1
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Goodman LD, Ralhan I, Li X, Lu S, Moulton MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J, Shulman JM, Ando K, Sun K, Ioannou MS, Bellen HJ. Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat Neurosci 2024; 27:1918-1933. [PMID: 39187706 DOI: 10.1038/s41593-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of reactive oxygen species (ROS) is a common feature of tauopathies, defined by Tau accumulations in neurons and glia. High ROS in neurons causes lipid production and the export of toxic peroxidated lipids (LPOs). Glia uptake these LPOs and incorporate them into lipid droplets (LDs) for storage and catabolism. We found that overexpressing Tau in glia disrupts LDs in flies and rat neuron-astrocyte co-cultures, sensitizing the glia to toxic, neuronal LPOs. Using a new fly tau loss-of-function allele and RNA-mediated interference, we found that endogenous Tau is required for glial LD formation and protection against neuronal LPOs. Similarly, endogenous Tau is required in rat astrocytes and human oligodendrocyte-like cells for LD formation and the breakdown of LPOs. Behaviorally, flies lacking glial Tau have decreased lifespans and motor defects that are rescuable by administering the antioxidant N-acetylcysteine amide. Overall, this work provides insights into the important role that Tau has in glia to mitigate ROS in the brain.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Pinghan Zhao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ziyaneh S Ghaderpour Taleghani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Luo S, Wu F, Fang Q, Hu Y, Zhang H, Yuan S, Yang C, Shi Y, Luo Y. Antidepressant effect of teriflunomide via oligodendrocyte protection in a mouse model. Heliyon 2024; 10:e29481. [PMID: 38655332 PMCID: PMC11036017 DOI: 10.1016/j.heliyon.2024.e29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.
Collapse
Affiliation(s)
- Shuting Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Feilong Wu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Qian Fang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yue Hu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Huihui Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Chang Yang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yan Shi
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Dakterzada F, Jové M, Huerto R, Carnes A, Sol J, Pamplona R, Piñol-Ripoll G. Cerebrospinal fluid neutral lipids predict progression from mild cognitive impairment to Alzheimer's disease. GeroScience 2024; 46:683-696. [PMID: 37999901 PMCID: PMC10828158 DOI: 10.1007/s11357-023-00989-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023] Open
Abstract
Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. The CSF lipidome was analyzed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 209 participants: 91 AD, 92 MCI, and 26 control participants. The MCI patients were followed up for a median of 58 (± 12.5) months to evaluate their clinical progression to AD. Forty-eight (52.2%) MCI patients progressed to AD during follow-up. We found that higher CSF levels of hexacosanoic acid and ceramide Cer(d38:4) were associated with an increased risk of amyloid beta 42 (Aβ42) positivity in CSF, while levels of phosphatidylethanolamine PE(40:0) were associated with a reduced risk. Higher CSF levels of sphingomyelin SM(30:1) were positively associated with pathological levels of phosphorylated tau in CSF. Cholesteryl ester CE(11D3:1) and an unknown lipid were recognized as the most associated lipid species with MCI to AD progression. Furthermore, TG(O-52:2) was identified as the lipid most strongly associated with the rate of progression. Our results indicate the involvement of membrane and intracellular neutral lipids in the pathophysiological processes of AD and the progression from MCI to AD dementia. Therefore, CSF neutral lipids can be used as potential prognostic markers for AD.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Anna Carnes
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
- Institut Català de La Salut, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain.
| |
Collapse
|
5
|
Wang L, Chaudhari K, Winters A, Sun Y, Berry R, Tang C, Yang SH, Liu R. Recurrent Transient Ischemic Attack Induces Neural Cytoskeleton Modification and Gliosis in an Experimental Model. Transl Stroke Res 2023; 14:740-751. [PMID: 35867329 DOI: 10.1007/s12975-022-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer's disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD. In the current study, we established a recurrent TIA model by three times 10-min middle cerebral artery occlusion within a week in rat. Neither permanent neurological deficit nor apoptosis was observed following recurrent TIA. No increase of AD-related biomarkers was indicated after TIA, including increase of tau hyperphosphorylation and β-site APP cleaving enzyme 1 (BACE1). Neuronal cytoskeleton modification and neuroinflammation was found at 1, 3, and 7 days after recurrent TIA, evidenced by the reduction of microtubule-associated protein 2 (MAP2), elevation of neurofilament-light chain (NFL), and increase of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia at the TIA-affected cerebral cortex and basal ganglion. Similar NFL, GFAP and Iba1 alteration was found in the white matter of corpus callosum. In summary, the current study demonstrated that recurrent TIA may trigger neuronal cytoskeleton change, astrogliosis, and microgliosis without induction of cell death at the acute and subacute stage. Our study indicates that TIA-induced neuronal cytoskeleton modification and neuroinflammation may be involved in the vascular contribution to cognitive impairment and dementia.
Collapse
Affiliation(s)
- Linshu Wang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Kiran Chaudhari
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Ali Winters
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Yuanhong Sun
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Raymond Berry
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Christina Tang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Shao-Hua Yang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| | - Ran Liu
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
6
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Cis-p-tau plays crucial role in lysolecithin-induced demyelination and subsequent axonopathy in mouse optic chiasm. Exp Neurol 2023; 359:114262. [PMID: 36343678 DOI: 10.1016/j.expneurol.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease that leads to axon degeneration as the major cause of everlasting neurological disability. The cis-phosphorylated tau (cis-p-tau) is an isoform of tau phosphorylated on threonine 231 and causes tau fails to bind micro-tubules and promotes assembly. It gains toxic function and forms tangles in the cell which finally leads to cell death. An antibody raised against cis- p-tau (cis mAb) detects this isoform and induces its clearance. Here, we investigated the formation of cis-p-tau in a lysophosphatidylcholine (LPC)-induced prolonged demyelination model as well as the beneficial effects of its clearance using cis mAb. Cis -p-tau was increased in the lesion site, especially in axons and microglia. Behavioral and functional studies were performed using visual cliff test, visual placing test, and visual evoked potential recording. Cis-p-tau clearance resulted in decreased gliosis, protected myelin and reduced axon degeneration. Analysis of behavioral and electrophysiological data showed that clearance of cis-p-tau by cis mAb treatment improved the visual acuity along with the integrity of the optic pathway. Our results highlight the opportunity of using cis mAb as a new therapy for protecting myelin and axons in patients suffering from MS.
Collapse
|
8
|
Lehmann DJ, Elshorbagy A, Hurley MJ. Many Paths to Alzheimer's Disease: A Unifying Hypothesis Integrating Biological, Chemical, and Physical Risk Factors. J Alzheimers Dis 2023; 95:1371-1382. [PMID: 37694367 DOI: 10.3233/jad-230295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sporadic Alzheimer's disease (AD) is a complex, multifactorial disease. We should therefore expect to find many factors involved in its causation. The known neuropathology seen at autopsy in patients dying with AD is not consistently seen in all patients with AD and is sometimes seen in patients without dementia. This suggests that patients follow different paths to AD, with different people having slightly different combinations of predisposing physical, chemical and biologic risk factors, and varying neuropathology. This review summarizes what is known of the biologic and chemical predisposing factors and features in AD. We postulate that, underlying the neuropathology of AD is a progressive failure of neurons, with advancing age or other morbidity, to rid themselves of entropy, i.e., the disordered state resulting from brain metabolism. Understanding the diverse causes of AD may allow the development of new therapies targeted at blocking the paths that lead to dementia in each subset of patients.
Collapse
Affiliation(s)
- Donald J Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Amany Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Michael J Hurley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Havlicek DF, Furhang R, Nikulina E, Smith-Salzberg B, Lawless S, Severin SA, Mallaboeva S, Nayab F, Seifert AC, Crary JF, Bergold PJ. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp Neurol 2023; 359:114241. [PMID: 36240881 DOI: 10.1016/j.expneurol.2022.114241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Collapse
Affiliation(s)
- David F Havlicek
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Rachel Furhang
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Bayle Smith-Salzberg
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Siobhán Lawless
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sasha A Severin
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sevara Mallaboeva
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Fizza Nayab
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Alan C Seifert
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
10
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Rubinski A, Franzmeier N, Dewenter A, Luan Y, Smith R, Strandberg O, Ossenkoppele R, Dichgans M, Hansson O, Ewers M. Higher levels of myelin are associated with higher resistance against tau pathology in Alzheimer's disease. Alzheimers Res Ther 2022; 14:139. [PMID: 36153607 PMCID: PMC9508747 DOI: 10.1186/s13195-022-01074-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), fibrillar tau initially occurs locally and progresses preferentially between closely connected regions. However, the underlying sources of regional vulnerability to tau pathology remain unclear. Previous brain-autopsy findings suggest that the myelin levels-which differ substantially between white matter tracts in the brain-are a key modulating factor of region-specific susceptibility to tau deposition. Here, we investigated whether myelination differences between fiber tracts of the human connectome are predictive of the interregional spreading of tau pathology in AD. METHODS We included two independently recruited samples consisting of amyloid-PET-positive asymptomatic and symptomatic elderly individuals, in whom tau-PET was obtained at baseline (ADNI: n = 275; BioFINDER-1: n = 102) and longitudinally in a subset (ADNI: n = 123, mean FU = 1.53 [0.69-3.95] years; BioFINDER-1: n = 39, mean FU = 1.87 [1.21-2.78] years). We constructed MRI templates of the myelin water fraction (MWF) in 200 gray matter ROIs and connecting fiber tracts obtained from adult cognitively normal participants. Using the same 200 ROI brain-parcellation atlas, we obtained tau-PET ROI values from each individual in ADNI and BioFINDER-1. In a spatial regression analysis, we first tested the association between cortical myelin and group-average tau-PET signal in the amyloid-positive and control groups. Secondly, employing a previously established approach of modeling tau-PET spreading based on functional connectivity between ROIs, we estimated in a linear regression analysis, whether the level of fiber-tract myelin modulates the association between functional connectivity and longitudinal tau-PET spreading (i.e., covariance) between ROIs. RESULTS We found that higher myelinated cortical regions show lower tau-PET uptake (ADNI: rho = - 0.267, p < 0.001; BioFINDER-1: rho = - 0.175, p = 0.013). Fiber-tract myelin levels modulated the association between functional connectivity and tau-PET spreading, such that at higher levels of fiber-tract myelin, the association between stronger connectivity and higher covariance of tau-PET between the connected ROIs was attenuated (interaction fiber-tract myelin × functional connectivity: ADNI: β = - 0.185, p < 0.001; BioFINDER-1: β = - 0.166, p < 0.001). CONCLUSION Higher levels of myelin are associated with lower susceptibility of the connected regions to accumulate fibrillar tau. These results enhance our understanding of brain substrates that explain regional variation in tau accumulation and encourage future studies to investigate potential underlying mechanisms.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ruben Smith
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
12
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
13
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
14
|
An J, He Y, Yin JJ, Ding ZB, Han QX, Chen YY, Wang Q, Chai Z, Yu JZ, Song LJ, Xiao BG, Ma CG. Temporal and spatial evolution of various functional neurons during demyelination induced by cuprizone. J Neurophysiol 2021; 126:1756-1771. [PMID: 34669500 DOI: 10.1152/jn.00224.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Here we report the temporal and spatial evolution of various functional neurons during demyelination in a cuprizone (CPZ)-induced mouse model. CPZ did not significantly induce the damage of axons and neurons after 2 wk of feeding. However, after 4-6 wk of CPZ feeding, axons and neurons were markedly reduced in the cortex, posterior thalamic nuclear group, and hippocampus. Simultaneously, the expression of TPH+ tryptophan neurons and VGLUT1+ glutamate neurons was obviously decreased, and the expression of TH+ dopaminergic neurons was slightly decreased in the tail part of the substantia nigra striatum, whereas the number of ChAT+ cholinergic neurons was not significantly different in the brain. In the second week of feeding, CPZ caused a higher level of glutamate secretion and upregulated the expression of EAAT2 on astrocytes, which should contribute to rapid and sufficient glutamate uptake and removal. This finding reveals that astrocyte-driven glutamate reuptake protected the CNS from excitotoxicity by rapid reuptake of glutamate in 4-6 wk of CPZ feeding. At this stage, although NG2+ oligodendroglia progenitor cells (OPCs) were enhanced in the demyelination foci, the myelin sheath was still absent. In conclusion, we comprehensively observed the temporal and spatial evolution of various functional neurons. Our results will assist with understanding how demyelination affects neurons during CPZ-induced demyelination and provide novel information for neuroprotection in myelin regeneration and demyelinating diseases.NEW & NOTEWORTHY Our results further indicate temporal and spatial evolution of various functional neurons during the demyelination in a cuprizone (CPZ)-induced mouse model, which mainly occur 4-6 wk after CPZ feeding. At the same time, the axonal compartment is damaged and, consequently, neuronal death occurs, while glutamate neurons are lost obviously. The astrocyte-mediated glutamate reuptake could protect the neurons from the excitatory effects of glutamate.
Collapse
Affiliation(s)
- Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Department of Physiology and Neurology, Affiliated Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yang-Yang Chen
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Department of Physiology and Neurology, Affiliated Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
15
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
16
|
Mueller RL, Combs B, Alhadidy MM, Brady ST, Morfini GA, Kanaan NM. Tau: A Signaling Hub Protein. Front Mol Neurosci 2021; 14:647054. [PMID: 33815057 PMCID: PMC8017207 DOI: 10.3389/fnmol.2021.647054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Over four decades ago, in vitro experiments showed that tau protein interacts with and stabilizes microtubules in a phosphorylation-dependent manner. This observation fueled the widespread hypotheses that these properties extend to living neurons and that reduced stability of microtubules represents a major disease-driving event induced by pathological forms of tau in Alzheimer’s disease and other tauopathies. Accordingly, most research efforts to date have addressed this protein as a substrate, focusing on evaluating how specific mutations, phosphorylation, and other post-translational modifications impact its microtubule-binding and stabilizing properties. In contrast, fewer efforts were made to illuminate potential mechanisms linking physiological and disease-related forms of tau to the normal and pathological regulation of kinases and phosphatases. Here, we discuss published work indicating that, through interactions with various kinases and phosphatases, tau may normally act as a scaffolding protein to regulate phosphorylation-based signaling pathways. Expanding on this concept, we also review experimental evidence linking disease-related tau species to the misregulation of these pathways. Collectively, the available evidence supports the participation of tau in multiple cellular processes sustaining neuronal and glial function through various mechanisms involving the scaffolding and regulation of selected kinases and phosphatases at discrete subcellular compartments. The notion that the repertoire of tau functions includes a role as a signaling hub should widen our interpretation of experimental results and increase our understanding of tau biology in normal and disease conditions.
Collapse
Affiliation(s)
- Rebecca L Mueller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Benjamin Combs
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Mohammed M Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott T Brady
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
17
|
Villa Gonzalez M, Pérez-Álvarez MJ. A 3R-Tau-mediated mechanism in oligodendrocytes: could it be the key for neuroprotection after stroke? Neural Regen Res 2021; 16:2401-2402. [PMID: 33907017 PMCID: PMC8374573 DOI: 10.4103/1673-5374.313027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mario Villa Gonzalez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid; Centro de Biología Molecular "Severo Ochoa", Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
| | - Maria José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid; Centro de Biología Molecular "Severo Ochoa", Departamento de Neuropatología Molecular CSIC-UAM; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
18
|
LoPresti P. HDAC6 in Diseases of Cognition and of Neurons. Cells 2020; 10:E12. [PMID: 33374719 PMCID: PMC7822434 DOI: 10.3390/cells10010012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) neurodegenerative diseases are characterized by faulty intracellular transport, cognition, and aggregate regulation. Traditionally, neuroprotection exerted by histone deacetylase (HDAC) inhibitors (HDACi) has been attributed to the ability of this drug class to promote histone acetylation. However, HDAC6 in the healthy CNS functions via distinct mechanisms, due largely to its cytoplasmic localization. Indeed, in healthy neurons, cytoplasmic HDAC6 regulates the acetylation of a variety of non-histone proteins that are linked to separate functions, i.e., intracellular transport, neurotransmitter release, and aggregate formation. These three HDAC6 activities could work independently or in synergy. Of particular interest, HDAC6 targets the synaptic protein Bruchpilot and neurotransmitter release. In pathological conditions, HDAC6 becomes abundant in the nucleus, with deleterious consequences for transcription regulation and synapses. Thus, HDAC6 plays a leading role in neuronal health or dysfunction. Here, we review recent findings and novel conclusions on the role of HDAC6 in neurodegeneration. Selective studies with pan-HDACi are also included. We propose that an early alteration of HDAC6 undermines synaptic transmission, while altering transport and aggregation, eventually leading to neurodegeneration.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
19
|
Armangue T, Capobianco M, de Chalus A, Laetitia G, Deiva K. E.U. paediatric MOG consortium consensus: Part 3 - Biomarkers of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29:22-31. [PMID: 33191096 DOI: 10.1016/j.ejpn.2020.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
A first episode of acquired demyelinating disorder (ADS) in children is a diagnostic challenge as different diseases can express similar clinical features. Recently, antibodies against myelin oligodendrocyte glycoprotein (MOG) have emerged as a new ADS biomarker, which clearly allow the identification of monophasic and relapsing ADS forms different from MS predominantly in children. Due to the novelty of this antibody there are still challenges and controversies about its pathogenicity and best technique to detect it. In this manuscript we will discuss the recommendations and caveats on MOG antibody assays, role in the pathogenesis, and additionally discuss the usefulness of other potential new biomarkers in MOG-antibody associated disorders (MOGAD).
Collapse
Affiliation(s)
- Thaís Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu (SJD) Children's Hospital, University of Barcelona, Barcelona, Spain.
| | - Marco Capobianco
- Department of Neurology and Regional Multiple Sclerosis Centre, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Aliénor de Chalus
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Giorgi Laetitia
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France; French Reference Network of Rare Inflammatory Brain and Spinal Diseases, Le Kremlin Bicêtre, France and European Reference Network-RITA, France
| | | |
Collapse
|
20
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Villa González M, Vallés-Saiz L, Hernández IH, Avila J, Hernández F, Pérez-Alvarez MJ. Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. Glia 2020; 68:2471-2485. [PMID: 32515854 DOI: 10.1002/glia.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Ischemic stroke is a major cause of death and the first leading cause of long-term disability worldwide. The only therapeutic strategy available to date is reperfusion and not all the patients are suitable for this treatment. Blood flow blockage or reduction leads to considerable brain damage, affecting both gray and white matter. The detrimental effects of ischemia have been studied extensively in the former but not in the latter. Previous reports indicate that preservation of white matter integrity reduces deleterious effect of ischemia on the brain. Oligodendrocytes are sensitive to ischemic damage, however, some reports demonstrate that oligodendrogenesis occurs after ischemia. These glial cells have a complex cytoskeletal network, including tau, that plays a key role to proper myelination. 4R-Tau/3R-Tau, which differ in the presence/absence of Exon 10, are found in oligodendrocytes; but the precise role of each isoform is not understood. Using permanent middle cerebral artery occlusion model and immunofluorescence, we demonstrate that cerebral ischemia induces an increase in 3R-Tau versus 4R-Tau in oligodendrocytes in the damaged area. In addition, cellular distribution of Tau undergoes a change after ischemia, with some oligodendrocytic processes showing positive staining for 3R-Tau. This occurs simultaneously with the amelioration of neurological damage in ischemic rats. We propose that ischemia triggers an endogenous mechanism involving 3R-Tau, that induces colonization of the ischemic damaged area by oligodendrocytes in an attempt to myelinate-injured axons. Understanding the molecular mechanism of this phenomenon could pave the way for the design of therapeutic strategies that exploit glial cells for the treatment of ischemia.
Collapse
Affiliation(s)
- Mario Villa González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Laura Vallés-Saiz
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Ivó H Hernández
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Avila
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Félix Hernández
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
22
|
Kim H, Lee EJ, Kim S, Choi LK, Kim K, Kim HW, Kim KK, Lim YM. Serum biomarkers in myelin oligodendrocyte glycoprotein antibody-associated disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e708. [PMID: 32184342 PMCID: PMC7136043 DOI: 10.1212/nxi.0000000000000708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 02/04/2023]
Abstract
Objective To test the hypothesis that the pattern of serum biomarkers of disease activity and disability in myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) will be different from those in neuromyelitis optica spectrum disorder (NMOSD) with anti–aquaporin-4 antibodies (AQP4-Abs). Methods Using ultrasensitive single-molecule array assays, we measured neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and tau in the sera of consecutive patients with MOGAD (n = 16) and NMOSD with AQP4-Ab (n = 33). Serum biomarker levels were compared between patients in relapse and remission states, and correlations between the levels of these biomarkers and Expanded Disability Status Scale (EDSS) scores were analyzed within each group. Results In the MOGAD group, the serum tau level was higher in a relapse state than in a remission state (relapse vs remission: 0.5 [0.4–0.5] vs 0.2 [0.1–0.3] pg/mL, p = 0.027). Both serum levels of NfL and tau correlated with the EDSS score (NfL: r = 0.684, p = 0.003; tau: r = 0.524, p = 0.045). Meanwhile, in the NMOSD group, serum NfL and GFAP levels were higher in a relapse state than in a remission state (relapse vs remission: NfL, 34.8 [12.2–62.3] vs 13.0 [11.3–20.0] pg/mL, p = 0.010; GFAP, 253.8 [150.6–303.0] vs 104.4 [93.9–127.9] pg/mL, p = 0.016). Only the serum GFAP level correlated with the EDSS score (r = 0.485, p = 0.012). Conclusion The pattern of serum biomarkers of disease activity and disability in MOGAD showed a distinct feature from those in NMOSD with AQP4-Ab, which implicates different pathogeneses between the 2 diseases.
Collapse
Affiliation(s)
- Hyunjin Kim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Lyn-Kyung Choi
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Keonwoo Kim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Weon Kim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- From the Department of Neurology (H.K., E.-J.L., S.K., L.-K.C., K.K., H.W.K., K.-K.K., Y.-M.L.) and Asan Medical Institute of Convergence Science and Technology (E.-J.L., S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
Oláh J, Lehotzky A, Szunyogh S, Szénási T, Orosz F, Ovádi J. Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells 2020; 9:E357. [PMID: 32033023 PMCID: PMC7072251 DOI: 10.3390/cells9020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeleton, including the microtubule network. Microtubules play crucial roles achieved by their decoration with proteins/enzymes as well as by posttranslational modifications. This review focuses on the Tubulin Polymerization Promoting Protein (TPPP/p25), a new microtubule associated protein, on its "regulatory functions by day and pathological functions at night". Physiologically, the moonlighting TPPP/p25 modulates the dynamics and stability of the microtubule network by bundling microtubules and enhancing the tubulin acetylation due to the inhibition of tubulin deacetylases. The optimal endogenous TPPP/p25 level is crucial for its physiological functions, to the differentiation of oligodendrocytes, which are the major constituents of the myelin sheath. Pathologically, TPPP/p25 forms toxic oligomers/aggregates with α-synuclein in neurons and oligodendrocytes in Parkinson's disease and Multiple System Atrophy, respectively; and their complex is a potential therapeutic drug target. TPPP/p25-derived microtubule hyperacetylation counteracts uncontrolled cell division. All these issues reveal the anti-mitotic and α-synuclein aggregation-promoting potency of TPPP/p25, consistent with the finding that Parkinson's disease patients have reduced risk for certain cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary; (J.O.); (A.L.); (S.S.); (T.S.); (F.O.)
| |
Collapse
|
24
|
Mirzaii-Dizgah MH, Mirzaii-Dizgah MR, Mirzaii-Dizgah I. Serum and saliva total tau protein as a marker for relapsing-remitting multiple sclerosis. Med Hypotheses 2020; 135:109476. [DOI: 10.1016/j.mehy.2019.109476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023]
|
25
|
Scarpelli EM, Trinh VY, Tashnim Z, Krans JL, Keller LC, Colodner KJ. Developmental expression of human tau in Drosophila melanogaster glial cells induces motor deficits and disrupts maintenance of PNS axonal integrity, without affecting synapse formation. PLoS One 2019; 14:e0226380. [PMID: 31821364 PMCID: PMC6903755 DOI: 10.1371/journal.pone.0226380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the abnormal phosphorylation and accumulation of the microtubule-associated protein, tau, in both neuronal and glial cells. Though tau pathology in glial cells is a prominent feature of many of these disorders, the pathological contribution of these lesions to tauopathy pathogenesis remains largely unknown. Moreover, while tau pathology is predominantly found in the central nervous system, a role for tau in the cells of the peripheral nervous system has been described, though not well characterized. To investigate the effects of glial tau expression on the development and maintenance of the peripheral nervous system, we utilized a Drosophila melanogaster model of tauopathy that expresses human wild-type tau in glial cells during development. We found that glial tau expression during development results in larval locomotor deficits and organismal lethality at the pupal stage, without affecting larval neuromuscular junction synapse development or post-synaptic amplitude. There was, however, a significant decrease in the decay time of synaptic potentials upon repeated stimulation of the motoneuron. Behavioral abnormalities were accompanied by glial cell death, disrupted maintenance of glial-axonal integrity, and the abnormal accumulation of the presynaptic protein, Bruchpilot, in peripheral nerve axons. Together, these data demonstrate that human tau expression in Drosophila glial cells does not affect neuromuscular junction synapse formation during development, but is deleterious to the maintenance of glial-axonal interactions in the peripheral nervous system.
Collapse
Affiliation(s)
- Enrico M. Scarpelli
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Van Y. Trinh
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Zarrin Tashnim
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, MA, United States of America
| | - Lani C. Keller
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Kenneth J. Colodner
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| |
Collapse
|
26
|
LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol 2018; 9:973. [PMID: 30542317 PMCID: PMC6277889 DOI: 10.3389/fneur.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS) following several years of reversible autoimmune demyelination. Progressive CNS degeneration appears later during the course of relapsing-remitting MS (RRMS), although it starts insidiously at disease onset. We propose that there is an early subclinical phase also for primary-progressive (PP) MS. Consensus exists that many different cell types are involved during disease onset. Furthermore, the response to the initial damage, which is specific for each individual, would result in distinct pathological pathways that add complexity to the disease and the mechanisms underlying progressive CNS degeneration. Progressive MS is classified as either active or not active, as well as with or without progression. Different forms of progressive MS might reflect distinct or overlapping pathogenetic pathways. Disease mechanisms should be determined for each patient at diagnosis and the time of treatment. Until individualized and time-sensitive treatments that specifically target the molecular mechanisms of the progressive aspect of the disease are identified, combined therapies directed at anti-inflammation, regeneration, and neuroprotection are the most effective for preventing MS progression. This review presents selected therapeutics in support of the overall idea of a multidimensional therapy applied early in the disease. This approach could limit damage and increase CNS repair. By targeting several cellular populations (i.e., microglia, astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory imbalance) progressive MS could be attenuated. Early timing for such multidimensional therapy is proposed as the prerequisite for effectively halting progressive MS.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|