1
|
Sun Y, Jia C, Zhang S, Zhang Q, Chen J, Liu X. Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1. Phys Chem Chem Phys 2024; 26:26784-26798. [PMID: 39403732 DOI: 10.1039/d4cp03309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In 2020, cancer-related deaths reached 9.96 million globally, of which China accounted for 3 million, ranking first in the world. Phosphoglycerate mutase 1 (PGAM1) is a key metabolic enzyme in glycolysis, catalysing the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Based on the excellent anticancer activity of PGMI-004A and HKB99, new small molecules with an anthraquinone core were synthesised to inhibit tumour growth. Developing small molecules with an anthraquinone core targeting PGAM1 may be an effective strategy for treating cancer. In this study, accelerated molecular dynamics (aMD) simulation, dynamic cross-correlation map (DCCM) calculation, principal component analysis (PCA) and free energy landscape (FEL) analysis were used to analyse conformational changes of PGAM1 caused by binding of inhibitors 8KX, 9HU and HKB. DCCM calculations and PCA showed that inhibitor binding significantly affected the kinetic behaviour of PGAM1 and conformational rearrangement of PGAM1. The binding ability and mechanism of 8KX, 9HU and HKB to PGAM1 were studied using the molecular mechanics generalised Born surface area (MM-GBSA) method. The results showed that compared with 8KX, the binding ability of 9HU and HKB to PGAM1 was enhanced by sulphonamide reversal and aminocarboxyl trifluoromethyl substitution. There were several hydrophobic interactions between inhibitors and PGAM1, providing significant contributions for inhibitor binding. Calculation of residue-based free energy decomposition revealed that F22, R90, Y92, L95, V112, W115, R116, V121, P123, P124, R191 and M206 were key residues of the PGAM1-inhibitor interaction and could be used as effective targets for designing drugs that inhibit the activity of PGAM1.
Collapse
Affiliation(s)
- Yanqi Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Chaoyue Jia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
2
|
Kumari G, Nigam VK, Pandey DM. Mutational analysis of flavonol synthase of M. pinnata towards enhancement of binding affinity: a computational approach. J Biomol Struct Dyn 2024; 42:8574-8587. [PMID: 37592887 DOI: 10.1080/07391102.2023.2246588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Millettia pinnata is an important medicinal plant that has been used as a treatment of various diseases due to presence of wide range of pharmacological properties. The plant contains quercetin, kaempferol, karanjin, pongaglabrone, kanjone, kanugin, gammatin, pongaglabol, and other bioflavonoids. Kaempferol is a natural flavonol that shows many pharmacological properties including anti-inflammatory, antioxidant, anticancer, and antidiabetic activities etc. The enzyme flavonol synthase (FLS, EC 1.14.20.6) catalyses the conversion of dihydroflavonols to flavonols, i.e. biosynthesis of kaempferol from dihydrokaempferol. The current work examined the binding affinity-based approach to improve the enzyme catalytic activity using computational methods. Sequential site-directed mutagenesis was used to create four mutants with the goal to increase hydrogen bonds and further improving the ligand (dihydrokaempferol) binding efficiency. Simulations were done to monitor the stability of the mutants followed by molecular docking to confirm interactions with ligand. For structure validation, various dynamic analysis like RMSD, RMSF, ROG, SASA, H-bond, PCA, DCCM, and FEL were performed, which predicts the stability of wild-type (WT) proteins and mutants. The Mutant_2 and Mutant_3 showed maximum H-bonding and better stability than other mutants and WT that proved higher affinity suggesting improved catalysis. Mutant_2 and Mutant_3 exhibited binding affinities of -7.6 and -8.2 kcal/mol, respectively for the ligand. The outcome of present study will provide significant improvement in synthesis of kaempferol and other plant-based flavonoids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Garima Kumari
- Department of Bioengineering and biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Vinod Kumar Nigam
- Department of Bioengineering and biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Dev Mani Pandey
- Department of Bioengineering and biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Zhao L, Wang J, Yang W, Zhao K, Sun Q, Chen J. Unveiling Conformational States of CDK6 Caused by Binding of Vcyclin Protein and Inhibitor by Combining Gaussian Accelerated Molecular Dynamics and Deep Learning. Molecules 2024; 29:2681. [PMID: 38893554 PMCID: PMC11174096 DOI: 10.3390/molecules29112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| | | | | | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| |
Collapse
|
4
|
Chen J, Wang J, Yang W, Zhao L, Zhao J, Hu G. Molecular Mechanism of Phosphorylation-Mediated Impacts on the Conformation Dynamics of GTP-Bound KRAS Probed by GaMD Trajectory-Based Deep Learning. Molecules 2024; 29:2317. [PMID: 38792177 PMCID: PMC11123822 DOI: 10.3390/molecules29102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The phosphorylation of different sites produces a significant effect on the conformational dynamics of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations were combined with deep learning (DL) to explore the molecular mechanism of the phosphorylation-mediated effect on conformational dynamics of the GTP-bound KRAS. The DL finds that the switch domains are involved in obvious differences in conformation contacts and suggests that the switch domains play a key role in the function of KRAS. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of pY32, pY64, and pY137 leads to more disordered states of the switch domains than the wild-type (WT) KRAS and induces conformational transformations between the closed and open states. The results from principal component analysis (PCA) indicate that principal motions PC1 and PC2 are responsible for the closed and open states of the phosphorylated KRAS. Interaction networks were analyzed and the results verify that the phosphorylation alters interactions of GTP and magnesium ion Mg2+ with the switch domains. It is concluded that the phosphorylation pY32, pY64, and pY137 tune the activity of KRAS through changing conformational dynamics and interactions of the switch domains. We anticipated that this work could provide theoretical aids for deeply understanding the function of KRAS.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
5
|
Shen C, Yin J, Wang M, Yu Z, Xu X, Zhou Z, Hu Y, Xia C, Hu G. Mutations influence the conformational dynamics of the GDP/KRAS complex. J Biomol Struct Dyn 2024:1-14. [PMID: 38529923 DOI: 10.1080/07391102.2024.2331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Mutations near allosteric sites can have a significant impact on the function of KRAS. Three specific mutations, K104Q, G12D/K104Q, and G12D/G75A, which are located near allosteric positions, were selected to investigate the molecular mechanisms behind mutation-induced influences on the activity of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations followed by the principal component analysis (PCA) were performed to improve the sampling of conformational states. The results revealed that these mutations significantly alter the structural flexibility, correlated motions, and dynamic behavior of the switch regions that are essential for KRAS binding to effectors or regulators. Furthermore, the mutations have a significant impact on the hydrogen bonding interactions between GDP and the switch regions, as well as on the electrostatic interactions of magnesium ions (Mg2+) with these regions. Our results verified that these mutations strongly influence the binding of KRAS to its effectors or regulators and allosterically regulate the activity. We believe that this work can provide valuable theoretical insights into a deeper understanding of KRAS function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Congcong Shen
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Jie Yin
- Qingyun People's Hospital, Dezhou, China
| | - Min Wang
- Qingyun People's Hospital, Dezhou, China
| | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Xin Xu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Zhongshun Zhou
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yingshi Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
6
|
Yu Z, Wang Z, Cui X, Cao Z, Zhang W, Sun K, Hu G. Conformational States of the GDP- and GTP-Bound HRAS Affected by A59E and K117R: An Exploration from Gaussian Accelerated Molecular Dynamics. Molecules 2024; 29:645. [PMID: 38338389 PMCID: PMC10856033 DOI: 10.3390/molecules29030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The HRAS protein is considered a critical target for drug development in cancers. It is vital for effective drug development to understand the effects of mutations on the binding of GTP and GDP to HRAS. We conducted Gaussian accelerated molecular dynamics (GaMD) simulations and free energy landscape (FEL) calculations to investigate the impacts of two mutations (A59E and K117R) on GTP and GDP binding and the conformational states of the switch domain. Our findings demonstrate that these mutations not only modify the flexibility of the switch domains, but also affect the correlated motions of these domains. Furthermore, the mutations significantly disrupt the dynamic behavior of the switch domains, leading to a conformational change in HRAS. Additionally, these mutations significantly impact the switch domain's interactions, including their hydrogen bonding with ligands and electrostatic interactions with magnesium ions. Since the switch domains are crucial for the binding of HRAS to effectors, any alterations in their interactions or conformational states will undoubtedly disrupt the activity of HRAS. This research provides valuable information for the design of drugs targeting HRAS.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Zhen Wang
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Xiuzhen Cui
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Wanyunfei Zhang
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Kunxiao Sun
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| |
Collapse
|
7
|
Bao H, He W, Chen J. Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis. J Biomol Struct Dyn 2023; 42:11115-11132. [PMID: 37740650 DOI: 10.1080/07391102.2023.2260486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The pseudokinase domain (JH2) of the protein tyrosine kinase (Janus kinase 2, JAK2) regulates the activity of a tyrosine kinase domain (JH1) in JAK2, which is further affected by mutations in the JH2. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by construction of free energy landscapes (FELs) and principal component analysis (PCA) were performed to study effect of two mutations V617F and V617F/E596A on the conformations of the ATP-bound JH2. The dynamic analyses reveal that mutations affect the structural flexibility and correlated motions of the JH2, meanwhile also change the dynamics behavior of the P-loop and αC-helix of the JH2. The information from FELs unveils that mutations induce less energy states than the free JH2 and the WT one. The analyses of interaction networks uncover that mutations affect the salt bridge interactions of ATP with K581, K677 and R715 and alter hydrogen bonding interactions (HBIs) of ATP with the JH2. The changes in conformations of the JH2 and ATP-JH2 interaction networks caused by mutations in turn generate effect on the activity regulations of the JH2 on the JH1. This work is expected to provide significant theoretical helps for deeply understanding the function of the JH2 and drug design toward JAK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
8
|
Shi S, Zheng L, Ren Y, Wang Z. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023; 28:molecules28072886. [PMID: 37049650 PMCID: PMC10095679 DOI: 10.3390/molecules28072886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Linqi Zheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonglian Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
9
|
Wang L, Wang Y, Yu Y, Liu D, Zhao J, Zhang L. Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. Molecules 2023; 28:molecules28062583. [PMID: 36985555 PMCID: PMC10052767 DOI: 10.3390/molecules28062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor–residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).
Collapse
|
10
|
Tiwari NP, Pandey JP, Pandey DM. Protein-protein docking and molecular dynamics studies of sericin and cocoonase of silkworm: an insight for cocoon softening. J Biomol Struct Dyn 2023; 41:1193-1205. [PMID: 34939532 DOI: 10.1080/07391102.2021.2017352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cocoonase is known to digest the sericin protein that encapsulates the silkworm cocoon's fibroin protein. Silk fibroin and sericin are two types of proteins that make up silk, and accounts for around 20-30% of the overall cocoon weight. The aim of the study was to see the protein-protein interaction (PPI) and molecular dynamic study of sericin, cocoonase and protein-protein docked complex of silkworm by computational approaches. Here motif analysis, phylogenetic analysis, principal component analysis, root-mean-square deviation (RMSD), root mean square fluctuation, radius of gyration, structural and functional study of cocoonase and sericin as well as molecular docking study were carried out. The 33 amino acid residues of cocoonase shows interaction with 38 aa residues of sericin involving 4 disulphide bonds, 22 hydrogen bonds and 319 non-bonded contacts. The confirmational stability and flexibility of both the proteins as well as protein-protein complex were achieved at 70 ns of MD simulation study. RMSD-based data indicated that cocoonase is more stable than sericin and complex, and complex has a greater fluctuation with more compact (higher Rg) value than cocoonase and sericin, inferring higher conformational stability and flexibility of protein-protein complex than cocoonase and sericin. This study provides a new dimension for PPI study by computational approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Dev Mani Pandey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
11
|
Wang L, Lu D, Wang Y, Xu X, Zhong P, Yang Z. Binding selectivity-dependent molecular mechanism of inhibitors towards CDK2 and CDK6 investigated by multiple short molecular dynamics and free energy landscapes. J Enzyme Inhib Med Chem 2023; 38:84-99. [DOI: 10.1080/14756366.2022.2135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang, PR China
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Xiaoyan Xu
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Peihua Zhong
- College of Computer Information and Engineering, Jiangxi Agriculture University, Nanchang, PR China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
12
|
Bao HY, Wang W, Sun HB, Chen JZ. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:65-89. [PMID: 36762439 DOI: 10.1080/1062936x.2023.2165542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Probing binding modes of GDP, GTP and GNP to NRAS are of significance for understanding the regulation mechanism on the activity of RAS proteins. Four separate Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the apo, GDP-, GTP- and GNP-bound NRAS. Dynamics analyses suggest that binding of three ligands highly affects conformational states of the switch domains from NRAS, which disturbs binding of NRAS to its effectors. The analyses of free energy landscapes (FELs) indicate that binding of GDP, GTP and GNP induces more energetic states of NRAS compared to the apo NRAS but the presence of GNP makes the switch domains more ordered than binding of GDP and GNP. The information of interaction networks of ligands with NRAS reveals that the π-π interaction of residue F28 and the salt bridge interactions of K16 and D119 with ligands stabilize binding of GDP, GTP and GNP to NRAS. Meanwhile magnesium ion plays a bridge role in interactions of ligands with NRAS, which is favourable for associations of GDP, GTP and GNP with NRAS. This work is expected to provide useful information for deeply understanding the function and activity of NRAS.
Collapse
Affiliation(s)
- H Y Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Z Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
13
|
Chen J, Zeng Q, Wang W, Sun H, Hu G. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6118-6132. [PMID: 36440874 DOI: 10.1021/acs.jcim.2c00961] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl-l-methionine (SAM)-responsive riboswitches play a central role in the regulation of bacterial gene expression at the level of transcription attenuation or translation inhibition. In this study, multiple independent Gaussian-accelerated molecular dynamics simulations were performed to decipher the identification mechanisms of SAM-III (SMK) on ligands SAM, SAH, and EEM. The results reveal that ligand binding highly affects the structural flexibility, internal dynamics, and conformational changes of SAM-III. The dynamic analysis shows that helices P3 and P4 as well as two junctions J23 and J24 of SAM-III are highly susceptible to ligand binding. Analyses of free energy landscapes suggest that ligand binding induces different free energy profiles of SAM-III, which leads to the difference in identification sites of SAM-III on ligands. The information on ligand-nucleotide interactions not only uncovers that the π-π, cation-π, and hydrogen bonding interactions drive identification of SAM-III on the three ligands but also reveals that different electrostatic properties of SAM, SAH, and EEM alter the active sites of SAM-III. Meanwhile, the results also verify that the adenine group of SAM, SAH, and EEM is well recognized by conserved nucleotides G7, A29, U37, A38, and G48. We expect that this study can provide useful information for understanding the applications of SAM-III in chemical, synthetic RNA biology, and biomedical fields.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou253023, China
| |
Collapse
|
14
|
Yu YX, Wang W, Sun HB, Zhang LL, Wang LF, Yin YY. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:805-831. [PMID: 36322686 DOI: 10.1080/1062936x.2022.2140708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations V32I, I50V and I84V in the HIV-1 protease (PR) induce drug resistance towards drug amprenavir (APV). Multiple short molecular dynamics (MSMD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) method were utilized to investigate drug-resistant mechanism of V32I, I50V and I84V towards APV. Dynamic information arising from MSMD simulations suggest that V32I, I50V and I84V highly affect structural flexibility, motion modes and conformational behaviours of two flaps in the PR. Binding free energies calculated by MM-GBSA method suggest that the decrease in binding enthalpy and the increase in binding entropy induced by mutations V32I, I50V and I84V are responsible for drug resistance of the mutated PRs on APV. The energetic contributions of separate residues on binding of APV to the PR show that V32I, I50V and I84V highly disturb the interactions of two flaps with APV and mostly drive the decrease in binding ability of APV to the PR. Thus, the conformational changes of two flaps in the PR caused by V32I, I50V and I84V play key roles in drug resistance of three mutated PR towards APV. This study can provide useful dynamics information for the design of potent inhibitors relieving drug resistance.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
15
|
Floresta G, Patamia V, Zagni C, Rescifina A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. An update from 2017 to early 2022. Eur J Med Chem 2022; 240:114604. [PMID: 35849941 DOI: 10.1016/j.ejmech.2022.114604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022]
Abstract
The fatty acid binding protein 4 (FABP4) is a protein predominantly expressed in macrophages and adipose tissue, where it regulates fatty acids storage and lipolysis and is an essential mediator of inflammation. Small molecule inhibitors of FABP4 have attracted interest following the recent publications of beneficial pharmacological effects of these compounds for the treatment of metabolic syndrome and, more recently, for other pathologies. Since the synthesis of the BMS309403, one of the first selective and effective FABP4 inhibitors, hundreds of other inhibitors have been synthesized (i.e., derivatives of niacin, quinoxaline, aryl-quinoline, bicyclic pyridine, urea, aromatic compounds and other novel heterocyclic compounds). This review updates the recently reported (2017 to early 2022) molecules as adipocyte fatty acid binding protein 4 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Vincenzo Patamia
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
16
|
Kumari G, Nigam VK, Pandey DM. The molecular docking and molecular dynamics study of flavonol synthase and flavonoid 3'-monooxygenase enzymes involved for the enrichment of kaempferol. J Biomol Struct Dyn 2022; 41:2478-2491. [PMID: 35105279 DOI: 10.1080/07391102.2022.2033324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Kaempferol is a natural flavonol that shows many pharmacological properties including anti-inflammatory, antioxidant, anticancer, antidiabetic activities etc. It has been reported in many vegetables, fruits, herbs and medicinal plants. The enzyme flavonol synthase (FLS, EC 1.14.20.6) catalyses the conversion of dihydroflavonols to flavonols. Whereas flavonoid 3'-monooxygenase (F3'H, EC 1.14.14.82) catalyses the hydroxylation of dihydroflavonol, and flavonol. FLS is involved in the synthesis of the kaempferol whereas F3'H causes degradation of kaempferol. The present study aimed to analyse the binding affinity, stability and activating activity of enzyme FLS as well as inhibitory activity of enzyme F3'H involved in the enrichment of the kaempferol using the in-silico approaches. Computational study for physico-chemical properties, conserved domain identification, 3-D structure prediction and its validation, conservation analysis, molecular docking followed by molecular dynamics analysis of FLS and F3'H, protein-activator (FLS-LIG Complex) and protein-inhibitor (F3'H-LIG Complex) complexes have been performed. Other structural analyses like root mean square fluctuation (RMSF), root mean square deviation (RMSD), surface area solvent accessibility (SASA), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA), Poisson-Boltzmann analysis (MM_PBSA) and the dynamic cross correlation map (DCCM) analysis to explore the structural, functional and thermodynamic stability of the proteins and the complexes were also studied. The molecular docking result showed that FLS binds strongly with the activator ascorbate (CID _54670067) while F3'H binds with the inhibitor ketoconazole (CID_456201). The most powerful inhibitor (ketoconazole for F3'H) and activator (ascorbate for FLS) is determined by computing the thermodynamic binding free energy through MM_PBSA analysis. The current work provides wide-ranging structural and functional information about FLS and F3'H enzymes showing detailed molecular mechanism of kaempferol biosynthesis and its degradation and hence kaempferol enrichment. Finding of the present work opens up new possibilities for future research towards enrichment of kaempferol by using activator (ascorbate) for FLS and inhibitor (ketoconazole) for F3'H as well as for its large-scale production using in vitro approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Garima Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, India
| |
Collapse
|
17
|
Chen J, Zeng Q, Wang W, Hu Q, Bao H. Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Adv 2022; 12:1742-1757. [PMID: 35425180 PMCID: PMC8978876 DOI: 10.1039/d1ra07936k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanism of the GTP-KRAS binding is significant for improving the target roles of KRAS in cancer treatment. In this work, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations were applied to decode the effect of Q61A, Q61H and Q61L on the activity of KRAS. Dynamics analyses based on MR-GaMD trajectory reveal that motion modes and dynamics behavior of the switch domain in KRAS are heavily affected by the three Q61 mutants. Information of free energy landscapes (FELs) shows that Q61A, Q61H and Q61L induce structural disorder of the switch domain and disturb the activity of KRAS. Analysis of the interaction network uncovers that the decrease in the stability of hydrogen bonding interactions (HBIs) of GTP with residues V29 and D30 induced by Q61A, Q61H and Q61L is responsible for the structural disorder of the switch-I and that in the occupancy of the hydrogen bond between GTP and residue G60 leads to the structural disorder of the switch-II. Thus, the high disorder of the switch domain caused by three current Q61 mutants produces a significant effect on binding of KRAS to its effectors. This work is expected to provide useful information for further understanding function and target roles of KRAS in anti-cancer drug development.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingquan Hu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
18
|
Wang L, Wang Y, Zhao J, Yu Y, Kang N, Yang Z. Theoretical exploration of the binding selectivity of inhibitors to BRD7 and BRD9 with multiple short molecular dynamics simulations. RSC Adv 2022; 12:16663-16676. [PMID: 35754900 PMCID: PMC9169554 DOI: 10.1039/d2ra02637f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022] Open
Abstract
Bromodomain-containing proteins 7 and 9 (BRD7 and BRD9) have been considered as potential targets of clinical drug design toward treatment of human cancers and other diseases. Multiple short molecular dynamics simulations and binding free energy predictions were carried out to decipher the binding selectivity of three inhibitors 4L2, 5U6, and 6KT toward BRD7 and BRD9. The results show that 4L2 has more favorable binding ability to BRD7 over BRD9 compared to 5U6 and 6KT, while 5U6 and 6KT possess more favorable associations with BRD9 than BRD7. Furthermore, estimations of residue-based free energy decompositions further identify that four common residue pairs, including (F155, F44), (V160, V49), (Y168, Y57) and (Y217, Y106) in (BRD7, BRD9) generate obvious binding differences with 4L2, 5U6, and 6KT, which mostly drives the binding selectivity of 4L2, 5U6, and 6KT to BRD7 and BRD9. Dynamic information arising from trajectory analysis also suggests that inhibitor bindings affect structural flexibility and motion modes, which is responsible for the partial selectivity of 4L2, 5U6, and 6KT toward BRD7 and BRD9. As per our expectation, this study theoretically provides useful hints for design of dual inhibitors with high selectivity on BRD7 and BRD9. Bromodomains (BRDs) are structurally conserved epigenetic reader modules observed in numerous chromatin- and transcription-associated proteins that have a capability to identify acetylated lysine residues.![]()
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yingxia Yu
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Nianqian Kang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Li M, Liu X, Zhang S, Liang S, Zhang Q, Chen J. Deciphering binding mechanism of inhibitors to SARS-COV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Phys Chem Chem Phys 2022; 24:22129-22143. [DOI: 10.1039/d2cp03446h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pneumonia outbreak caused by the SARS-CoV-2 virus poses a serious threat to human health and the world economy. Development of safe and highly effective antiviral drugs is of great...
Collapse
|
20
|
Yu YX, Liu WT, Li HY, Wang W, Sun HB, Zhang LL, Wu SL. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:889-915. [PMID: 34551634 DOI: 10.1080/1062936x.2021.1979647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is thought to be efficient targets of anti-AIDS drug design. Molecular dynamics (MD) simulations and multiple post-processing analysis technologies were applied to decipher molecular mechanism underlying binding of three drugs Lopinavir (LPV), Nelfinavir (NFV) and Atazanavir (ATV) to the PR. Binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) suggest that compensation between binding enthalpy and entropy plays a vital role in binding of drugs to PR. Dynamics analyses show that binding of LPV, NFV and ATV highly affects structural flexibility, motion modes and dynamics behaviour of the PR, especially for two flaps. Computational alanine scanning and interaction network analysis verify that although three drugs have structural difference, they share similar binding modes to the PR and common interaction clusters with the PR. The current findings also confirm that residues located interaction clusters, such as Asp25/Asp25', Gly27/Gly27', Ala28/Ala28', Asp29, Ile47/Ile47', Gly49/Gly49', Ile50/Ile50', Val82/Val82' and Ile84/Ile84, can be used as efficient targets of clinically available inhibitors towards the PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- Shuifa Qilu Cultural Tourism Development Co., Ltd, Shuifa Ecological Industry Group, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
21
|
Liang SS, Liu XG, Cui YX, Zhang SL, Zhang QG, Chen JZ. Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:1-22. [PMID: 34130570 DOI: 10.1080/1062936x.2021.1934896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) has been regarded as a promising drug target for anti-tumour agents. In this study, molecular dynamics (MD) simulations and principal component (PC) analysis were used to explore binding mechanism of three inhibitors 1PU, CDK, 50Z to CDK2 and influences of their bindings on conformational changes of CDK2. The results show that bindings of inhibitors yield obvious impacts on internal dynamics, movement patterns and conformational changes of CDK2. In addition, molecular mechanics generalized Born surface area (MM-GBSA) was applied to calculate binding free energies between three inhibitors and CDK2 and evaluate their binding ability to CDK2. The results show that CDK has the strongest binding to CDK2 among the current three inhibitors. Residue-based free energy decomposition method was further utilized to decode the contributions of a single residue to binding of inhibitors, and it was found that three inhibitors not only produce hydrogen bonding interactions and hydrophobic interactions with key residues of CDK2, which promotes binding of three inhibitors to CDK2, but also share similar binding modes. This work is expected to be helpful for design of efficient drugs targeting CDK2.
Collapse
Affiliation(s)
- S S Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - X G Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Y X Cui
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - S L Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Q G Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - J Z Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
22
|
Rani S, Kumari P, Poddar R, Chattopadhyay S. Study of lipase producing gene in wheat - an in silico approach. J Genet Eng Biotechnol 2021; 19:73. [PMID: 33999287 PMCID: PMC8128969 DOI: 10.1186/s43141-021-00150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lipases (EC 3.1.1.3) catalyze the hydrolysis of oil into free fatty acids and glycerol forming the 3rd largest group of commercialized enzymes. Plant lipases grab attention recently because of their specificity, less production and purified cost, and easy availability. In silico approach is the first step to identify different genes coding for lipase in a most common indigenous plant, wheat, to explore the possibility of this plant as an alternative source for commercial lipase production. As the hierarchy organization of genes reflects an ancient process of gene duplication and divergence, many of the theoretical and analytical tools of the phylogenetic systematics can be utilized for comparative genomic studies. Also, in addition to experimental identification and characterization of genes, for computational genomic analysis, Arabidopsis has become a popular strategy to identify crop genes which are economically important, as Arabidopsis genes had been well identified and characterized for lipase. A number of articles had been reported in which genes of wheat have shown strong homology with Arabidopsis. The complete genome sequences of rice and Arabidopsis constitute a valuable resource for comparative genome analysis as they are representatives of the two major evolutionary lineages within the angiosperms. Here, in this in silico approach, Arabidopsis and Oryza sativa serve as models for dicotyledonous and monocotyledonous species, respectively, and the genomic sequence data available was used to identify the lipase genes in wheat. RESULTS In this present study, Ensembl Plants database was explored for lipase producing gene present in wheat genome and 21 genes were screened down as they contain specific domain and motif for lipase (GXSXG). According to the evolutionary analysis, it was found that the gene TraesCS5B02G157100, located in 5B chromosome, has 58.35% sequence similarity with the reported lipase gene of Arabidopsis thaliana and gene TraesCS3A02G463500 located in the 3A chromosome has 51.74% sequence similarity with the reported lipase gene of Oryza sativa. Homology modeling was performed using protein sequences coded by aforementioned genes and optimized by molecular dynamic simulations. Further with the help of molecular docking of modeled structures with tributyrin, binding efficiency was checked, and the difference in energies (DE) was -9.83 kcal/mol and -6.67 kcal/mol, respectively. CONCLUSIONS The present work provides a basic understanding of the gene-encoding lipase in wheat, which could be easily accessible and used as a potent industrial enzyme. The study enlightens another direction which can be used further to explore plant lipases.
Collapse
Affiliation(s)
- Shradha Rani
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Priya Kumari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Soham Chattopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
23
|
Yin YY, Zhao J, Zhang LL, Xu XY, Liu JQ. Molecular mechanisms of inhibitor bindings to A-FABP deciphered by using molecular dynamics simulations and calculations of MM-GBSA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:293-315. [PMID: 33655818 DOI: 10.1080/1062936x.2021.1891966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Adipocyte fatty-acid binding protein (A-FABP) plays a central role in many aspects of metabolic diseases. It is an important target in drug design for treatment of FABP-related diseases. In this study, molecular dynamics (MD) simulations followed by calculations of molecular mechanics generalized Born surface area (MM-GBSA) and principal components analysis (PCA) were implemented to decipher molecular mechanism correlating with binding of inhibitors 57Q, 57P and L96 to A-FABP. The results show that van der Waals interactions are the leading factors to control associations of 57Q, 57P, and L96 with A-FABP, which reveals an energetic basis for designing of clinically available inhibitors towards A-FABP. The information from PCA and cross-correlation analysis rationally unveils that inhibitor bindings affect conformational changes of A-FABP and change relative movements between residues. Decomposition of binding affinity into contributions of individual residues not only detects hot spots of inhibitor/A-FABP binding but also shows that polar interactions of the positively charged residue Arg126 with three inhibitors provide a significant contribution for stabilization of the inhibitor/A-FABP bindings. Furthermore, the binding strength of L96 to residues Ser55, Phe57 and Lys58 are stronger than that of inhibitors 57Q and 57P to these residues.
Collapse
Affiliation(s)
- Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - X Y Xu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Q Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
24
|
In Silico Identification of Novel Interactions for FABP5 (Fatty Acid-Binding Protein 5) with Nutraceuticals: Possible Repurposing Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:589-599. [PMID: 33861460 DOI: 10.1007/978-3-030-64872-5_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial β-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.
Collapse
|
25
|
Wang Y, Wu S, Wang L, Yang Z, Zhao J, Zhang L. Binding selectivity of inhibitors toward the first over the second bromodomain of BRD4: theoretical insights from free energy calculations and multiple short molecular dynamics simulations. RSC Adv 2020; 11:745-759. [PMID: 35423696 PMCID: PMC8693360 DOI: 10.1039/d0ra09469b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) plays an important role in mediating gene transcription involved in cancers and non-cancer diseases such as acute heart failure and inflammatory diseases. In this work, multiple short molecular dynamics (MSMD) simulations are integrated with a molecular mechanics generalized Born surface area (MM-GBSA) approach to decipher binding selectivity of three inhibitors 8NS, 82Y, and 837 toward two domains BD1 and BD2 of BRD4. The results demonstrate that the enthalpy effects play critical roles in selectivity identification of inhibitors toward BD1 and BD2, determining that 8NS has better selectivity toward BD2 than BD1, while 82Y and 837 more favorably bind to BD1 than BD2. A residue-based free-energy decomposition method was used to calculate an inhibitor-residue interaction spectrum and unveil contributions of separate residues to binding selectivity. The results identify six common residues, containing (P82, P375), (V87, V380), (L92, L385), (L94, L387), (N140, N433), and (I146, V439) individually belonging to (BD1, BD2) of BRD4, and yield a considerable binding difference of inhibitors to BD1 and BD2, suggesting that these residues play key roles in binding selectivity of inhibitors toward BD1 and BD2 of BRD4. Therefore, these results provide useful dynamics information and a structure affinity relationship for the development of highly selective inhibitors targeting BD1 and BD2 of BRD4.
Collapse
Affiliation(s)
- Yan Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lifei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University Nanchang 330045 China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| |
Collapse
|
26
|
Zhao J, Sun H, Wang W, Zhang L, Chen J. Theoretical insights into mutation-mediated conformational changes of the GNP-bound H-RAS. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Mujwar S, Kumar V. Computational Drug Repurposing Approach to Identify Potential Fatty Acid-Binding Protein-4 Inhibitors to Develop Novel Antiobesity Therapy. Assay Drug Dev Technol 2020; 18:318-327. [PMID: 32799554 DOI: 10.1089/adt.2020.976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is a chronic human disorder caused by multiple factors, causing excessive accumulation of fat because of the disparity in take of energy intake with respect to its expenditure. Genetic, environmental, and behavioral factors are having a crucial role in its pathogenesis. Fatty acid-binding protein (FABP) is a superfamily that was involved in the transportation, metabolism, and storage of lipids. The experimental studies have revealed that there is a significant rise in the fatty acid-binding protein-4 (FABP4) expression, and plasma concentration in obese and its downregulation or inhibition can be a potential drug target for obesity. Repurposing of drugs is a trending method for the identification of the newer pharmacological action of an established drug molecule having initially approved indication. It is a cost-effective and economical approach for the development of alternative therapies for existing dreadful diseases in quick succession. Thus, the in silico drug repurposing technique is a highly effective approach for identifying an existing drug molecule having an antiobesity therapeutic activity against the human FABP4, and Floxacillin was selected as safe and effective drug for candidates for developing an antiobesity therapy.
Collapse
Affiliation(s)
- Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Vivek Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
28
|
Yan F, Gao F. A systematic strategy for the investigation of vaccines and drugs targeting bacteria. Comput Struct Biotechnol J 2020; 18:1525-1538. [PMID: 32637049 PMCID: PMC7327267 DOI: 10.1016/j.csbj.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious and epidemic diseases induced by bacteria have historically caused great distress to people, and have even resulted in a large number of deaths worldwide. At present, many researchers are working on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The 3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein complexes is an important standard for testing the suitability of these screened drugs and vaccines. Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the design of high-performance vaccines and drugs.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
29
|
Espinosa YR, Alvarez HA, Howard EI, Carlevaro CM. Molecular dynamics simulation of the heart type fatty acid binding protein in a crystal environment. J Biomol Struct Dyn 2020; 39:3459-3468. [PMID: 32448092 DOI: 10.1080/07391102.2020.1773315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crystallographic data comes from a space-time average over all the unit cells within the crystal, so dynamic phenomena do not contribute significantly to the diffraction data. Many efforts have been made to reconstitute the movement of the macromolecules and explore the microstates that the confined proteins can adopt in the crystalline network. We explored different strategies to simulate a heart fatty acid binding protein (H-FABP) crystal by means of Molecular Dynamics (MD) simulations. We evaluate the effect of introducing restraints according to experimental isotropic B-factors and we analyzed the H-FABP motions in the crystal using Principal Component Analysis (PCA), isotropic and anisotropic B-factors. We compared the behavior of the protein simulated in the crystal confinement versus in solution, and we observed the effect of that confinement in the mobility of the protein residues. Restraining one-third of Cα atoms based on experimental B-factors produce lower B-factors than simulations without restraints, showing that the position restraint of the atoms with the lowest experimental B-factor is a good strategy to maintain the geometry of the crystal with an obvious decrease in the degrees of motion of the protein. PCA shows that, as position restraint reduces the conformational space explored by the system, the motion of the crystal is better recovered, for an essential subspace of the same size, in the simulations without restraints. Restraining only one Cα seems to be a good balance between giving flexibility to the system and preserving its structure. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - H Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina.,Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - Eduardo I Howard
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Universidad Tecnológica Nacional- Facultad Regional Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata, Argentina
| |
Collapse
|
30
|
Chen J, Liu X, Zhang S, Chen J, Sun H, Zhang L, Zhang Q. Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:2262-2275. [DOI: 10.1039/c9cp05704h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Xinguo Liu
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Shaolong Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Junxiao Chen
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan
- People's Republic of China
| | - Haibo Sun
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Lin Zhang
- School of Construction Machinery
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| |
Collapse
|
31
|
A comparative multivariate analysis of nitrilase enzymes: An ensemble based computational approach. Comput Biol Chem 2019; 83:107095. [DOI: 10.1016/j.compbiolchem.2019.107095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
32
|
Shi S, Sui K, Liu W, Lei Y, Zhang S, Zhang Q. Revealing binding selectivity of ligands toward murine double minute 2 and murine double minute X based on molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2019; 38:5081-5094. [PMID: 31755361 DOI: 10.1080/07391102.2019.1695671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that the interactions of p53 with murine double minute 2 and murine double minute X, namely MDM2 and MDMX, have been significant targets of efficient anti-cancer drug design. In this study, molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations are combined to recognize binding selectivity of three ligands to MDM2 and MDMX. The binding free energies were estimated by using molecular mechanics generalized Born surface area (MM-GBSA) method and the obtained results display that the increase in the binding enthalpy of three ligands to MDM2 relative to MDMX mainly drives the binding selectivity of them toward MDM2 and MDMX. The information obtained from PC analysis shows that the associations of ligands exert important impacts on internal dynamics of MDM2 and MDMX. Meanwhile, the calculations of residue-based free energy decomposition not only identify the hot interaction spots of ligands with MDM2 and MDMX, but also show the residues (L54, M53), (Y67, Y66), (V93, V92), (H96, P95), (I99, I98) and (Y100, Y99) in (MDM2, MDMX) are responsible for most contributions to the binding selectivity of three ligands toward MDM2 and MDMX. It is believed that this work can provide useful information for design of highly selective and dual inhibitors targeting MDM2 and MDMX.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Kai Sui
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Weizhe Liu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Yanzi Lei
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Yan F, Liu X, Zhang S, Zhang Q, Chen J. Understanding conformational diversity of heat shock protein 90 (HSP90) and binding features of inhibitors to HSP90 via molecular dynamics simulations. Chem Biol Drug Des 2019; 95:87-103. [PMID: 31560152 DOI: 10.1111/cbdd.13623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (HSP90) is a promising target for treatment of cancer, and inhibitor bindings can generate efficient suppression on tumor in multiple ways. In this work, 140-ns molecular dynamics simulations were performed on six systems. Principal component analysis was subsequently carried out to explore the conformational diversity of HSP90. The results suggest that inhibitor bindings induce large conformational changes of HSP90, which tends to enlarge the volume of the binding pocket to facilitate the entrance of inhibitors. Hierarchical clustering analyses, the calculation of the energy contribution of each atom, and the analyses of hydrogen-bonding interactions were performed. The results indicate that 20 residues in group A of the hierarchical tree are responsible for major contributions, and van der Waals interactions as well as hydrogen-bonding interactions between important residues in HSP90 and key regions of inhibitors are the main force for promoting inhibitor bindings. We expect that this work can provide useful theoretical information for development of efficient inhibitors targeting HSP90.
Collapse
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
34
|
Chen J, Wang J, Yin B, Pang L, Wang W, Zhu W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem Neurosci 2019; 10:4303-4318. [PMID: 31545898 DOI: 10.1021/acschemneuro.9b00348] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The β-amyloid cleaving enzymes 1 and 2 (BACE1 and BACE2) have been regarded as the prospective targets for clinically treating Alzheimer's disease (AD) in the last two decades. Thus, insight into the binding differences of inhibitors to BACE1 and BACE2 is of significance for designing highly selective inhibitors toward the two proteins. In this work, multiple short molecular dynamics (MSMD) simulations are coupled with the molecular mechanics generalized Born surface area (MM-GBSA) method to probe the binding selectivity of three inhibitors DBO, CS9, and SC7 on BACE1 over BACE2. The results show that the entropy effect plays a key role in selectivity identification of inhibitors toward BACE1 and BACE2, which determines that DBO has better selectivity toward BACE2 over BACE1, while CS9 and CS7 can more favorably bind to BACE1 than BACE2. The hierarchical clustering analysis based on energetic contributions of residues suggests that BACE1 and BACE2 share the common hot interaction spots. The residue-based free-energy decomposition method was applied to compute the inhibitor-residue interaction spectrum, and the results recognize four common binding subpockets corresponding to the different groups of inhibitors, which can be used as efficient targets for designing highly selective inhibitors toward BACE1 and BACE2. Therefore, these results provide a useful molecular basis and dynamics information for development of highly selective inhibitors targeting BACE1 and BACE2.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
35
|
Identification of new dual FABP4/5 inhibitors based on a naphthalene-1-sulfonamide FABP4 inhibitor. Bioorg Med Chem 2019; 27:115015. [PMID: 31420256 DOI: 10.1016/j.bmc.2019.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
Abstract
Fatty acid binding protein 4 (FABP4) and fatty acid binding protein 5 (FABP5) are mainly expressed in adipocytes and/or macrophages and play essential roles in energy metabolism and inflammation. When FABP4 function is diminished, FABP5 expression is highly increased possibly as a functional compensation. Dual FABP4/5 inhibitors are expected to provide beneficial synergistic effect on treating diabetes, atherosclerosis, and inflammation-related diseases. Starting from our previously reported selective FABP4 inhibitor 8, structural biology information was used to modulate the selectivity profile and to design potent dual FABP4/5 inhibitors with good selectivity against FABP3. Two compounds A16 and B8 were identified to show inhibitory activities against both FABP4/5 and good selectivity over FABP3, which could also reduce the level of forskolin-stimulated lipolysis in mature 3T3-L1 adipocytes. Compared with compound 8, these two compounds exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW264.7 murine macrophages, with decreased levels of pro-inflammatory cytokines TNFα and MCP-1 and apparently inhibited IKK/NF-κB pathway.
Collapse
|
36
|
chen J, Yin B, Pang L, Wang W, Zhang JZH, Zhu T. Binding modes and conformational changes of FK506-binding protein 51 induced by inhibitor bindings: insight into molecular mechanisms based on multiple simulation technologies. J Biomol Struct Dyn 2019; 38:2141-2155. [DOI: 10.1080/07391102.2019.1624616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jianzhong chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - John Z. H. Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Zhu XL, Zhang R, Wu QY, Song YJ, Wang YX, Yang JF, Yang GF. Natural Product Neopeltolide as a Cytochrome bc 1 Complex Inhibitor: Mechanism of Action and Structural Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2774-2781. [PMID: 30794394 DOI: 10.1021/acs.jafc.8b06195] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The marine natural product neopeltolide was isolated from a deep-water sponge specimen of the family Neopeltidae. Neopeltolide has been proven to be a new type of inhibitor of the cytochrome bc1 complex in the mitochondrial respiration chain. However, its detailed inhibition mechanism has remained unknown. In addition, neopeltolide is difficult to synthesize because of its very complex chemical structure. In the present work, the binding mode of neopeltolide was determined for the first time by integrating molecular docking, molecular dynamics simulations, and molecular mechanics Poisson-Boltzmann surface area calculations, which showed that neopeltolide is a Qo site inhibitor of the bc1 complex. Then, according to guidance via inhibitor-protein interaction analysis, structural modification was carried out with the aim to simplify the chemical structure of neopeltolide, leading to the synthesis of a series of new neopeltolide derivatives with much simpler chemical structures. The calculated binding energies (Δ Gcal) of the newly synthesized analogues correlated very well ( R2 = 0.90) with their experimental binding free energies (Δ Gexp), which confirmed that the computational protocol was reliable. Compound 45, bearing a diphenyl ether fragment, was successfully designed and synthesized as the most potent candidate (IC50 = 12 nM) against porcine succinate cytochrome c reductase. The molecular modeling results indicate that compound 45 formed a π-π interaction with Phe274 and two hydrogen bonds with Glu271 and His161. The present work provides a new starting point for future fungicide discovery to overcome the resistance that the existing bc1 complex inhibitors are facing.
Collapse
Affiliation(s)
- Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Rui Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Yong-Jun Song
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology , Central China Normal University , Wuhan , Hubei 430079 , People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , People's Republic of China
| |
Collapse
|
38
|
Patro-Małysza J, Trojnar M, Kimber-Trojnar Ż, Mierzyński R, Bartosiewicz J, Oleszczuk J, Leszczyńska-Gorzelak B. FABP4 in Gestational Diabetes-Association between Mothers and Offspring. J Clin Med 2019; 8:jcm8030285. [PMID: 30818771 PMCID: PMC6462903 DOI: 10.3390/jcm8030285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Fetuses exposed to gestational diabetes mellitus (GDM) have a higher risk of abnormal glucose homeostasis in later life. The molecular mechanisms of this phenomenon are still not fully understood. Fatty acid binding protein 4 (FABP4) appears to be one of the most probable candidates involved in the pathophysiology of GDM. The main aim of the study was to investigate whether umbilical cord serum FABP4 concentrations are altered in term neonates born to GDM mothers. Two groups of subjects were selected—28 healthy controls and 26 patients with GDM. FABP4, leptin, and ghrelin concentrations in the umbilical cord serum, maternal serum, and maternal urine were determined via an enzyme-linked immunosorbent assay. The umbilical cord serum FABP4 levels were higher in the GDM offspring and were directly associated with the maternal serum FABP4 and leptin levels, as well as the prepregnancy body mass index (BMI) and the BMI at and after delivery; however, they correlated negatively with birth weight and lipid parameters. In the multiple linear regression models, the umbilical cord serum FABP4 concentrations depended positively on the maternal serum FABP4 and negatively on the umbilical cord serum ghrelin levels and the high-density lipoprotein cholesterol. There are many maternal variables that can affect the level of FABP4 in the umbilical cord serum, thus, their evaluation requires further investigation.
Collapse
Affiliation(s)
- Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Marcin Trojnar
- Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Radzisław Mierzyński
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jacek Bartosiewicz
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | |
Collapse
|
39
|
Tian S, Zeng J, Liu X, Chen J, Zhang JZH, Zhu T. Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling. Phys Chem Chem Phys 2019; 21:22103-22112. [DOI: 10.1039/c9cp03598b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations and binding free energy calculations are combined to investigate the selectivity of inhibitors toward type III phosphatidylinositol 4 kinases.
Collapse
Affiliation(s)
- Shuaizhen Tian
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jinzhe Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Xiao Liu
- School of Mathematics, Physics and Statistics
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
40
|
Kimber-Trojnar Ż, Patro-Małysza J, Trojnar M, Skórzyńska-Dziduszko KE, Bartosiewicz J, Oleszczuk J, Leszczyńska-Gorzelak B. Fatty Acid-Binding Protein 4-An "Inauspicious" Adipokine-In Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain and Gestational Diabetes Mellitus. J Clin Med 2018; 7:jcm7120505. [PMID: 30513800 PMCID: PMC6306707 DOI: 10.3390/jcm7120505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
The exact roles of adipokines in the pathogenesis of type 2 diabetes and obesity are still unclear. The aim of the study was to evaluate fatty acid binding protein 4 (FABP4) concentrations in the serum and urine of women with excessive gestational weight gain (EGWG) and gestational diabetes mellitus (GDM) in the early post-partum period, with reference to their laboratory test results, body composition, and hydration status. The study subjects were divided into three groups: 24 healthy controls, 24 mothers with EGWG, and 22 GDM patients. Maternal body composition and hydration status were evaluated by the bioelectrical impedance analysis (BIA) method. Concentrations of FABP4, leptin, and ghrelin were determined via enzyme-linked immunosorbent assay (ELISA). Healthy women were characterized by the lowest serum leptin concentrations and by a negative correlation between the serum and urine FABP4 levels. Serum FABP4 levels were the highest in the GDM group. Serum FABP4 and leptin concentrations correlated positively in the GDM group. The EGWG group had the highest degree of BIA disturbances in the early puerperium and positive correlations between the urine FABP4 and serum leptin and ghrelin concentrations. The physiological and pathological significance of these findings requires further elucidation.
Collapse
Affiliation(s)
- Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Marcin Trojnar
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | | | - Jacek Bartosiewicz
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jan Oleszczuk
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | |
Collapse
|