1
|
Kővári B, Carneiro F, Lauwers GY. Epithelial tumours of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:227-286. [DOI: 10.1002/9781119423195.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Shin J, Park YS. Unusual or Uncommon Histology of Gastric Cancer. J Gastric Cancer 2024; 24:69-88. [PMID: 38225767 PMCID: PMC10774758 DOI: 10.5230/jgc.2024.24.e7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
This review comprehensively examines the diverse spectrum of gastric cancers, focusing on unusual or uncommon histology that presents significant diagnostic and therapeutic challenges. While the predominant form, tubular adenocarcinoma, is well-characterized, this review focuses on lesser-known variants, including papillary adenocarcinoma, micropapillary carcinoma, adenosquamous carcinoma, squamous cell carcinoma (SCC), hepatoid adenocarcinoma, gastric choriocarcinoma, gastric carcinoma with lymphoid stroma, carcinosarcoma, gastroblastoma, parietal cell carcinoma, oncocytic adenocarcinoma, Paneth cell carcinoma, gastric adenocarcinoma of the fundic gland type, undifferentiated carcinoma, and extremely well-differentiated adenocarcinoma. Although these diseases have different nomenclatures characterized by distinct histopathological features, these phenotypes often overlap, making it difficult to draw clear boundaries. Furthermore, the number of cases was limited, and the unique histopathological nature and potential pathogenic mechanisms were not well defined. This review highlights the importance of understanding these rare variants for accurate diagnosis, effective treatment planning, and improving patient outcomes. This review emphasizes the need for ongoing research and case studies to enhance our knowledge of these uncommon forms of gastric cancer, which will ultimately contribute to more effective treatments and better prognostic assessments. This review aimed to broaden the pathological narrative by acknowledging and addressing the intricacies of all cancer types, regardless of their rarity, to advance patient care and improve prognosis.
Collapse
Affiliation(s)
- Jinho Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Sun B, Chen H, Lao J, Tan C, Zhang Y, Shao Z, Xu D. The epigenetic modifier lysine methyltransferase 2C is frequently mutated in gastric remnant carcinoma. J Pathol Clin Res 2023; 9:409-422. [PMID: 37395342 PMCID: PMC10397379 DOI: 10.1002/cjp2.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
Gastric remnant carcinoma (GRC), which occurs in the stomach after partial gastrectomy, is a rare and aggressive form of gastric adenocarcinoma (GAC). Comprehensive profiling of genomic mutations in GRC could provide the basis for elucidating the origin and characteristics of this cancer. Herein, whole-exome sequencing (WES) was performed on 36 matched tumor-normal samples from patients with GRC and identified recurrent mutations in epigenetic modifiers, notably KMT2C, ARID1A, NSD1, and KMT2D, in 61.11% of cases. Mutational signature analysis revealed a low frequency of microsatellite instability (MSI) in GRC, which was further identified by MSIsensor, MSI-polymerase chain reaction, and immunohistochemistry analysis. Comparative analysis demonstrated that GRC had a distinct mutation spectrum compared to that of GAC in The Cancer Genome Atlas samples, with a significantly higher mutation rate of KMT2C. Targeted deep sequencing (Target-seq) of an additional 25 paired tumor-normal samples verified the high mutation frequency (48%) of KMT2C in GRC. KMT2C mutations correlated with poor overall survival in both WES and Target-seq cohorts and were independent prognosticators in GRC. In addition, KMT2C mutations were positively correlated with favorable outcomes in immune checkpoint inhibitor-treated pan-cancer patients and associated with higher intratumoral CD3+ , CD8+ tumor-infiltrating lymphocyte counts, and PD-L1 expression in GRC samples (p = 0.018, 0.092, 0.047, 0.010, and 0.034, respectively). Our dataset provides a platform for information and knowledge mining of the genomic characteristics of GRC and helps to frame new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiPR China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| | - Haojie Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiPR China
| | - Jiawen Lao
- Department of Gastric SurgerySun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPR China
| | - Yue Zhang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPR China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiPR China
| | - Dazhi Xu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiPR China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| |
Collapse
|
6
|
Hirabayashi M, Georges D, Clifford GM, de Martel C. Estimating the Global Burden of Epstein-Barr Virus-Associated Gastric Cancer: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2023; 21:922-930.e21. [PMID: 35963539 DOI: 10.1016/j.cgh.2022.07.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Evidence suggests that a fraction of new gastric cancer cases may be etiologically associated with Epstein-Barr virus (EBV), a known carcinogenic agent. We aimed to systematically explore the proportion of EBV-positive gastric cancer. METHODS We did a systematic review (PROSPERO CRD42020164473) from January 1990 to August 2021. For each country and geographical region with available data, pooled prevalence and corresponding 95% confidence intervals (CIs) of EBV in gastric tumors were calculated for 3 subtypes of gastric adenocarcinoma (conventional adenocarcinoma, lymphoepithelioma-like gastric carcinoma, and remnant/stump carcinoma). For conventional adenocarcinoma, prevalence ratios (PRs) were presented for sex, Lauren's classification, gastric cancer stage, and anatomical location of the stomach. RESULTS In 220 eligible studies including over 68,000 cases of conventional gastric adenocarcinoma, EBV prevalence in tumor cells was 7.5% (95% CI, 6.9%-8.1%) and was higher in men compared with women (PR, 2.1; 95% CI, 1.9-2.4), in diffuse type compared with intestinal type (PR, 1.3; 95% CI, 1.1-1.5), and in the proximal region compared with the distal region (PR, 2.5; 95% CI, 2.0-3.1). There was no difference in EBV prevalence by gastric cancer stage. EBV prevalence was 75.9% (95% CI, 62.8%-85.5%) among lymphoepithelioma-like gastric carcinoma and 26.3% (95% CI, 22.2%-32.0%) among remnant or stump carcinoma. CONCLUSIONS Assuming a causal association between EBV and gastric cancer, our findings, when applied to the GLOBOCAN 2020 gastric cancer incidence, suggest that primary prevention such as the development of an effective EBV vaccine might prevent 81,000 EBV-associated gastric cancer cases worldwide annually.
Collapse
Affiliation(s)
- Mayo Hirabayashi
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Damien Georges
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Gary M Clifford
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
7
|
Ambrosio MR, Spagnoli L, Perotti B, Petrelli F, Caini S, Saieva C, Usai S, Bianchini M, Cavazzana A, Arganini M, Amorosi A. Paving the Path for Immune Enhancing Nutrition in Colon Cancer: Modulation of Tumor Microenvironment and Optimization of Outcomes and Costs. Cancers (Basel) 2023; 15:cancers15020437. [PMID: 36672387 PMCID: PMC9857076 DOI: 10.3390/cancers15020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Published evidence suggests that immunonutrition has the potential to decrease postoperative complications and reduce length of stay in patients undergoing surgery for colorectal cancer. However, only a few studies have analyzed the effects of immunonutrition on tumor microenvironment and evaluated its prognostic impact. MATERIAL AND METHODS This is a single center retrospective study enrolling 50 patients undergoing elective surgery for colorectal cancer managed with immunonutrition and 50 patients managed with standard nutrition for comparison. Tumor microenvironment was analyzed before (on the biopsy at the time of diagnosis) and after (on the matched surgical specimen) administration of immunonutrition. Immune function related indicators, including cytotoxic T-lymphocytes, helper T-cells, antigen presenting cells, natural killer cells, T-exhausted lymphocytes, T-regulatory cells, M1 and M2 tumor associated macrophages and PD-L1 expression were assessed by immunohistochemistry. For both groups, clinicopathological data were collected and a 5-year follow-up was available. RESULTS We found that immunonutrition significantly activated the T-cell response against cancer, alter tumor microenvironment phenotype towards M2 polarization and inhibits the PD1/PD-L1 axis. A lower rate of postoperative complications and a shorter length of stay (p = 0.04) were observed in the immune nutrition group. Compared to standard nutrition group, patients managed wit immune nutrition showed a higher 5-year overall survival (p = 0.001). Finally, immune nutrition allowed to reduce the hospital care costs. CONCLUSIONS Immunonutrition modulates tumor microenvironment by improving immune function and could prolong survival in patients undergoing elective surgery for colorectal cancer. Further studies are needed to optimize IN protocols and confirm their prognostic impact.
Collapse
Affiliation(s)
| | - Luigi Spagnoli
- Pathology Unit, Azienda USL Toscana Nord Ovest, 56121 Pisa, Italy
| | - Bruno Perotti
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, 56121 Pisa, Italy
| | | | - Saverio Caini
- Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research and Clinical Network (ISPRO), 50134 Florence, Italy
| | - Calogero Saieva
- Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research and Clinical Network (ISPRO), 50134 Florence, Italy
| | - Sofia Usai
- Department of Surgical Science, Sapienza University of Rome, 00100 Rome, Italy
| | - Matteo Bianchini
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, 56121 Pisa, Italy
| | - Andrea Cavazzana
- Pathology Unit, Azienda USL Toscana Nord Ovest, 56121 Pisa, Italy
| | - Marco Arganini
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, 56121 Pisa, Italy
| | - Andrea Amorosi
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
9
|
Fei L, Hou G, Lu Z, Yang X, Ji Z. High expression of pituitary tumor gene family is a predictor for poor prognosis of gastric cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Lihong Fei
- Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zhimin Lu
- Department of outpatient, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Xinmei Yang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zizhong Ji
- Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| |
Collapse
|
10
|
EBV and MSI Status in Gastric Cancer: Does It Matter? Cancers (Basel) 2022; 15:cancers15010074. [PMID: 36612071 PMCID: PMC9817503 DOI: 10.3390/cancers15010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the impactof microsatellite instability (MSI) and Epstein-Barr virus (EBV) status in gastric cancer (GC), regarding response to perioperative chemotherapy (POPChT), overall survival (OS), and progression-free survival (PFS). We included 137 cases of operated GC, 51 of which were submitted to POPChT. MSI status was determined by multiplex PCR and EBV status by EBV-encoded RNA in situ hybridization. Thirty-seven (27%) cases presented as MSI-high, and seven (5.1%) were EBV+. Concerning tumor regression after POPChT, no differences were observed between the molecular subtypes, but females were more likely to respond (p = 0.062). No significant differences were found in OS or PFS between different subtypes. In multivariate analysis, age (HR 1.02, IC 95% 1.002-1.056, p = 0.033) and positive lymph nodes (HR 1.82, IC 95% 1.034-3.211, p = 0.038) were the only prognostic factors for OS. However, females with MSI-high tumors treated with POPChT demonstrated a significantly increased OS compared to females with MSS tumors (p = 0.031). In conclusion, we found a high proportion of MSI-high cases. MSI and EBV status did not influence OS or PFS either in patients submitted to POPChT or surgery alone. However, superior survival of females with MSI-high tumors suggests that sex disparities and molecular classification may influence treatment options in GC.
Collapse
|
11
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Abstract
Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea.
| |
Collapse
|
13
|
Yin C, Cao Y, Sun P, Zhang H, Li Z, Xu Y, Sun H. Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration. Front Genet 2022; 13:884028. [PMID: 35646077 PMCID: PMC9137453 DOI: 10.3389/fgene.2022.884028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate molecular subtypes prediction of cancer patients is significant for personalized cancer diagnosis and treatments. Large amount of multi-omics data and the advancement of data-driven methods are expected to facilitate molecular subtyping of cancer. Most existing machine learning–based methods usually classify samples according to single omics data, fail to integrate multi-omics data to learn comprehensive representations of the samples, and ignore that information transfer and aggregation among samples can better represent them and ultimately help in classification. We propose a novel framework named multi-omics graph convolutional network (M-GCN) for molecular subtyping based on robust graph convolutional networks integrating multi-omics data. We first apply the Hilbert–Schmidt independence criterion least absolute shrinkage and selection operator (HSIC Lasso) to select the molecular subtype-related transcriptomic features and then construct a sample–sample similarity graph with low noise by using these features. Next, we take the selected gene expression, single nucleotide variants (SNV), and copy number variation (CNV) data as input and learn the multi-view representations of samples. On this basis, a robust variant of graph convolutional network (GCN) model is finally developed to obtain samples’ new representations by aggregating their subgraphs. Experimental results of breast and stomach cancer demonstrate that the classification performance of M-GCN is superior to other existing methods. Moreover, the identified subtype-specific biomarkers are highly consistent with current clinical understanding and promising to assist accurate diagnosis and targeted drug development.
Collapse
Affiliation(s)
- Chaoyi Yin
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yangkun Cao
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Peishuo Sun
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Hengyuan Zhang
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhi Li, ; Huiyan Sun,
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Huiyan Sun
- School of Artificial Intelligence, Jilin University, Changchun, China
- *Correspondence: Zhi Li, ; Huiyan Sun,
| |
Collapse
|
14
|
Lima Á, Sousa H, Medeiros R, Nobre A, Machado M. PD-L1 expression in EBV associated gastric cancer: a systematic review and meta-analysis. Discov Oncol 2022; 13:19. [PMID: 35318527 PMCID: PMC8941030 DOI: 10.1007/s12672-022-00479-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to the summarize the evidence on programmed cell death protein ligand 1 (PD-L1) in Epstein-Barr virus associated gastric cancer (EBVaGC) and to estimate the expression rate of PD-L1 among this subtype of Gastric Cancer (GC). MATERIALS AND METHODS For this study, PubMed®, EMBASE® and Web of Science® databases were searched for articles published until 1st November 2021. A total of 43 eligible publications with a total of 11,327 patients were included analysis based on inclusion and exclusion criteria. A total of 41 publications present data for proportion estimation and 33 for comparison of PD-L1 between EBV positive and negative GC. DerSimonian-Laird random-effects model was used for meta-analysis. RESULTS The analysis showed that in EBVaGC the pooled positivity rate for PD-L1 was 54.6% (p < 0.001), with a high heterogeneity between the included studies, which was associated with variation on positivity criteria for PD-L1 expression. Overall, the study reveals an increased association between PD-L1 and EBVaGC (OR = 6.36, 95% CI 3.91-10.3, p < 0.001). Furthermore, the study revealed that GC with lymphoid stroma (GCLS) is highly associated with EBV (OR = 17.4, 95% CI 6.83-44.1, p < 0.001), with a pooled EBV positivity rate of 52.9% (p < 0.001). CONCLUSIONS Patients with EBVaGC tend to show higher PD-L1 expression, which enhances EBV positivity as a promising marker for patient selection for immunotherapy targeted agents. A uniform criteria for PD-L1 positivity in tumor cells is needed, as well as further prospective studies to validate our findings and their prognostic significance.
Collapse
Affiliation(s)
- Áurea Lima
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal.
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Serviço de Virologia, Instituto Português de Oncologia do Porto FG EPE (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Early Phase Clinical Trials Unit - Clinical Research Unit &/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Serviço de Virologia, Instituto Português de Oncologia do Porto FG EPE (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Amanda Nobre
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal
| | - Manuela Machado
- Serviço de Oncologia Médica do Centro Hospitalar de Entre o Douro e Vouga, Unidade de Santa Maria da Feira, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal
| |
Collapse
|
15
|
Uner M, Isık A, Oztop S, Karabulut E, Demirkol-Canlı S, Akyol A. Gastric Carcinoma with Lymphoid Stroma: A Combination of Mismatch Repair Deficient Medullary Type and Epstein-Barr Virus-associated Gastric Carcinomas. Int J Surg Pathol 2022; 30:623-633. [PMID: 35188817 DOI: 10.1177/10668969221080062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric carcinomas consist of a heterogeneous group of neoplasms with broad cytological and architectural variations. Gastric carcinomas with lymphoid stroma show poor correlation between their histomorphology and biological behavior. This contrast causes a need for more detailed analysis and molecular exploration of lymphoid stroma-rich gastric carcinomas with medullary like features and lack of glandular differentiation. In this study, we performed a detailed retrospective analysis of 53 gastric carcinomas among 654 gastric tumors from surgical resection specimens, all of which had no prominent glandular differentiation. Morphological and clinical data were compared with immunohistochemistry (MLH1, PMS2, MSH2 and MSH6 for mismatch repair mechanism deficiency; CD2, CD8 and CD163 for immune infiltration; and PD-1, PD-L1, LMP-1, ERBB2 and ki-67) besides EBER in situ hybridization and molecular studies (PCR based microsatellite instability and BRAF V600E mutation analysis). Morphological, immunohistochemical and molecular findings lead us to classify lymphoid stroma-rich advanced gastric carcinomas (n = 40/53) into two distinct entities originating from two different pathogenetic pathway: one is gastric carcinomas revealing predominantly medullary type morphology with defective DNA mismatch repair mechanism (n = 30/53) and the other is EBV associated carcinomas (n = 10/53). In addition, we suggest that biomarker based classification algorithms besides morphological evaluation are necessary to identify these two entities. Distinguishing these entities is crucial to apply different treatment strategies, including alternative treatments such as immunotherapy.
Collapse
Affiliation(s)
- Meral Uner
- 37515Department of Pathology, Hacettepe University Faculty of Medicine, Sıhhiye, Ankara, Turkey
| | - Aynur Isık
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey
| | - Sıdıka Oztop
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey.,175695Department of Immunology, Baskent University, Adana Dr. Turgut Noyan Medical and Research Center, Seyhan, Adana, Turkey
| | - Erdem Karabulut
- Department of Medical Biostatistics, Hacettepe University Faculty of Medicine, 37515Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Secil Demirkol-Canlı
- 64005Molecular Pathology Application and Research Center, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Aytekin Akyol
- 37515Department of Pathology, Hacettepe University Faculty of Medicine, Sıhhiye, Ankara, Turkey.,Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey.,64005Molecular Pathology Application and Research Center, Hacettepe University, Sıhhiye, Ankara, Turkey.,64005Tumor Pathology Division, Hacettepe University Cancer Institute, Sıhhiye, Ankara, Turkey
| |
Collapse
|
16
|
Takei S, Kawazoe A, Shitara K. The New Era of Immunotherapy in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14041054. [PMID: 35205802 PMCID: PMC8870470 DOI: 10.3390/cancers14041054] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Advanced gastric cancer remains a malignancy with a poor prognosis, with a median survival of about 12–15 months. In recent years, immune checkpoint inhibitors have emerged as a new standard of care for several malignancies, including advanced gastric cancer, and have demonstrated good clinical benefit in some populations. In this review paper, we describe the current status of immunotherapy in gastric cancer, with a focus on molecular and immunological profiles, biomarkers, major clinical trials, and novel immunotherapies. Abstract Immune checkpoint inhibitors (ICIs) such as anti-programmed cell death-1 (PD-1) or programmed cell death ligand-1 (PD-L1) monoclonal antibodies have prolonged survival in various types of malignancies, including advanced gastric cancer (AGC). Nivolumab, a monoclonal anti-PD-1 antibody, showed an improvement in overall survival at a later-line therapy in unselected AGC patients in the ATTRACTION-2 study or in combination with chemotherapy as first-line therapy in the global CheckMate-649 study. Another monoclonal anti-PD-1 antibody, pembrolizumab, showed single agent activity in tumors with high microsatellite instability or high tumor mutational burden. Furthermore, a recent KEYNOTE-811 study demonstrated significant improvement in response rate with pembrolizumab combined with trastuzumab and chemotherapy for HER2-positive AGC. Based on these results, ICIs are now incorporated into standard treatment for AGC patients. As a result of pivotal clinical trials, three anti-PD-1 antibodies were approved for AGC: nivolumab combined with chemotherapy as first-line treatment or nivolumab monotherapy as third- or later-line treatment in Asian countries; pembrolizumab for previously treated microsatellite instability-high (MSI-H) or tumor mutational burden-high AGC, or pembrolizumab combined with trastuzumab and chemotherapy for HER2-positive AGC in the United States; and dostarlimab for previously treated MSI-H AGC in the United States. However, a substantial number of patients have showed resistance to ICIs, highlighting the importance of the better selection of patients or further combined immunotherapy. This review focused on molecular and immunological profiles, pivotal clinical trials of ICIs with related biomarkers, and investigational immunotherapy for AGC.
Collapse
|
17
|
Lu J, Ding Y, Chen Y, Jiang J, Chen Y, Huang Y, Wu M, Li C, Kong M, Zhao W, Wang H, Zhang J, Li Z, Lu Y, Yu X, Jin K, Zhou D, Zhou T, Teng F, Zhang H, Zhou Z, Wang H, Teng L. Whole-exome sequencing of alpha-fetoprotein producing gastric carcinoma reveals genomic profile and therapeutic targets. Nat Commun 2021; 12:3946. [PMID: 34168152 PMCID: PMC8225795 DOI: 10.1038/s41467-021-24170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Alpha-fetoprotein producing gastric carcinoma (AFPGC) is a rare and aggressive subtype of gastric cancer. However, little is known about the genomic features of this disease. We perform whole-exome sequencing analysis of AFPGC, and identify 34 significantly mutated genes. Somatic copy number alterations analysis reveals several significant focal amplifications (e.g. 19q12, 17q12) and focal deletions (e.g. 1p36.11, 9p21.3), and some of these negatively affect the patient prognosis. Comparative analyses reveal that AFPGC has distinct genomic features from gastric cancer of The Cancer Genome Atlas as well as four molecular subtypes. Several frequently altered genes with potential as therapeutic targets are identified in AFPGC. Further analysis reveals that AFPGC with amplification of CCNE1 at 19q12 and/or ERBB2 at 17q12 show poorer survival and more aggressive. Subsequently, based on our established patient-derived xenograft models for AFPGC, translational research is performed and the therapeutic value of targeting CCNE1 and ERBB2 is validated. In this work, we provide an understanding of genomic characteristics of AFPGC and propose a platform to explore and validate the genome-guided personalized treatment for this disease.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjie Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ketao Jin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Institute of Gastroenterology, Cancer center, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Hangzhou Oncocare Co. Ltd, Hangzhou, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Expression of Indoleamine 2, 3-dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Appl Immunohistochem Mol Morphol 2021; 28:360-368. [PMID: 31033497 DOI: 10.1097/pai.0000000000000761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Developments in genomic pathology have led to novel molecular classification schemes in gastric cancers. Two of these new subtypes, Epstein-Barr virus (EBV)-associated and microsatellite instability-high (MSI-H), are associated with a dominant T-cell-mediated immune response. The roles of the immune modulators, indoleamine 2, 3-dioxygenase 1 (IDO1) and tryptophanyl-tRNA synthetase (WARS), have not been investigated in the context of this classification. METHODS AND RESULTS Using in situ hybridization and immunohistochemistry we subclassified 421 primary gastric adenocarcinomas into 5 subtypes, EBV-associated, epithelial to mesenchymal transition, MSI-H, p53-aberrant, and p53-wildtype tumors. Tumor-infiltrative lymphocytes were counted and protein expression of IDO1 and WARS was graded on tissue microarrays of these 421 tumors. High tumor-infiltrative lymphocytes as well as high expression of both IDO1 and WARS was found in EBV and MSI-H tumors. The prognostic effects of IDO1 and WARS expression were tumor subtype dependent. Although high expression levels of IDO1 and WARS were associated with poor prognosis in p53-aberrant, p53-wildtype, and all cancers combined, WARS expression was associated with better prognosis in MSI tumors. CONCLUSIONS The immunomodulators, IDO1 and WARs, are upregulated and have prognostic significance in EBV-associated and MSI-H tumors. Novel therapies targeting these proteins should be considered in the treatment of these patients.
Collapse
|
19
|
Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1 / PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother 2021; 17:1555-1567. [PMID: 33428533 DOI: 10.1080/21645515.2020.1840254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a worldwide problem that threatens human health. Radiotherapy plays an important role in a variety of cancer treatment methods. The administration of radiotherapy can alter the differentiation pathways and functions of T cells, which in turn improves the immune response of T cells. Radiotherapy can also induce up-regulation of PD-L1 expression, which means that it has great potential for enhancing the therapeutic effect of anti-PD-1/PD-L1 inhibitors and reducing the risk of drug resistance toward them. At present, the combination of radiotherapy and anti-PD-1/PD-L1 inhibitors has shown significant therapeutic effects in clinical tumor research. This review focuses on the mechanism of radiotherapy on T cells reported in recent years, as well as related research progress in the application of PD-1/PD-L1 blockers. It will provide a theoretical basis for the rational clinical application of radiotherapy combined with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
20
|
Gullo I, Grillo F, Mastracci L, Vanoli A, Carneiro F, Saragoni L, Limarzi F, Ferro J, Parente P, Fassan M. Precancerous lesions of the stomach, gastric cancer and hereditary gastric cancer syndromes. Pathologica 2020; 112:166-185. [PMID: 33179620 PMCID: PMC7931572 DOI: 10.32074/1591-951x-166] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer accounts for about 6% of cancers worldwide, being the fifth most frequently diagnosed malignancy and the third leading cause of cancer related death. Gastric carcinogenesis is a multistep and multifactorial process and is the result of the complex interplay between genetic susceptibility and environmental factors. The identification of predisposing conditions and of precancerous lesions is the basis for screening programs and early stage treatment. Furthermore, although most gastric cancers are sporadic, familial clustering is observed in up to 10% of patients. Among them, hereditary cases, related to known cancer susceptibility syndromes and/or genetic causes are thought to account for 1-3% of all gastric cancers. The pathology report of gastric resections specimens therefore requires a standardized approach as well as in depth knowledge of prognostic and treatment associated factors.
Collapse
Affiliation(s)
- Irene Gullo
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ) & Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and Instituto de Investigação e Inovação em Saúde (i3S) & Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Portugal
| | - Federica Grillo
- Correspondence Federica Grillo Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova and Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy, largo Rosanna Benzi 10, 16132 Genova, Italy Tel. +39 010 5555957 Fax: +39 010 5556392 E-mail:
| | | | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Fatima Carneiro
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ) & Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and Instituto de Investigação e Inovação em Saúde (i3S) & Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Portugal
| | - Luca Saragoni
- UO Anatomia Patologica, Ospedale G.B. Morgagni-L. Pierantoni, Forlì, Italy
| | - Francesco Limarzi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST/IRCCS), Meldola (FC), Italy
| | - Jacopo Ferro
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| |
Collapse
|
21
|
D'Ignazio A, Kabata P, Ambrosio MR, Polom K, Marano L, Spagnoli L, Ongaro A, Pieretti L, Marrelli D, Biviano I, Roviello F. Preoperative oral immunonutrition in gastrointestinal surgical patients: How the tumour microenvironment can be modified. Clin Nutr ESPEN 2020; 38:153-159. [PMID: 32690150 DOI: 10.1016/j.clnesp.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS This study is focused on the impact of enteral immunonutrition on the cell-mediated immune response in the microenvironment of gastric and colorectal cancers. METHODS This is a prospective pilot study approved by the local Ethics Committee. The immunophenotypic structure of the immune cells before (on the biopsy) and after (on the surgical sample) the administration of the immunonutrition in 16 patients is compared with 8 patients receiving regular diet. The samples of non-tumour tissue from sleeve-gastrectomy are used as non-neoplastic control. Antibodies were tested: CD4, CD8, PD-1, FOX-P3, CD68, CD163, CD80, CD21, CD56, PD-L1. We applied already well-known scoring systems for the evaluation of the immunohistochemistry and compared our data in the different groups by statistical analysis. RESULTS In treated patients, we detected a modulation of the immune response with higher number of cytotoxic and helper T-lymphocytes in the tumour microenvironment of the surgical specimens compared to the pre-operative biopsy, and a lower number of lymphocytes presenting an exhausted (i.e. double positive CD8 and PD-1 lymphocytes) and regulatory (i.e. double positive CD4 and FOX-P3 lymphocytes) phenotype. Moreover we observed the M1 polarization with a lower number of CD163 positive macrophages and the inhibition of the PD-1/PD-L1 pathway in treated patients. CONCLUSIONS The immunonutrition impacts on the tumoral microenvironment of gastric and colorectal cancer activating the inflammatory pathway, in terms of humoral and cellular response.
Collapse
|
22
|
Schoop H, Bregenzer A, Halske C, Behrens HM, Krüger S, Egberts JH, Röcken C. Therapy Resistance in Neoadjuvantly Treated Gastric Cancer and Cancer of the Gastroesophageal Junction is Associated with an Increased Expression of Immune Checkpoint Inhibitors-Comparison Against a Therapy Naïve Cohort. Transl Oncol 2019; 13:165-176. [PMID: 31865179 PMCID: PMC6931207 DOI: 10.1016/j.tranon.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023] Open
Abstract
With recent studies uncovering the complex landscape of immune checkpoint regulators in gastric cancer (GC), we aimed to characterize the expression of the checkpoint proteins V-domain Ig suppressor of T-cell activation (VISTA), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death protein-1 (PD-1) in a cohort of GCs following platinum-based neoadjuvant chemotherapy. A total of 141 GC samples, 93 lymph node metastases, and 15 distant metastases were assessed using immunohistochemistry. Staining results were correlated with clinicopathological patient characteristics, genetic alterations, and survival. The expression of VISTA was detected in tumor cells of 38 (30.9%) GCs and immune cells of 139 (98.6%) GCs. The expression of PD-L1 was detected in tumor cells of 27 (22.7%) GCs and immune cells of 134 (96.4%) GCs. The expression of PD-1 was only observed in lymphocyte aggregates/intratumoral lymphoid follicles of 123 (87.2%) GCs. VISTA and PD-L1 correlated in their expression and were associated with poor tumor regression. Compared with an ancient cohort of therapy naïve GCs, we observed a major increase in overall immune cell density accompanied by an over proportional increase in PD-1 and VISTA-positive immune cells. The frequency of VISTA expression in tumor cells was also found to be substantially increased. To the contrary, expression of PD-L1 was decreased in immune cells and tumor cells of neoadjuvantly treated GCs. As a result, a subset of GCs using a single (only VISTA or PD-L1) or combined (VISTA and PD-L1) immune evasion mechanisms might benefit from an anti-PD-L1/anti-VISTA–targeted therapy.
Collapse
Affiliation(s)
- Hauke Schoop
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Anna Bregenzer
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christine Halske
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
23
|
Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 2019; 476:353-365. [PMID: 31836926 DOI: 10.1007/s00428-019-02724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Thirty years have passed since a possible association of Epstein-Barr virus (EBV) with gastric carcinoma was reported. We now know EBV-associated gastric carcinoma to be a specific subtype of gastric carcinoma. Global epigenetic methylation and counteraction of the antitumour microenvironment are two major characteristics of this subtype of gastric carcinoma. Recent development of therapeutic modalities for gastric carcinoma, such as endoscopic mucosal dissection and immune checkpoint inhibitor therapy, has made the presence of EBV infection a biomarker for the treatment of gastric carcinoma. This review presents a portrait of EBV-associated gastric carcinoma from initiation to maturity that we define as the 'gastritis-infection-cancer sequence', followed by its molecular abnormalities and interactions with immune checkpoint molecules and the microenvironment. EBV non-coding RNAs (microRNA and circular RNA) and exosomes derived from EBV-infected cells that were previously behind the scenes are now recognized for their roles in EBV-associated gastric carcinoma. The virus utilizes cellular machinery skilfully to control infected cells and their microenvironment. We should thus strive to understand virus-host interactions more fully in the following years to overcome this virus-driven subtype of gastric carcinoma.
Collapse
|
24
|
Gastric Cancer in the Era of Immune Checkpoint Blockade. JOURNAL OF ONCOLOGY 2019; 2019:1079710. [PMID: 31662748 PMCID: PMC6778883 DOI: 10.1155/2019/1079710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the most important malignancies worldwide because of its high incidence and mortality. The very low survival rates are mainly related to late diagnosis and limited treatment options. GC is the final clinical outcome of a stepwise process that starts with a chronic and sustained inflammatory reaction mounted in response to Helicobacter pylori infection. The bacterium modulates innate and adaptive immunity presumably as part of the strategies to survive, which favors the creation of an immunosuppressive microenvironment that ultimately facilitates GC progression. T-cell exhaustion, which is characterized by elevated expression of immune checkpoint (IC) proteins, is one of the most salient manifestations of immunosuppressive microenvironments. It has been consistently demonstrated that the tumor-immune microenvironment(TIME)‐exhausted phenotype can be reverted by blocking ICs with monoclonal antibodies. Although these therapies are associated with long-lasting response rates, only a subset of patients derive clinical benefit, which varies according to tumor site. The search for biomarkers to predict the response to IC inhibition is a matter of intense investigation as this may contribute to maximize disease control, reduce side effects, and minimize cost. The approval of pembrolizumab for its use in GC has rocketed immuno-oncology research in this cancer type. In this review, we summarize the current knowledge centered around the immune contexture and recent findings in connection with IC inhibition in GC.
Collapse
|
25
|
Sasaki S, Nishikawa J, Sakai K, Iizasa H, Yoshiyama H, Yanagihara M, Shuto T, Shimokuri K, Kanda T, Suehiro Y, Yamasaki T, Sakaida I. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer 2019; 22:486-496. [PMID: 30264329 DOI: 10.1007/s10120-018-0880-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an oncogenic human herpesvirus involved in the development of around 10% of gastric cancers. The overexpression of PD-L1 is one of the features of EBV-associated gastric cancer (EBVaGC); however, the function of PD-L1 has not been studied in EBVaGC. METHODS We used three EBVaGC cell lines, SNU719 cells, NCC24 cells, and YCCEL1 cells, to evaluate the PD-L1 expression and function in EBVaGC. Jurkat T-lymphocytes expressing PD-1 were co-cultured with NCC24 and YCCEL1 cells and the cell cycles were analyzed. To study the regulatory mechanism for PD-L1 expression, the 3'UTR of PD-L1 was sequenced, and the effect of inhibitors of the IFN-γ signaling pathway was evaluated. RESULTS All of the EBVaGC cell lines expressed PD-L1, and its expression was further enhanced by stimulation with IFN-γ. In Jurkat T-cells co-cultured with IFN-γ-stimulated NCC24 and YCCEL1 cells, the number of cells in the G0/G1 phase was significantly increased. This G0/G1 arrest was partially released by administration of anti-PD-L1 antibody. We found SNPs in PD-L1 3'UTR nucleotide sequences that were located at seed regions for microRNAs. Treatment of EBVaGC cell lines with JAK2-inhibitor, PI3K-inhibitor, and mTOR inhibitor reduced the level of PD-L1 expression to the same level as cells without IFN-γ stimulation. CONCLUSIONS EBVaGC cells expressing high levels of PD-L1 suppress T-cell proliferation, and the IFN-γ signaling pathway is involved in the expression of PD-L1.
Collapse
Affiliation(s)
- Sho Sasaki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Jun Nishikawa
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Kohei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Masashi Yanagihara
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Shuto
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kanami Shimokuri
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
26
|
Xiang Z, Chen W, Zhang J, Song S, Xia GK, Huang XY, Xie J, Yu Y, Zhang QY. Identification of discrepancy between CTLA4 expression and CTLA4 activation in gastric cancer. Immunopharmacol Immunotoxicol 2018; 41:386-393. [PMID: 30422018 DOI: 10.1080/08923973.2018.1533968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Recently, immune checkpoints blockers showed higher anti-tumor activity for advanced gastric cancer (GC). The purpose of the study is to find out predictive biomarkers related to anti-cytotoxic lymphocyte antigen 4 (CTLA4) therapy. Materials and methods: Datasets of gene expression omnibus (GEO), the cancer genome atlas (TCGA), and gene set enrichment analysis (GESA) were extracted. Differential expression of CTLA4 between cancer tissues and normal mucosa, enrichment of WT (wild type) vs. CTLA4_KO (knockout) upregulated gene set and clinical significance were analyzed. The expression of CTLA4, CD3, and granzyme A (GZMA) were validated on 30 cases of Chinese GC. Microsatellite instability (MSI) marker MLH1 and Epstein-Barr virus (EBV) marker EBER were examined on 30 cases of Chinese GC by immunohistochemistry and in situ hybridization. Results: CTLA4 was upregulated in GC tissue relative to normal mucosa in datasets of GSE27342 (fold change = 1.586, p < .001) and GSE63089 (fold change = 1.365, p < .001). Increased CTLA4 expression was positively related to CTLA4 activation. EBV-associated GC (EBVaGC) and microsatellite instability GC (MSIGC) disclosed higher CTLA4 levels than other GCs. Genomic stability GC (GSGC) also showed higher enrichment score of CTLA4 activation. CTLA4 activation resulted in shorter overall survival in GC. The expression level of CTLA4 was well correlated to expression levels of GZMA (R = 0.701, p < .001) and CD3 (R = 0.750, p < .001). Conclusions: Based on bioinformatics analysis, GSGC should be worth noticed as a potential GC subtypes responsive to anti-CTLA4 treatment.
Collapse
Affiliation(s)
- Zhen Xiang
- a Department of Surgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Gastric Neoplasms , Shanghai , China
| | - Wei Chen
- b Department of Gastrointestinal Surgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jun Zhang
- a Department of Surgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Gastric Neoplasms , Shanghai , China
| | - Shuzheng Song
- a Department of Surgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Gastric Neoplasms , Shanghai , China
| | - Guang-Kai Xia
- c Department of Hepatobiliary Surgery , Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University , Shanghai , China
| | - Xin-Yu Huang
- c Department of Hepatobiliary Surgery , Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University , Shanghai , China
| | - Juan Xie
- d Department of Gastroenterology , The General Hospital of Ningxia Medical University , Yinchuan , China
| | - Yingyan Yu
- a Department of Surgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Gastric Neoplasms , Shanghai , China
| | - Qing-Yuan Zhang
- e Department of Gastrointestinal Surgery , The General Hospital of Ningxia Medical University , Yinchuan , China
| |
Collapse
|
27
|
Molecular Features Distinguish Gastric Cancer Subtypes. Int J Mol Sci 2018; 19:ijms19103121. [PMID: 30314372 PMCID: PMC6213039 DOI: 10.3390/ijms19103121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
|