1
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04531-8. [PMID: 39400857 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Li S, Cui X, Cao Y, Sun J. Extracellular ATP- and adenosine-mediated purinergic signaling modulates inducible nitric oxide synthase (iNOS) gene expression, enzyme activity and nitric oxide production in common carp (Cyprinus carpio) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109469. [PMID: 38423488 DOI: 10.1016/j.fsi.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Inducible nitric oxide (NO) synthase (iNOS) is a key immune mediator for production of inflammatory mediator NO from l-arginine. Tight regulation of iNOS expression and enzyme activity is critical for proper NO productions under inflammation and infection conditions. However, the regulatory mechanism for iNOS expression and enzyme activity in fish remains largely unknown. Here, we show that extracellular ATP treatment significantly up-regulates iNOS gene expression and enzyme activity, and consequently leads to enhanced NO production in Cyprinus carpio head kidney macrophages (HKMs). We further show that the extracellular ATP-induced iNOS enzyme activity and NO production can be attenuated by pharmacological inhibition of the ATP-gated P2X4 and P2X7 receptors with their respective specific antagonists, but enhanced by overexpression of P2X4 and P2X7 receptors in grass carp ovary cells. In contrast, adenosine administration significantly reduces iNOS gene expression, enzyme activity and NO production in carp HKMs, and these inhibitory effects can be reversed by pharmacological inhibition of adenosine receptors with the antagonist XAC. Furthermore, LPS- and poly(I:C)-induced iNOS gene expression, enzyme activity, and NO production are significantly attenuated by blockade of P2X4 and P2X7 receptors with their respective specific antagonists in carp HKMs, while overexpression of P2X and P2X7 receptors results in enhanced iNOS gene expression, enzyme activity and NO production in LPS- and poly(I:C)-treated grass carp ovary cells. Taken together, we firstly report an opposite role of extracellular ATP/adenosine-mediated purinergic signaling in modulating iNOS-NO system activity in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Xiwen Cui
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yue Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
3
|
Umpierre AD, Li B, Ayasoufi K, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544691. [PMID: 37398001 PMCID: PMC10312639 DOI: 10.1101/2023.06.12.544691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1β. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.
Collapse
Affiliation(s)
- Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- These authors contributed equally
| | - Bohan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
- These authors contributed equally
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Aaron J. Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Lead contact
| |
Collapse
|
4
|
Bano S, Shabir G, Saeed A, Ul-Hamid A, Alharthy RD, Iqbal J. Synthesis, characterization and biological evaluation of indomethacin derived thioureas as purinergic (P2Y 1, P2Y 2, P2Y 4, and P2Y 6) receptor antagonists. Bioorg Chem 2021; 116:105378. [PMID: 34601296 DOI: 10.1016/j.bioorg.2021.105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors for extracellular nucleotides are known as P2Y receptors and are made up of eight members that are encoded by distinct genes and can be classified into two classes based on their affinity for specific G-proteins. P2Y receptor modulators have been studied extensively, but only a few small-molecule P2Y receptor antagonists have been discovered so far and approved by drug agencies. Derivatives of indole carboxamide have been identified as P2Y12 and P2X7 antagonist, as a result, we developed and tested a series of indole derivatives4a-lhaving thiourea moiety as P2Y receptor antagonist by using a fluorescence-based assay to measure the inhibition of intracellular calcium release in 1321N1 astrocytoma cells that had been stably transfected with the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Most of the compounds exhibited moderate to excellent inhibition activity against P2Y1 receptor subtype. The series most potent compound, 4h exhibited an IC50 value of 0.36 ± 0.01 µM selectivity against other subtypes of P2Y receptor. To investigate the ligand-receptor interactions, the molecular docking studies were carried out. Compound 4h is the most potent P2Y1 receptor antagonist due to interaction with an important amino acid residue Pro105, in addition to Ile108, Phe119, and Leu102.
Collapse
Affiliation(s)
- Sehrish Bano
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistano
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Anwar Ul-Hamid
- Center of Engineering Research, KFUPM, Dhahran 31261, Saudi Arabia
| | - Rima D Alharthy
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistano.
| |
Collapse
|
5
|
Vecchio E, Caiazza C, Mimmi S, Avagliano A, Iaccino E, Brusco T, Nisticò N, Maisano D, Aloisio A, Quinto I, Renna M, Divisato G, Romano S, Tufano M, D’Agostino M, Vigliar E, Iaccarino A, Mignogna C, Andreozzi F, Mannino GC, Spiga R, Stornaiuolo M, Arcucci A, Mallardo M, Fiume G. Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Front Cell Dev Biol 2021; 9:730726. [PMID: 34604232 PMCID: PMC8486041 DOI: 10.3389/fcell.2021.730726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Teresa Brusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
6
|
Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells 2020; 9:cells9071595. [PMID: 32630251 PMCID: PMC7407337 DOI: 10.3390/cells9071595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The purinergic receptor P2Y6 is expressed in immune cells, including the microglia that are implicated in neurological disorders. Its ligand, UDP, is a signaling molecule that can serve as an “find-me” signal when released in significant quantities by damaged/dying cells. The binding of UDP by P2Y6R leads to the activation of different biochemical pathways, depending on the disease context and the pathological environment. Generally, P2Y6R stimulates phagocytosis. However, whether or not phagocytosis coincides with cell activation or the secretion of pro-inflammatory cytokines needs further investigation. The current review aims to discuss the various functions of P2Y6R in some CNS disorders. We present evidence that P2Y6R may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, radiation-induced brain injury, and neuropathic pain.
Collapse
|
7
|
Li S, Hao G, Feng Y, Li J, Wang N, Sun J. Functional characterization of two ecto-nucleoside triphosphate diphosphohydrolase 2 genes in Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2020; 99:535-547. [PMID: 32084539 DOI: 10.1016/j.fsi.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (ENTPDases) are pivotal regulators of extracellular ATP-mediated purinergic immune signaling. ENTPDase2 is a member of the cell surface-bound ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) protein family that hydrolyzes extracellular nucleoside 5'-triphosphates and nucleoside 5'-diphosphates. However, the immune relevance of ENTPDase2 in fish has not been elucidated. In the present study, from a comparative immunological perspective, we functionally characterized two ENTPDase2 transcript variants (namely ENTPDase2 and ENTPDase2a) from Japanese flounder (Paralichthys olivaceus). Sequence analysis indicates that the deduced Japanese flounder ENTPDase2 and ENTPDase2a proteins possess two conserved transmembrane domains and five apyrase conserved regions that are present in ENTPDase family proteins. However, these proteins only share 54% amino acid sequence identity. Tissue expression analysis revealed that both ENTPDase2 and ENTPDase2a mRNA transcripts are ubiquitously expressed in all examined Japanese flounder tissues, whereas ENTPDase2 is dominantly expressed in blood and ENTPDase2a is abundantly expressed in muscle. Immune challenge experiments showed that ENTPDase2 and ENTPDase2a were significantly upregulated by both inflammatory stimulation and Edwardsiella tarda infection. In addition, the expression of ENTPDase2 and ENTPDase2a was modulated by extracellular ATP (eATP) stimulation in a dose-dependent manner. Furthermore, immunolocalization and functional studies demonstrated that both ENTPDase2 and ENTPDase2a are functional glycosylated plasma membrane proteins. However, ENTPDase2a exhibits greater activity in the hydrolysis of eATP than ENTPDase2 and ENTPDase1 proteins. Finally, knockdown of the ENTPDase2 gene by small interfering RNA significantly upregulated the expression of eATP-induced proinflammatory cytokines IL-1beta, TNF-alpha and G-CSF in Japanese flounder head kidney macrophages, while knockdown of ENTPDase2a only upregulated eATP-induced IL-1beta expression. Taken together, our findings suggest that the two functional Japanese flounder ENTPDase2 isoforms play an essential role in the downregulation of eATP-induced proinflammatory cytokine expression in fish by degrading the available ATP levels in the extracellular milieu.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
8
|
Xu Y, Feng Y, Li S, Sun J. Identification and characterization of apoptosis-related gene serine/threonine kinase 17A (STK17A) from Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:1008-1016. [PMID: 31740399 DOI: 10.1016/j.fsi.2019.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis plays important roles in regulation of the immune response and has a direct impact on disease resistance in teleost. Death associated protein kinase (DAPK)-related Serine/Threonine kinase 17A (STK17A) is a positive apoptosis regulator. However, the expression and function of STK17A in fish still remains uninvestigated. In this study, we identified and characterized a STK17A gene (termed PoSTK17A) from Japanese flounder Paralichthys olivaceus. We also investigated the pro-apoptotic role of PoSTK17A in fish. Real-time quantitative PCR analysis revealed that PoSTK17A is widely present in various Japanese flounder tissues, and dominantly expressed in liver. Immune challenge experiments showed that PoSTK17A expression was upregulated by inflammatory challenge, Edwardsiella tarda infection and DNA-damaging agent cisplatin treatment as well. Immunofluorescence microscopy revealed that the recombinant PoSTK17A proteins are mainly located in the nucleus of Japanese flounder FG-9307 cells, and human Hela and MCF7 cells. However, PoSTK17A was translocated from the nucleus to cytoplasm following cisplatin treatment. Overexpression of PoSTK17A significantly increased the apoptosis in human MCF7 cells through both cisplatin-dependent and independent manners. Importantly, PoSTK17A also promotes the ATP-gated P2X7 receptor-mediated apoptosis in Japanese flounder FG-9307 cells. Collectively, we characterized an inducible STK17A gene (PoSTK17A) that may play a conserved pro-apoptotic role in fish.
Collapse
Affiliation(s)
- Yaqi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
9
|
Li S, Wang N, Feng Y, Li J, Geng X, Sun J. Functional characterization of purinergic receptor P2Y 14 in the Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 93:200-207. [PMID: 31326587 DOI: 10.1016/j.fsi.2019.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Extracellular nucleotides and nucleotide sugars are important danger-associated signaling molecules that play critical roles in regulation of immune responses in mammals through activation of purinergic receptors located on the cell surface. However, the immunological role of extracellular UDP-glucose-activated P2Y14 receptor (P2Y14R) in fish still remains unknown. In this study, we identified and characterized a P2Y14R paralog in the Japanese flounder (Paralichthys olivaceus). The mRNA transcripts of P2Y14R are detected in all examined Japanese flounder tissues. Compared with the UDP-activated P2Y6 receptor, however, P2Y14R gene is highly expressed in Japanese flounder head kidney macrophages (HKMs). In addition, P2Y14R is significantly upregulated following inflammatory stimulation with LPS and poly (I:C) in the HKMs, suggesting a role of P2Y14R in response to inflammation in fish. Furthermore, activation of P2Y14 receptor with its potent and selective agonist MRS 2905 resulted in a decreased expression of LPS-induced pro-inflammatory cytokine IL-1beta gene in the HKMs. In contrast, inhibition of P2Y14 receptor activity or down-regulation of the endogenous expression of P2Y14R by small interfering RNA significantly upregulates the LPS-induced pro-inflammatory cytokine IL-1beta gene expression in the HKMs, demonstrating that P2Y14R is involved in inflammation regulation in fish. Moreover, stimulation of the Japanese flounder HKMs with UDP-glucose evoked a rapid increase of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent manner, indicating the involvement of P2Y14R in activation of ERK1/2 signaling in fish immune cells. Taken together, we demonstrated that the inducible P2Y14R plays an important role in regulation of fish innate immunity.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xuyun Geng
- Tianjin Fisheries Research Institute, 442 South Jiefang Road, Hexi District, Tianjin, 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
10
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
11
|
Li S, Li J, Peng W, Hao G, Sun J. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Vet Res 2019; 15:20. [PMID: 30621683 PMCID: PMC6325855 DOI: 10.1186/s12917-018-1763-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/26/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Caspases are a family of conserved intracellular cysteine-dependent aspartate-specific cysteine proteases that play important roles in regulating cell death and inflammation. Our previous study revealed the importance of the inflammatory caspase 1 gene in extracellular ATP-mediated immune signaling in Japanese flounder, Paralichthys olivaceus. To explore the potential roles of other caspases in P. olivaceus innate immunity, we extended our study by characterizing of the responses of four additional P. olivaceus caspase genes, termed JfCaspase 2, 3, 6 and 8, to inflammatory challenge and extracellular ATP stimulation. RESULTS Sequence analysis revealed that the domain structures of all the Japanese flounder caspase proteins are evolutionarily conserved. Quantitative real-time PCR analysis showed that the JfCaspase 2, 3, 6 and 8 genes were expressed ubiquitously but at unequal levels in all examined Japanese flounder normal tissues. In addition, the basal gene expression levels of JfCaspase 2, 3, 6 and 8 were higher than those of JfCaspase 1 in both Japanese flounder head kidney macrophages (HKMs) and peripheral blood leukocytes (PBLs). Furthermore, immune challenge experiments showed that the inflammatory stimuli LPS and poly(I:C) significantly modulated the expression of the JfCaspase 2, 3, 6 and 8 genes in Japanese flounder immune cells. Finally, DNA fragmentation, associated with increased extracellular ATP-induced JfCaspase 2, 3, 6 and 8 gene expression and enzymatic activity, was inhibited by the caspase inhibitor Z-VAD-FMK in the HKMs. CONCLUSION Our findings demonstrate broad participation of multiple caspase genes in response to inflammatory stimulation in Japanese flounder immune cells and provide new evidence for the involvement of caspase(s) in extracellular ATP-induced apoptosis in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| |
Collapse
|