1
|
Shtark O, Puzanskiy R, Avdeeva G, Yemelyanov V, Shavarda A, Romanyuk D, Kliukova M, Kirpichnikova A, Tikhonovich I, Zhukov V, Shishova M. Metabolic Alterations in Pisum sativum Roots during Plant Growth and Arbuscular Mycorrhiza Development. PLANTS 2021; 10:plants10061033. [PMID: 34063836 PMCID: PMC8224052 DOI: 10.3390/plants10061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Intensive exchange of nutrients is a crucial part of the complex interaction between a host plant and fungi within arbuscular mycorrhizal (AM) symbiosis. For the first time, the present study demonstrates how inoculation with AMF Rhizophagus irregularis affects the pea (Pisum sativum L.) root metabolism at key stages of plant development. These correspond to days 21 (vegetation), 42 (flowering initiation), and 56 (fruiting-green pod). Metabolome profiling was carried out by means of a state-of-the-art GC-MS technique. The content shifts revealed include lipophilic compounds, sugars, carboxylates, and amino acids. The metabolic alterations were principally dependent on the stage of plant development but were also affected by the development of AM fungi, a fact which highlights interaction between symbiotic partners. The comparison of the present data with the results of leaf metabolome profiling earlier obtained did not reveal common signatures of metabolic response to mycorrhization in leaves and roots. We supposed that the feedback for the development and symbiotic interaction on the part of the supraorganismic system (root + AM fungi) was the cause of the difference between the metabolic profile shift in leaf and root cells that our examination revealed. New investigations are required to expand our knowledge of metabolome plasticity of the whole organism and/or system of organisms, and such results might be put to use for the intensification of sustainable agriculture.
Collapse
Affiliation(s)
- Oksana Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| | - Roman Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Galina Avdeeva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladislav Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Alexey Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria Romanyuk
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Marina Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Anastasia Kirpichnikova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Igor Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladimir Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Maria Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| |
Collapse
|
2
|
Bisht N, Mishra SK, Chauhan PS. Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int J Biol Macromol 2019; 143:937-951. [PMID: 31739073 DOI: 10.1016/j.ijbiomac.2019.09.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
To avoid disproportionate usage of chemicals in agriculture, an alternative eco-friendly strategy is required to improve soil fertility, and enhance crop productivity. Therefore, the present study demonstrates the role of plant beneficial rhizobacteria viz., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13 (SN13), and their consortium in rice (Oryza sativa L. var. IR-36) facing nutrient deprivation. Parameters such as proline, total soluble sugar, relative water content, electrolytic leakage and malondialdehyde content were modulated in control rice seedlings as compared to treated under nutrient starved conditions. Bacterial inoculation not only significantly improved the agronomic parameters but also concentrations, uptake and partitioning of macro-micro nutrients. To disclose PGPR induced mechanisms to low nutrient stress tolerance, GC-MS analysis was performed. Overall 43 differential metabolites were characterized. Proline, glutamine, linolenic acid, malic acid, ribitol, propanoic acid and serine were accumulated in seedlings exposed to nutrient starvation. In PGPR inoculated rice glucose, fructose, mannose, glucitol, oleic acid, gulonic acid, raffinose, inositol were accumulated that induce metabolic and physiological parameters to reduce the impact of stress. Based on results SN13 was selected for gene expression analysis of metabolism-related genes that further affirmed the ability of PGPR to modulate carbohydrate metabolism in rice seedlings under suboptimum nutrient level.
Collapse
Affiliation(s)
- Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shashank Kumar Mishra
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Shtark OY, Puzanskiy RK, Avdeeva GS, Yurkov AP, Smolikova GN, Yemelyanov VV, Kliukova MS, Shavarda AL, Kirpichnikova AA, Zhernakov AI, Afonin AM, Tikhonovich IA, Zhukov VA, Shishova MF. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ 2019; 7:e7495. [PMID: 31497392 PMCID: PMC6709666 DOI: 10.7717/peerj.7495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.
Collapse
Affiliation(s)
- Oksana Y. Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Dynamics of Arctic Vegetation, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina S. Avdeeva
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey P. Yurkov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Marina S. Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey L. Shavarda
- Center for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksandr I. Zhernakov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Alexey M. Afonin
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Igor A. Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Vladimir A. Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|