI: 10.1007/s00210-024-02960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to explore the role of miR-429 on the progression of oral squamous cell carcinoma (OSCC). OSCC cell lines were transfected with miR-429 mimic, pcDNA3.1-RUNX1, or pcDNA3.1-ITGB1, and their cell viability, apoptosis, migration, and invasion abilities were analyzed by cell counting, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, wound healing, and transwell assays, respectively. Furthermore, luciferase reporter assay, RNA pull-down, and ChIP were used to assess the regulation of miR-429, RUNX1, and ITGB1 expression in OSCC. Lastly, the biological role of the RUNX1/miR-429 feedback loop was explored in nude mice. The results revealed that miR-429 level was down-regulated, while RUNX1 and ITGB1 levels were up-regulated in OSCC tissues and that miR-429 was negatively correlated with RUNX1 and ITGB1 in OSCC tissues. Transfection of miR-429 mimic suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, we found that miR-429 participated in OSCC progression by directly targeting ITGB1. Additionally, we found that RUNX1 negatively regulated miR-429 expression by binding to its promoter. Our results also revealed that the RUNX1/miR-429 feedback loop regulated ITGB1 expression and that RUNX1 overexpression rescued the inhibitory effects of miR-429 mimic on OSCC cells. In addition, miR-429 mimic significantly suppressed tumor growth, inflammatory cell infiltration, EMT, and ITGB1 expression in vivo, which were inhibited by RUNX1 overexpression. Altogether, these results indicate that the RUNX1/miR-429 feedback loop promoted growth, metastasis, and EMT in OSCC by targeting ITGB1.
Collapse
Affiliation(s)
- Xun Lu
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Yiqiang Yang
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Jia Chen
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Tian Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Xiaofan Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China.
| |
Collapse
|
3
|
Qin Y, Li Z, Liu T, Ma J, Liu H, Zhou Y, Wang S, Zhang L, Peng Q, Ye P, Duan N, Wang W, Wang X. Prevotella intermedia boosts OSCC progression through ISG15 upregulation: a new target for intervention. J Cancer Res Clin Oncol 2024; 150:206. [PMID: 38644421 PMCID: PMC11033248 DOI: 10.1007/s00432-024-05730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jingjing Ma
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yifan Zhou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Shuai Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lei Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Zhang F, Hao Y, Yang N, Liu M, Luo Y, Zhang Y, Zhou J, Liu H, Li J. Oridonin-induced ferroptosis and apoptosis: a dual approach to suppress the growth of osteosarcoma cells. BMC Cancer 2024; 24:198. [PMID: 38347435 PMCID: PMC10863210 DOI: 10.1186/s12885-024-11951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common aggressive bone malignancy tumors in adolescents. With the application of new chemotherapy regimens, finding new and effective anti-OS drugs to coordinate program implementation is urgent for the patients of OS. Oridonin had been proved to mediate anti-tumor effect on OS cells, but its mechanism has not been fully elucidated. METHODS The effects of oridonin on the viability, clonal formation and migration of 143B and U2OS cells were detected by CCK-8, colony formation assays and wound-healing test. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the mechanism of oridonin on OS. Western blot (WB), real-time quantitative PCR (qRT-PCR) were used to detect the expression levels of apoptosis and ferroptosis-relative proteins and genes. Annexin V-FITC apoptosis detection kit and flow cytometry examination were used to detect the level of apoptosis. Iron assay kit was used to evaluate the relative Fe2+ content. The levels of mitochondrial membrane potential and lipid peroxidation production was determined by mitochondrial membrane potential detection kit and ROS assay kit. RESULTS Oridonin could effectively inhibit the survival, clonal formation and metastasis of OS cells. The KEGG results indicated that oridonin is associated with the malignant phenotypic signaling pathways of proliferation, migration, and drug resistance in OS. Oridonin was capable of inhibiting expressions of BAX, cl-caspase3, SLC7A11, GPX4 and FTH1 proteins and mRNA, while promoting the expressions of Bcl-2 and ACSL4 in 143B and U2OS cells. Additionally, we found that oridonin could promote the accumulation of reactive oxygen species (ROS) and Fe2+ in OS cells, as well as reduce mitochondrial membrane potential, and these effects could be significantly reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). CONCLUSION Oridonin can trigger apoptosis and ferroptosis collaboratively in OS cells, making it a promising and effective agent for OS therapy.
Collapse
Affiliation(s)
- Feifan Zhang
- Hunan University of Chinese Medicine, Changsha, China
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yang Hao
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Yang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Man Liu
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yage Luo
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Ying Zhang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Jian Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao Municipal Hospital, Qingdao, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jitian Li
- Hunan University of Chinese Medicine, Changsha, China.
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China.
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
5
|
Dou H, Song C, Wang X, Feng Z, Su Y, Wang H. Integrated bioinformatics analysis of SEMA3C in tongue squamous cell carcinoma using machine-learning strategies. Cancer Cell Int 2024; 24:58. [PMID: 38321460 PMCID: PMC10845809 DOI: 10.1186/s12935-024-03247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is an aggressive oral cancer with a high incidence of metastasis and poor prognosis. We aim to identify and verify potential biomarkers for TSCC using bioinformatics analysis. To begin with, we examined clinical and RNA expression information of individuals with TSCC from the Gene Expression Omnibus (GEO) database. Differential expression analysis and functional analysis were conducted. Multiple machine-learning strategies were next employed to screen and determine the hub gene, and receiver operating characteristic (ROC) analysis was used to assess diagnostic value. Semaphorin3C (SEMA3C) was identified as a critical biomarker, presenting high diagnostic accuracy for TSCC. In the validation cohorts, SEMA3C exhibited high expression levels in TSCC. The high expression of SEMA3C was a poor prognostic factor in TSCC by the Kaplan-Meier curve. Based on the Gene Ontology (GO) analysis, SEMA3C was mapped in terms related to cell adhesion, positive regulation of JAK-STAT, positive regulation of stem cell maintenance, and positive regulation of NF-κB activity. Single-cell RNA sequencing (ScRNA-seq) analysis showed cells expressing SEMA3C were predominantly tumor cells. Then, we further verified that SEMA3C had high expression in TSCC clinical samples. In addition, the knockdown of SEMA3C suppressed the proliferation, migration, and invasion of TSCC cells in vitro. This study is the first to report the involvement of SEMA3C in TSCC, suggesting that upregulated SEMA3C could be a novel and critical potential biomarker for future predictive diagnostics, prevention, prognostic assessment, and personalized medical services in TSCC.
Collapse
Affiliation(s)
- Huixin Dou
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Can Song
- Research and Development Department, Allife Medicine Inc., Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Zhien Feng
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
6
|
Vergil Andrews JF, Selvaraj DB, Kumar A, Roshan SA, Anusuyadevi M, Kandasamy M. A Mild Dose of Aspirin Promotes Hippocampal Neurogenesis and Working Memory in Experimental Ageing Mice. Brain Sci 2023; 13:1108. [PMID: 37509038 PMCID: PMC10376986 DOI: 10.3390/brainsci13071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Aspirin has been reported to prevent memory decline in the elderly population. Adult neurogenesis in the hippocampus has been recognized as an underlying basis of learning and memory. This study investigated the effect of aspirin on spatial memory in correlation with the regulation of hippocampal neurogenesis and microglia in the brains of ageing experimental mice. Results from the novel object recognition (NOR) test, Morris water maze (MWM), and cued radial arm maze (cued RAM) revealed that aspirin treatment enhances working memory in experimental mice. Further, the co-immunohistochemical assessments on the brain sections indicated an increased number of doublecortin (DCX)-positive immature neurons and bromodeoxyuridine (BrdU)/neuronal nuclei (NeuN) double-positive newly generated neurons in the hippocampi of mice in the aspirin-treated group compared to the control group. Moreover, a reduced number of ionized calcium-binding adaptor molecule (Iba)-1-positive microglial cells was evident in the hippocampus of aspirin-treated animals. Recently, enhanced activity of acetylcholinesterase (AChE) in circulation has been identified as an indicative biomarker of dementia. The biochemical assessment in the blood of aspirin-treated mice showed decreased activity of AChE in comparison with that of the control group. Results from this study revealed that aspirin facilitates hippocampal neurogenesis which might be linked to enhanced working memory.
Collapse
Affiliation(s)
- Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Akshay Kumar
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
7
|
Rezania MA, Eghtedari A, Taha MF, Ardekani AM, Javeri A. A novel role for aspirin in enhancing the reprogramming function of miR-302/367 cluster and breast tumor suppression. J Cell Biochem 2022; 123:1077-1090. [PMID: 35535453 DOI: 10.1002/jcb.30264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have provided evidence for tumor suppressive function of the embryonic stem cell-specific miR-302/367 cluster through induction of a reprogramming process. Aspirin has been found to induce reprogramming factors of mesenchymal-to-epithelial transition in breast cancer cells. Therefore, we aimed to investigate whether overexpression of miR-302/367 cluster and aspirin treatment cooperate in the induction of reprogramming and tumor suppression in breast cancer cells. MDA-MB-231 and SK-BR-3 human breast cancer cell lines were transfected with a miR-302/367 expressing vector and treated with aspirin. The cells were evaluated for indices of apoptosis, proliferation, migration, and invasion. In both cell lines, treatment of miR-302/367-transfected cells with aspirin upregulated expression of some main pluripotency factors such as OCT4, SOX2, NANOG, and KLF4, and downregulated expression of some invasion and angiogenesis markers at gene and protein levels. Aspirin increased the apoptotic rate in both cell lines transfected with miR-302/367. Both miR-302/367 and aspirin upregulated the expression of FOXD3 protein which is a known inducer of OCT4 and NANOG. Our results demonstrate that aspirin can enhance miR-302/367-induced reprogramming of breast cancer cells possibly through upregulation of FOXD3 expression. This can further augment the reversal of epithelial-mesenchymal transition and inhibits migration, invasion, and angiogenic signaling in breast cancer cells reprogrammed by miR-302/367. Therefore, aspirin may serve as a useful adjuvant for reprogramming of cancer cells.
Collapse
Affiliation(s)
- Mohammad A Rezania
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Azadeh Eghtedari
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
Li Z, Huang H, Wu X, Yu T, Xiao F, Zhou H, Shang A, Yang Y. SRSF3 Expression Serves as a Potential Biomarker for Prognostic and Immune Response in Pan-Cancer. Front Oncol 2022; 12:808530. [PMID: 35494088 PMCID: PMC9047863 DOI: 10.3389/fonc.2022.808530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Serine-rich splicing factor3 (SRSF3) plays an essential role in cell proliferation and inducing and maintaining of cancers as a proto-oncogene. However, the mechanisms of SRSF3 in pan-cancers are still unknown. In our study, a visualized prognostic landscape of SRSF3 in pan-cancer was investigated and the relationship between SRSF3 expression and immune infiltration was also investigated. The expression pattern and prognostic worth of SRSF3 among pan-cancers were explored through different databases, namely, the TCGA and Kaplan–Meier Plotter. Moreover, the survival analysis including Kaplan-Meier method for evaluating between groups was conducted. Further analyses including the correlation between expression SRSF expression and immune infiltration including tumor mutation burden (TMB), microsatellite instability (MSI) was investigated using Spearman test. In ACC, KIRP and UCEC cancer, upregulated expression of SRSF3 was associated with worse disease-free interval (DFI), representing a mechanism in promoting progression of tumor. Our results showed that SRSF3 expression was positively correlated immune cell infiltration, TMB, MSI in certain cancer types, indicating SRSF3 expression to potential value of therapy response. Additionally, we explored the functional characteristics of SRSF in vitro through western blot detecting the expression level of the apoptosis-related proteins in SW480 and 786-O cells. SRSF3 expression was upregulated in pan-cancer tissue compared with normal tissue, which confirmed by immunohistochemistry and its expression indicated poor overall survival and death-specific survival. Therefore, SRSF3 was found to be a possible biomarker for prognostic and therapeutic assessment through bioinformatic analysis. SRSF3 is expressed in various cancers and its high expression correlated to poor survival and disease progression. In summary, SRSF3 expression can be considered as a prognostic biomarker in pan-cancer and therapeutic evaluation.
Collapse
Affiliation(s)
- Zihua Li
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Huang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinbo Wu
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Yu
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fajiao Xiao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang, ; Yunfeng Yang,
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang, ; Yunfeng Yang,
| |
Collapse
|
9
|
Tang R, Yang L, Shen L, Ma X, Gao Y, Liu Y, Bai Z, Wang X. Controlled Fabrication of Bioactive Microtubes for Screening Anti-Tongue Squamous Cell Migration Drugs. Front Chem 2022; 10:771027. [PMID: 35127636 PMCID: PMC8813861 DOI: 10.3389/fchem.2022.771027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of tongue squamous cell carcinoma (TSCC) faces challenges because TSCC has an aggressive biological behavior and manifests usually as widespread metastatic disease. Therefore, it is particularly important to screen out and develop drugs that inhibit tumor invasion and metastasis. Two-dimensional (2D) cell culture has been used as in vitro models to study cellular biological behavior, but growing evidence now shows that the 2D systems can result in cell bioactivities that deviate appreciably the in vivo response. It is urgent to develop a novel 3D cell migration model in vitro to simulate the tumor microenvironment as much as possible and screen out effective anti-migration drugs. Sodium alginate, has a widely used cell encapsulation material, as significant advantages. We have designed a microfluidic device to fabricate a hollow alginate hydrogel microtube model. Based on the difference in liquid flow rate, TSCC cells (Cal27) were able to be evenly distributed in the hollow microtubes, which was confirmed though fluorescence microscope and laser scanning confocal microscope (LSCM). Our microfluidic device was cheap, and commercially available and could be assembled in a modular way, which are composed of a coaxial needle, silicone hose, and syringes. It was proved that the cells grow well in artificial microtubes with extracellular matrix (ECM) proteins by LSCM and flow cytometry. Periodic motility conferred a different motor state to the cells in the microtubes, more closely resembling the environment in vivo. The quantitative analysis of tumor cell migration could be achieved simply by determining the position of the cell in the microtube cross-section. We verified the anti-migration effects of three NSAIDs drugs (aspirin, indomethacin, and nimesulide) with artificial microtubes, obtaining the same results as conventional migration experiments. The results showed that among the three NSAIDs, nimesulide showed great anti-migration potential against TSCC cells. Our method holds great potential for application in the more efficient screening of anti-migration tumor drugs.
Collapse
|
10
|
Paensuwan P, Ngoenkam J, Wangteeraprasert A, Pongcharoen S. Essential function of adaptor protein Nck1 in platelet-derived growth factor receptor signaling in human lens epithelial cells. Sci Rep 2022; 12:1063. [PMID: 35058548 PMCID: PMC8776929 DOI: 10.1038/s41598-022-05183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of platelet-derived growth factor-BB (PDGF-BB) to its cognate receptor (PDGFR) promotes lens epithelial cell (LEC) proliferation and migration. After cataract surgery, these LEC behaviors have been proposed as an influential cause of posterior capsule opacification (PCO). Stimulated PDFGR undergoes dimerization and tyrosine phosphorylation providing docking sites for a SH2-domain-containing noncatalytic region of tyrosine kinase (Nck). Nck is an adaptor protein acting as a linker of the proximal and downstream signaling events. However, the functions of Nck1 protein in LEC have not been investigated so far. We reported here a crucial role of Nck1 protein in regulating PDGFR-mediated LEC activation using LEC with a silenced expression of Nck1 protein. The knockdown of Nck1 suppressed PDGF-BB-stimulated LEC proliferation and migration and disrupted the cell cycle progression especially G1/S transition. LEC lacking Nck1 protein failed to exhibit actin polymerization and membrane protrusions. The downregulation of Nck1 protein in LEC impaired PDGFR‐induced phosphorylation of intracellular signaling proteins, including Erk1/2, Akt, CREB and ATF1, which resulted in inhibition of LEC responses. Therefore, these data suggest that the loss of Nck1 expression may disturb LEC activation and Nck1 may potentially be a drug target to prevent PCO and lens-related disease.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Apirath Wangteeraprasert
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| |
Collapse
|
11
|
Galmiche A, Saidak Z, Bettoni J, Ouendo M, Testelin S. Therapeutic Perspectives for the Perioperative Period in Oral Squamous Cell Carcinoma (OSCC). FRONTIERS IN ORAL HEALTH 2022; 2:764386. [PMID: 35088056 PMCID: PMC8787059 DOI: 10.3389/froh.2021.764386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
The perioperative period is the relatively short window of time, usually measured in days or weeks, around the surgical procedure. Despite its short duration, this time period is of great importance for cancer patients. From a biological point of view, the perioperative period is complex. Synchronous with primary tumor removal, surgery has local and distant consequences, including systemic and local inflammation, coagulation and sympathetic activation. Furthermore, the patients often present comorbidities and receive several medical prescriptions (hypnotics, pain killers, anti-emetics, hemostatics, inotropes, antibiotics). Because of the complex nature of the perioperative period, it is often difficult to predict the oncological outcome of tumor resection. Here, we review the biological consequences of surgery of Oral Squamous Cell Carcinoma (OSCC), the most frequent form of primary head and neck tumors. We briefly address the specificities and the challenges of the surgical care of these tumors and highlight the biological and clinical studies that offer insight into the perioperative period. The recent trials examining neoadjuvant immunotherapy for OSCC illustrate the therapeutic opportunities offered by the perioperative period.
Collapse
Affiliation(s)
- Antoine Galmiche
- EA7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Service de Biochimie, Centre de Biologie Humaine, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
- *Correspondence: Antoine Galmiche
| | - Zuzana Saidak
- EA7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Service de Biochimie, Centre de Biologie Humaine, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Jérémie Bettoni
- EA7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Service de Chirurgie Maxillo-Faciale, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Martial Ouendo
- EA7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Service d'Anesthésie Réanimation, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Sylvie Testelin
- EA7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Service de Chirurgie Maxillo-Faciale, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| |
Collapse
|
12
|
Liang S, Zhou X, Cai D, Rodrigues-Lima F, Chi J, Wang L. Network Pharmacology and Experimental Validation Reveal the Effects of Chidamide Combined With Aspirin on Acute Myeloid Leukemia-Myelodysplastic Syndrome Cells Through PI3K/AKT Pathway. Front Cell Dev Biol 2021; 9:685954. [PMID: 34568314 PMCID: PMC8458633 DOI: 10.3389/fcell.2021.685954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chidamide (CDM), a novel histone deacetylase inhibitor, is currently used for patients with peripheral T-cell lymphoma. Aspirin (ASA), an anti-inflammatory drug, has been shown to exert anticancer activity. Herein, we investigated the effect of CDM combined with ASA on myelodysplastic syndromes-derived acute myeloid leukemia (AML-MDS) cells and explored the underlying mechanism. The putative targets of CDM and ASA were predicted by network pharmacology approach. GO functional and KEGG pathway enrichment analyses were performed by DAVID. Furthermore, experimental validation was conducted by Cell Counting Kit-8 assay, Flow cytometry and Western blotting. Network pharmacology analysis revealed 36 AML-MDS-related overlapping genes that were targets of CDM and ASA, while 10 hub genes were identified by the plug-in cytoHubba in Cytoscape. Pathway enrichment analysis indicated CDM and ASA significantly affected PI3K/AKT signaling pathway. Functional experiments demonstrated that the combination of CDM and ASA had a remarkable synergistic anti-proliferative effect by blocking the cell cycle in G0/G1 phase and inducing apoptosis. Mechanistically, the combination treatment significantly down-regulated the phosphorylation levels of PI3K and AKT. In addition, insulin-like growth factor 1 (IGF-1), an activator of PI3K/AKT pathway, reversed the effects of the combination treatment. Our findings suggested that CDM combined with ASA exerted a synergetic inhibitory effect on cell growth by inactivating PI3K/AKT pathway, which might pave the way for effective treatments of AML-MDS.
Collapse
Affiliation(s)
- Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Zhou
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Duo Cai
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fernando Rodrigues-Lima
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Jianxiang Chi
- Center for the Study of Hematological Malignancies, Karaiskakio Foundation, Nicosia, Cyprus
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Yu L, Liu J, Zhang TD, Zheng XF, Luo DL, Zhu WL, Qiu XW, Guo LL. Decreased TMEM40 expression is associated with malignant behavior of cutaneous squamous cell carcinoma and inhibits tumor progression. Oncol Lett 2021; 22:606. [PMID: 34188708 PMCID: PMC8227547 DOI: 10.3892/ol.2021.12867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most common types of skin cancer in humans worldwide. The identification and characterization of cancer-associated transmembrane proteins are important for understanding the molecular biology of CSCC. The aim of the present study was to evaluate the expression pattern of transmembrane protein 40 (TMEM40) in CSCC and its clinical significance. The underlying mechanisms were also examined. Reverse transcription-quantitative PCR, western blot and immunohistochemistry analysis were used to determine the relative expression of TMEM40 in CSCC cell lines and clinical tissue samples. The effect of TMEM40 gene silencing on cell proliferation was also evaluated using Cell Counting Kit-8 assays. Wound healing assays, flow cytometry and Transwell assays were used to explore the migration, cell cycle distribution/apoptosis and invasion of CSCC cells following TMEM40 silencing, respectively. In the present study, increased TMEM40 expression was observed in CSCC tissue samples, compared with normal skin, and TMEM40 expression was associated with large tumor size in patients with CSCC. In vitro functional assays indicated that TMEM40 was involved in the regulation of A431 and SCL1 cell growth through its effects on the cell cycle and apoptosis. Silencing TMEM40 in A431 and SCL1 cells resulted in cell cycle arrest at the G0/G1 phase and promoted apoptosis. In addition, migration and invasion were significantly inhibited following silencing of TMEM40 expression in CSCC cells. Taken together, the results of the present study indicated that reduced TMEM40 expression could inhibit CSCC development and that TMEM40 may represent a therapeutic target in CSCC.
Collapse
Affiliation(s)
- Lei Yu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jie Liu
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Tang-De Zhang
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiu-Fen Zheng
- Department of Dermatology, Shunde Hospital of Southern Medical University, Shunde, Guangdong 528308, P.R. China
| | - Dong-Lan Luo
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Wei-Liang Zhu
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xian-Wen Qiu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Lin-Lang Guo
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
14
|
Gao WJ, Liu JX, Liu MN, Yao YD, Liu ZQ, Liu L, He HH, Zhou H. Macrophage 3D migration: A potential therapeutic target for inflammation and deleterious progression in diseases. Pharmacol Res 2021; 167:105563. [PMID: 33746053 DOI: 10.1016/j.phrs.2021.105563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are heterogeneous cells that have different physiological functions, such as chemotaxis, phagocytosis, endocytosis, and secretion of various factors. All physiological functions of macrophages are integral to homeostasis, immune defense and tissue repair. However, in several diseases, macrophages are recruited from the blood towards inflammatory sites. This process is called macrophage migration, which promotes deleterious disease progression. Macrophage migration is a key player in many inflammatory diseases, autoimmune diseases and cancers because it contributes to the accumulation of proinflammatory factors, the destruction of tissues and the development of tumors. Therefore, macrophage migration is proposed to be a potential therapeutic target. Macrophages migrate between two-dimensional (2D) and three-dimensional (3D) environments, implying that distinct migratory features and mechanisms are involved. Compared with the 2D migration of macrophages, 3D migration involves more complex variations in cellular morphology and dynamics. The structure of the extracellular matrix, a key factor, is modified in diseases that influence macrophage 3D migration. Macrophage 3D migration relates to disease pathology. Research that focuses on macrophage 3D migration is an emerging field and was reviewed in this article to indicate the molecular and cellular mechanisms of macrophage migration in 3D environments and to provide potential targets for controlling disease progression associated with this migration.
Collapse
Affiliation(s)
- Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Huan-Huan He
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, Guangdong Province 519000, PR China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
15
|
Zhang N, Zeng L, Wang S, Wang R, Yang R, Jin Z, Tao H. LncRNA FER1L4 Promotes Oral Squamous Cell Carcinoma Progression via Targeting miR-133a-5p/Prx1 Axis. Onco Targets Ther 2021; 14:795-806. [PMID: 33568918 PMCID: PMC7869715 DOI: 10.2147/ott.s277351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common cancer especially young people in the world. The long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to be closely associated with the progression of various human cancers. However, the role of FER1L4 in OSCC remains unclear. Methods The expression level of FER1L4 in OSCC tissues and cancer cell lines was detected by using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by cell counting kit-8 (CCK-8) assay and EdU staining assay. Cell invasion and migration were evaluated by Transwell assay. Cell apoptosis was detected by flow cytometry. Luciferase reporter assay was performed to determine the targeting relationship between FER1L4, miR-133a-5p and Prx1. The protein expression of Prx1 was detected by Western blot. In addition, a xenograft tumor model in vivo was constructed to confirm the function of FER1L4. Results FERIL4 was significantly upregulated in OSCC tissues and cancer cell lines. Moreover, high level of FER1L4 predicted a poor prognosis of OSCC patients. Silencing of FER1L4 not only significantly inhibited cell growth, invasion, migration and induced apoptosis in SCC-9 and HN4 cells in vitro, but also effectively suppressed the tumorigenesis of OSCC cells in vivo. Knockdown of FER1L4 significantly enhanced the expression of miR-133a-5p by sponging it, and then downregulated Prx1 expression. Conclusion Our study elucidated a new mechanism of lncRNA FER1L4 that promoting OSCC progression by directly targeting miR-133a-5p/Prx1 axis and provided novel therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shanxi, 710061, People's Republic of China
| | - Lingfang Zeng
- Department of Pediatric Stomatology, Jinan Stomatological Hospital, Jinan, Shandong, 250000, People's Republic of China
| | - Shouyi Wang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, Shandong, 250000, People's Republic of China
| | - Ronghua Wang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shanxi, 710061, People's Republic of China
| | - Rui Yang
- Department of Dental, Xi 'an Tianrui Institute of Stomatology, Xian, Shanxi, 710061, People's Republic of China
| | - Zuolin Jin
- Department of Orthodontics, Oral Hospital of the Fourth Military Medical University, Xian, Shanxi, 710032, People's Republic of China
| | - Hong Tao
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shanxi, 710061, People's Republic of China
| |
Collapse
|
16
|
Shi T, Gong J, Fujita K, Nishiyama N, Iwama H, Liu S, Nakahara M, Yoneyama H, Morishita A, Nonura T, Kobara H, Okano K, Suzuki Y, Masaki T. Aspirin inhibits cholangiocarcinoma cell proliferation via cell cycle arrest in vitro and in vivo. Int J Oncol 2020; 58:199-210. [PMID: 33491760 PMCID: PMC7864011 DOI: 10.3892/ijo.2020.5165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma is the most common biliary duct malignancy and the second most common primary liver cancer, accounting for 10-20% of hepatic malignancies. With high mortality and poor prognosis, the 5-year survival rate of cholangiocarcinoma is only 10%. A previous study demonstrated a significant association between aspirin use and a decreased risk of cholangiocarcinoma. However, the effect of aspirin on cholangiocarcinoma remains unknown. Therefore, the aim of the present study was to investigate the effects of aspirin on cholangiocarcinoma in vitro and in vivo. Three cholangiocarcinoma cell lines were used to analyze the effect of aspirin on cell proliferation, cell cycle progression, apoptosis, and the regulation of microRNAs. MicroRNAs are known to regulate the development and progression of various types of cancer. An HuCCT-1 xenograft model was used for the in vivo study. It was determined that aspirin inhibited the proliferation of human cholangiocarcinoma cells (except TKKK cells). Aspirin induced cell cycle arrest in the G0/G1 phase and regulated cell-cycle related proteins in cholangiocarcinoma cells (HuCCT-1 cells) but did not induce apoptosis. The expression of miR-340-5p was significantly upregulated after treatment, and overexpression of miR-340-5p inhibited the proliferation of HuCCT-1 cells and decreased the levels of cyclin D1. TKKK cells had low miR-340-5p expression, which may explain why aspirin had no effect on their proliferation. In vivo, aspirin reduced the growth of xenografted tumors. In conclusion, the present study indicated that aspirin partially inhibited cholangiocarcinoma cell proliferation and tumor growth by inducing G0/G1 phase cell cycle arrest, potentially through the miR-340-5p/cyclin D1 axis.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Jian Gong
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Shi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Takako Nonura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Keiichi Okano
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Yasuyuki Suzuki
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| |
Collapse
|
17
|
Zhang X, Du R, Luo N, Xiang R, Shen W. Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res Ther 2020; 11:370. [PMID: 32854760 PMCID: PMC7450956 DOI: 10.1186/s13287-020-01884-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background The widely recognized anti-cancer potential of aspirin has created a broad interest to explore the clinical benefits of aspirin in cancer therapy. However, the current understanding of the molecular mechanisms involved in the anti-cancer potential of aspirin remains limited. Methods Cancer stemness assays which contained ALDH, side population, chemo-resistance, sphere formation, and tumorigenesis were performed to validate aspirin function in vitro and in vivo. Histone modification assay was performed to check the effect of aspirin on histone methylation as well as the activity of HDAC and KDM6A/B. Inhibitor in vivo assay was performed to evaluate therapeutic effects of various inhibitor combination manners. Results In regards to in vitro studies, aspirin diminishes cancer cell stemness properties which include reducing the ALDH+ subpopulation, side population, chemo-resistance, and sphere formation in three cancer types. In regards to in vivo studies, aspirin decreases tumor growth and metastasis and prolongs survival. In addition, our results showed that aspirin inhibits inflammation-related stemness gene expression (especially ICAM3) identified by a high-throughput siRNA platform. In regards to the underlying molecular mechanism of action, aspirin reduces histone demethylase (KDM6A/B) expression that mediates histone methylation and suppresses gene expression via a COX-independent manner. In regards to therapeutic strategies, aspirin combined HDM inhibitors, ICAM3 downstream signaling Src/PI3K inhibitors, or ICAM3 inhibitor Lifitigrast prevents cancer progression in vivo. Conclusions The aforementioned findings suggest a molecular model that explains how aspirin diminishes cancer cell stemness properties. These findings may provide novel targets for therapeutic strategies involving aspirin in the prevention of cancer progression.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China
| | - Renle Du
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Na Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China.,2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin, 300071, China
| | - Wenzhi Shen
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China.
| |
Collapse
|
18
|
Liu J, Mei J, Li S, Wu Z, Zhang Y. Establishment of a novel cell cycle-related prognostic signature predicting prognosis in patients with endometrial cancer. Cancer Cell Int 2020; 20:329. [PMID: 32699528 PMCID: PMC7372883 DOI: 10.1186/s12935-020-01428-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Endometrial cancer (EnCa) ranks fourth in menace within women’s malignant tumors. Large numbers of studies have proven that functional genes can change the process of tumors by regulating the cell cycle, thereby achieving the goal of targeted therapy. Methods The transcriptional data of EnCa samples obtained from the TCGA database was analyzed. A battery of bioinformatics strategies, which included GSEA, Cox and LASSO regression analysis, establishment of a prognostic signature and a nomogram for overall survival (OS) assessment. The GEPIA and CPTAC analysis were applied to validate the dysregulation of hub genes. For mutation analysis, the “maftools” package was used. Results GSEA identified that cell cycle was the most associated pathway to EnCa. Five cell cycle-related genes including HMGB3, EZH2, NOTCH2, UCK2 and ODF2 were identified as prognosis-related genes to build a prognostic signature. Based on this model, the EnCa patients could be divided into low- and high-risk groups, and patients with high-risk score exhibited poorer OS. Time-dependent ROC and Cox regression analyses revealed that the 5-gene signature could predict EnCa prognosis exactly and independently. GEPIA and CPTAC validation exhibited that these genes were notably dysregulated between EnCa and normal tissues. Lower mutation rates of PTEN, TTN, ARID1A, and etc. were found in samples with high-risk score compared with that with low-risk score. GSEA analysis suggested that the samples of the low- and high-risk groups were concentrated on various pathways, which accounted for the different oncogenic mechanisms in patients in two groups. Conclusion The current research construct a 5-gene signature to evaluate prognosis of EnCa patients, which may innovative clinical application of prognostic assessment.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 Jiangsu China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Zhipeng Wu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211166 China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48, Huaishu Road, Wuxi, 214000 Jiangsu China
| |
Collapse
|
19
|
Chang CY, Pan PH, Li JR, Ou YC, Wang JD, Liao SL, Chen WY, Wang WY, Chen CJ. Aspirin Induced Glioma Apoptosis through Noxa Upregulation. Int J Mol Sci 2020; 21:ijms21124219. [PMID: 32545774 PMCID: PMC7352791 DOI: 10.3390/ijms21124219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Clinically, high cyclooxygenase-2 expression in malignant glioma correlates well with poor prognosis and the use of aspirin is associated with a reduced risk of glioma. To extend the current understanding of the apoptotic potential of aspirin in most cell types, this study provides evidence showing that aspirin induced glioma cell apoptosis and inhibited tumor growth, in vitro and in vivo. We found that the human H4 glioma cell-killing effects of aspirin involved mitochondria-mediated apoptosis accompanied by endoplasmic reticulum (ER) stress, Noxa upregulation, Mcl-1 downregulation, Bax mitochondrial distribution and oligomerization, and caspase 3/caspase 8/caspase 9 activation. Genetic silencing of Noxa or Bax attenuated aspirin-induced viability loss and apoptosis, while silencing Mcl-1 augmented the effects of aspirin. Data from genetic and pharmacological studies revealed that the axis of ER stress comprised an apoptotic cascade leading to Noxa upregulation and apoptosis. The apoptotic programs and mediators triggered by aspirin in H4 cells were duplicated in human U87 glioma cell line as well as in tumor-bearing BALB/c nude mice. The involvement of ER stress in indomethacin-induced Mcl-1 downregulation was reported in our previous study on glioma cells. Therefore, the aforementioned phenomena indicate that ER stress may be a valuable target for intervention in glioma apoptosis.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Ping-Ho Pan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 4022)
| |
Collapse
|
20
|
Shi T, Fujita K, Gong J, Nakahara M, Iwama H, Liu S, Yoneyama H, Morishita A, Nomura T, Tani J, Takuma K, Tadokoro T, Himoto T, Oura K, Tsutsui K, Kobara H, Masaki T. Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis. Oncol Rep 2020; 44:457-468. [PMID: 32627038 PMCID: PMC7336451 DOI: 10.3892/or.2020.7630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
Aspirin, a nonsteroidal anti‑inflammatory drug (NSAID), is known to inhibit cell proliferation in a variety of cancers. However, the underlying mechanism of this inhibition remains unknown. We investigated the effects of aspirin on hepatocellular carcinoma (HCC) cells using in vitro and in vivo models. Six HCC cell lines and a liver cancer cell line including Huh‑7 were used in assays that evaluated cell proliferation, cell cycle, and apoptosis. Flow cytometry, enzyme‑linked immunosorbent assay (ELISA), western blot analysis, and phosphorylated receptor tyrosine kinase array were used to evaluate the effects of aspirin on the cells, and microRNAs (miRNAs) were analyzed by a miRNA array chip. The results were validated in vivo using a nude mouse model of Huh‑7‑xenografted tumors. Our results showed that aspirin exhibited an antiproliferative effect on all cell lines. Moreover, aspirin induced G0/G1 cell cycle arrest and modulated the levels of cell cycle‑related molecules such as cyclin E, cyclin D1, and cyclin‑dependent kinase 2 (Cdk2). In addition, aspirin upregulated the levels of caspase‑cleaved cytokeratin 18, increased the proportion of early apoptotic cells, decreased the levels of clusterin and heat shock protein 70 (HSP 70), upregulated the levels of miRNA‑137 and inhibited epidermal growth factor receptor (EGFR) activation. In addition, we observed that aspirin suppressed cell proliferation partially through the miRNA‑137/EGFR pathway. Our in vivo results showed that aspirin reduced the growth of xenograft tumors in nude mice. In conclusion, aspirin was able to inhibit the growth of HCC cells by cell cycle arrest, apoptosis, and alteration of miRNA levels in in vitro and in vivo models.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Jian Gong
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Shi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Kunihiko Tsutsui
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| |
Collapse
|
21
|
Feng H, Zhang X, Lai W, Wang J. Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle 2020; 19:1641-1653. [PMID: 32450050 DOI: 10.1080/15384101.2020.1762048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Altered expressions of long non-coding RNAs (lncRNAs) are potential cancer prognostic biomarkers that play a critical role in the development of tumorigenesis and metastasis of cancer. However, the relationship between the expression of lncRNAs in oral squamous cell carcinoma (OSCC) and the diagnosis, progression, and prognosis of OSCC has not been thoroughly elucidated. To identify the differentially expressed lncRNAs between OSCC tissue and normal tissue, RNA-Seq data were used. lncRNA SLC16A1-AS1 was significantly highly expressed in OSCC samples than that in normal samples. Systematic bioinformatics analysis revealed that SLC16A1-AS1 was associated with histological tumor grades and overall survival status, as well as copy number variation, somatic mutation, tumor mutation burden, tumor stemness, tumor microenvironment and infiltrating immune cells. According to three advanced bioinformatic algorithms prediction (WGCNA, GSEA and GSVA), SLC16A1-AS1 played an essential role in OSCC proliferation and its biological function was related to cell-cycle regulation. Loss-of-function experiments were performed to determine the biological functions of SLC16A1-AS in OSCC cells. Silencing SLC16A1-AS1 significantly reduced the cell proliferation rate and colony-forming ability in both CAL27 and SCC25 cell lines. Flow cytometry and western blot analysis revealed that SLC16A1-AS1 silencing induced G0/G1 cell cycle arrest and inhibited the expression of cyclin D1 in both CAL27 and SCC25 cells. In conclusion, our study comprehensively investigated the role of the lncRNA SLC16A1-AS1 in OSCC growth and proved that it may serve as a new diagnostic indicator and a new target for the treatment of OSCC.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
22
|
Xing L, Guo M, Zhang X, Zhang X, Liu F. A transcriptional metabolic gene-set based prognostic signature is associated with clinical and mutational features in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2020; 146:621-630. [DOI: 10.1007/s00432-020-03155-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
|
23
|
Xing L, Zhang X, Zhang X, Tong D. Expression scoring of a small-nucleolar-RNA signature identified by machine learning serves as a prognostic predictor for head and neck cancer. J Cell Physiol 2020; 235:8071-8084. [PMID: 31943178 PMCID: PMC7540035 DOI: 10.1002/jcp.29462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and poor prognosis due to a lack of predictive markers. Increasing evidence has demonstrated small nucleolar RNAs (snoRNAs) play an important role in tumorigenesis. The aim of this study was to identify a prognostic snoRNA signature of HNSCC. Survival-related snoRNAs were screened by Cox regression analysis (univariate, least absolute shrinkage and selection operator, and multivariate). The predictive value was validated in different subgroups. The biological functions were explored by coexpression analysis and gene set enrichment analysis (GSEA). One hundred and thirteen survival-related snoRNAs were identified, and a five-snoRNA signature predicted prognosis with high sensitivity and specificity. Furthermore, the signature was applicable to patients of different sexes, ages, stages, grades, and anatomic subdivisions. Coexpression analysis and GSEA revealed the five-snoRNA are involved in regulating malignant phenotype and DNA/RNA editing. This five-snoRNA signature is not only a promising predictor of prognosis and survival but also a potential biomarker for patient stratification management.
Collapse
Affiliation(s)
- Lu Xing
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Disease, Department of Orthodontics, West China Hospital Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqian Zhang
- Department of Stomatology, Haiyuan College of Kunming Medical University, Kunming, Yunnan, China
| | - Dongdong Tong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
24
|
Pozzoli G, Marei HE, Althani A, Boninsegna A, Casalbore P, Marlier LNJL, Lanzilli G, Zonfrillo M, Petrucci G, Rocca B, Navarra P, Sgambato A, Cenciarelli C. Aspirin inhibits cancer stem cells properties and growth of glioblastoma multiforme through Rb1 pathway modulation. J Cell Physiol 2019; 234:15459-15471. [PMID: 30701538 DOI: 10.1002/jcp.28194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2019] [Indexed: 01/24/2023]
Abstract
Several clinical studies indicated that the daily use of aspirin or acetylsalicylic acid reduces the cancer risk via cyclooxygenases (Cox-1 and Cox-2) inhibition. In addition, aspirin-induced Cox-dependent and -independent antitumor effects have also been described. Here we report, for the first time, that aspirin treatment of human glioblastoma cancer (GBM) stem cells, a small population responsible for tumor progression and recurrence, is associated with reduced cell proliferation and motility. Aspirin did not interfere with cell viability but induced cell-cycle arrest. Exogenous prostaglandin E2 significantly increased cell proliferation but did not abrogate the aspirin-mediated growth inhibition, suggesting a Cox-independent mechanism. These effects appear to be mediated by the increase of p21 waf1 and p27 Kip1 , associated with a reduction of Cyclin D1 and Rb1 protein phosphorylation, and involve the downregulation of key molecules responsible for tumor development, that is, Notch1, Sox2, Stat3, and Survivin. Our results support a possible role of aspirin as adjunctive therapy in the clinical management of GBM patients.
Collapse
Affiliation(s)
- Giacomo Pozzoli
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alma Boninsegna
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patrizia Casalbore
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Lionel N J L Marlier
- Department of Biomedical Sciences, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedical Sciences, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Manuela Zonfrillo
- Department of Biomedical Sciences, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giovanna Petrucci
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bianca Rocca
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| |
Collapse
|
25
|
A Four-Pseudogene Classifier Identified by Machine Learning Serves as a Novel Prognostic Marker for Survival of Osteosarcoma. Genes (Basel) 2019; 10:genes10060414. [PMID: 31146489 PMCID: PMC6628621 DOI: 10.3390/genes10060414] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is a common malignancy with high mortality and poor prognosis due to lack of predictive markers. Increasing evidence has demonstrated that pseudogenes, a type of non-coding gene, play an important role in tumorigenesis. The aim of this study was to identify a prognostic pseudogene signature of osteosarcoma by machine learning. A sample of 94 osteosarcoma patients’ RNA-Seq data with clinical follow-up information was involved in the study. The survival-related pseudogenes were screened and related signature model was constructed by cox-regression analysis (univariate, lasso, and multivariate). The predictive value of the signature was further validated in different subgroups. The putative biological functions were determined by co-expression analysis. In total, 125 survival-related pseudogenes were identified and a four-pseudogene (RPL11-551L14.1, HR: 0.65 (95% CI: 0.44–0.95); RPL7AP28, HR: 0.32 (95% CI: 0.14–0.76); RP4-706A16.3, HR: 1.89 (95% CI: 1.35–2.65); RP11-326A19.5, HR: 0.52(95% CI: 0.37–0.74)) signature effectively distinguished the high- and low-risk patients, and predicted prognosis with high sensitivity and specificity (AUC: 0.878). Furthermore, the signature was applicable to patients of different genders, ages, and metastatic status. Co-expression analysis revealed the four pseudogenes are involved in regulating malignant phenotype, immune, and DNA/RNA editing. This four-pseudogene signature is not only a promising predictor of prognosis and survival, but also a potential marker for monitoring therapeutic schedule. Therefore, our findings may have potential clinical significance.
Collapse
|
26
|
Deng B, Liu R, Tian X, Han Z, Chen J. Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling. In Vitro Cell Dev Biol Anim 2019; 55:260-271. [DOI: 10.1007/s11626-019-00334-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|