1
|
Chen J, Sheng R, Mo Q, Backman LJ, Lu Z, Long Q, Chen Z, Cao Z, Zhang Y, Liu C, Zheng H, Qi Y, Cao M, Rui Y, Zhang W. Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling. Bioact Mater 2025; 44:319-338. [PMID: 39512422 PMCID: PMC11541688 DOI: 10.1016/j.bioactmat.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.
Collapse
Affiliation(s)
- Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Ludvig J. Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, 90187, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, 90187, Umeå, Sweden
| | - Zhiyuan Lu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qiuzi Long
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Haotian Zheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Yu Qi
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Mumin Cao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Yunfeng Rui
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| |
Collapse
|
2
|
Lui PPY, Huang C, Zhang X. Selenium Nanoparticles Suppressed Oxidative Stress and Promoted Tenocyte Marker Expression in Tendon-Derived Stem/Progenitor Cells. Antioxidants (Basel) 2024; 13:1536. [PMID: 39765864 PMCID: PMC11727164 DOI: 10.3390/antiox13121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties. However, its effects on the functions of tendon-derived stem/progenitor cells (TDSCs) and tendon healing have not been reported. This study examined the effects of SeNPs on the functions of hydroperoxide (H2O2)-stimulated TDSCs. Rat patellar TDSCs were treated with H2O2 with or without SeNPs. The viability, marker of proliferation, oxidative stress, inflammation, apoptosis, and tenocyte marker expressions of H2O2-stimulated TDSCs after SeNPs treatment were assessed. Our results showed that SeNPs increased the viability and expression of the marker of proliferation of TDSCs exposed to H2O2, while concurrently reducing oxidative stress, inflammation, and apoptosis. Additionally, the expressions of tenocyte markers were significantly elevated in H2O2-treated TDSCs after treatment with SeNPs. Furthermore, the expressions of Sirt1 and Nrf2 also increased after SeNPs treatment in H2O2-stimulated TDSCs. In conclusion, SeNPs mitigated oxidative stress, inflammation, and apoptosis while enhancing the survival and expression of the marker of proliferation of TDSCs in an oxidative stress environment. Additionally, it promoted the fate of TDSCs towards the tenocyte lineage in the presence of such oxidative stress. The increased expressions of Sirt1 and Nrf2 likely mediated the anti-oxidative and anti-inflammatory effects of SeNPs. SeNPs hold promise as a novel intervention for promoting tendon healing.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116000, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
| |
Collapse
|
3
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Sheng R, Liu J, Zhang W, Luo Y, Chen Z, Chi J, Mo Q, Wang M, Sun Y, Liu C, Zhang Y, Zhu Y, Kuang B, Yan C, Liu H, Backman LJ, Chen J. Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206814. [PMID: 37097733 DOI: 10.1002/advs.202206814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/18/2023] [Indexed: 06/15/2023]
Abstract
Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Jia Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, P. R. China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Chuanquan Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yanan Zhang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yue Zhu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Chunguang Yan
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, SE-901 87, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, SE-901 87, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, P. R. China
| |
Collapse
|
5
|
Moellerberndt J, Hagen A, Niebert S, Büttner K, Burk J. Cytokines in equine platelet lysate and related blood products. Front Vet Sci 2023; 10:1117829. [PMID: 36968472 PMCID: PMC10033973 DOI: 10.3389/fvets.2023.1117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
In equine medicine, the use of regenerative therapeutics has gained growing attention, but is still a new and complex field with room for improvement. Platelet lysate (PL) can be used as therapeutic agent but is also a promising supplement for the culture of multipotent mesenchymal stromal cells. To enable a targeted use of PL both in clinic and laboratory, it is crucial to learn more details on its effective ingredients. While so far, mainly growth factor components have been analyzed in platelet-based products such as PL, the current study focuses on the content of cytokines in serum, plasma, platelet concentrate and PL. Blood was harvested from 20 clinically healthy horses and subjected to blood count and chemistry analysis, as well as to further processing to PL. Plasma and platelet concentrate were produced by a buffy-coat-based method and PL was produced from the concentrate by freeze-thawing. Samples from each horse were analyzed regarding interleukin (IL)-1β, −4, −6 and −10, interferon-γ and tumor necrosis factor-α concentrations using sandwich ELISAs. Cytokine concentrations in serum, plasma, concentrate and PL were similar and correlated significantly. However, there was a large inter-individual variability in cytokine concentrations between the different donor horses. The samples from some donor animals had overall very high cytokine concentrations, while samples from other donors had no measurable cytokine ingredient. This pattern was observed for all cytokines. There was a noticeable link between high cytokine concentrations in the blood products and abnormal findings in blood chemistry. Cytokine concentrations in samples from horses with abnormal findings were significantly higher than in samples from the remaining horses. The interindividual differences in cytokine concentrations could be highly relevant when using PL for therapy and cell culture, as the mode of action of the PL is likely changed depending on the presence of pro- and anti-inflammatory cytokines. Blood chemistry might be useful to predict cytokine concentrations in blood products.
Collapse
Affiliation(s)
- Julia Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Büttner
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Janina Burk
| |
Collapse
|
6
|
The Composition of Adipose-Derived Regenerative Cells Isolated from Lipoaspirate Using a Point of Care System Does Not Depend on the Subject's Individual Age, Sex, Body Mass Index and Ethnicity. Cells 2022; 12:cells12010030. [PMID: 36611823 PMCID: PMC9818477 DOI: 10.3390/cells12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Uncultured, unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs) are a safe and effective treatment option for various musculoskeletal pathologies. However, it is unknown whether the composition of the final cell suspension systematically varies with the subject's individual age, sex, body mass index and ethnicity. UA-ADRCs were isolated from lipoaspirate from n = 232 subjects undergoing elective lipoplasty using the Transpose RT system (InGeneron, Inc.; Houston, TX, USA). The UA-ADRCs were assessed for the number of nucleated cells, cell viability and the number of viable nucleated cells per gram of adipose tissue harvested. Cells from n = 37 subjects were further characterized using four-channel flow cytometry. The present study shows, for the first time, that key characteristics of UA-ADRCs can be independent of the subject's age, sex, BMI and ethnicity. This result has important implications for the general applicability of UA-ADRCs in regeneration of musculoskeletal tissue. Future studies must determine whether the independence of key characteristics of UA-ADRCs of the subject's individual age, sex, BMI and ethnicity only applies to the system used in the present study, or also to others of the more than 25 different experimental methods and commercially available systems used to isolate UA-ADRCs from lipoaspirate that have been described in the literature.
Collapse
|
7
|
Depuydt E, Chiers K, Van Hecke L, Saunders J, Martens A, Pille F, Spaas JH. Assessing the functional properties of tenogenic primed mesenchymal stem cells in ex vivo equine tendon and ligament explants: A preliminary study. Stem Cell Res 2022; 65:102963. [PMID: 36395687 DOI: 10.1016/j.scr.2022.102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Injuries to equine tendons and ligaments are career-compromising, causing reduced performance and premature retirement. Promising treatment alternatives have been investigated in the field of mesenchymal stem cells (MSCs). In this study, the tissue adherence and protein expression of tenogenic primed mesenchymal stem cells (tpMSCs) after administration to ex vivo tendon and ligament explants is investigated. First, collagen type I (COL I) and smooth muscle actin (SMA) expression was assessed in cytospins prepared from native MSCs and tpMSCs. Second, equine superficial digital flexor tendon and suspensory ligament explants were cultivated, and a lesion was treated with both cell types. Subsequently, cell adhesion to the explants and the amount of COL I and SMA positive cells was evaluated. The cytospins revealed a significantly higher COL I and lower SMA expression in tpMSCs compared to native MSCs. In the explants, tpMSCs showed a significantly higher tendon and ligament adherence. Furthermore, a significantly higher percentage of COL I positive and a lower percentage of SMA positive cells were observed in the lesions treated with tpMSCs. The results of these explant co-cultures may demonstrate at least a part of the mechanism of action and functional properties of tpMSCs in restoring function to tendons and ligaments.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Koen Chiers
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium.
| | - Jimmy Saunders
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Ann Martens
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Frederik Pille
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jan H Spaas
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium; Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30606 Athens, GA, USA.
| |
Collapse
|
8
|
Zhang J, Zhang W, Sun T, Wang J, Li Y, Liu J, Li Z. The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8671482. [PMID: 36387746 PMCID: PMC9663214 DOI: 10.1155/2022/8671482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Jing Liu
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| |
Collapse
|
9
|
Heyman E, Meeremans M, Devriendt B, Olenic M, Chiers K, De Schauwer C. Validation of a color deconvolution method to quantify MSC tri-lineage differentiation across species. Front Vet Sci 2022; 9:987045. [PMID: 36311666 PMCID: PMC9608146 DOI: 10.3389/fvets.2022.987045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for both human and veterinary regenerative medicine applications because of their abundance and ability to differentiate into several lineages. Mesenchymal stem cells are however a heterogeneous cell population and as such, it is imperative that they are unequivocally characterized to acquire reproducible results in clinical trials. Although the tri-lineage differentiation potential of MSCs is reported in most veterinary studies, a qualitative evaluation of representative histological images does not always unambiguously confirm tri-lineage differentiation. Moreover, potential differences in differentiation capacity are not identified. Therefore, quantification of tri-lineage differentiation would greatly enhance proper characterization of MSCs. In this study, a method to quantify the tri-lineage differentiation potential of MSCs is described using digital image analysis, based on the color deconvolution plug-in (ImageJ). Mesenchymal stem cells from three species, i.e., bovine, equine, and porcine, were differentiated toward adipocytes, chondrocytes, and osteocytes. Subsequently, differentiated MSCs were stained with Oil Red O, Alcian Blue, and Alizarin Red S, respectively. Next, a differentiation ratio (DR) was obtained by dividing the area % of the differentiation signal by the area % of the nuclear signal. Although MSCs isolated from all donors in all species were capable of tri-lineage differentiation, differences were demonstrated between donors using this quantitative DR. Our straightforward, simple but robust method represents an elegant approach to determine the degree of MSC tri-lineage differentiation across species. As such, differences in differentiation potential within the heterogeneous MSC population and between different MSC sources can easily be identified, which will support further optimization of regenerative therapies.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium,*Correspondence: Emma Heyman
| | - Marguerite Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maria Olenic
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium,Tissue Engineering Lab, Muscles and Movement Group, Faculty of Medicine, Catholic University of Leuven, Kortrijk, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
10
|
Iuso AM, Pacik D, Martin J, Oakes D, Malanga GA. Adipose cellular injection in the treatment of an intrasubstance Achilles tendon defect: a case report. Regen Med 2022; 17:835-843. [PMID: 36068962 DOI: 10.2217/rme-2021-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our patient presented with a 1-year history of right sided Achilles tendon pain and weakness due to partial intrasubstance tear. The injury was refractory to conservative treatment, leading to a trial injection of microfragmented adipose tissue. Progressive healing and improved function were documented on physical exam and sonographically at subsequent follow-up appointments. About 4 weeks following the injection, the patient was able to return to his regular activity level. At the 6 month follow-up appointment, the patient continued to be pain free and had resumed all prior activities without limitations. This case highlights the potential microfragmented adipose tissue has as a regenerative treatment modality for the management of partial Achilles tendon tears.
Collapse
Affiliation(s)
- Anthony M Iuso
- Touro College of Osteopathic Medicine, 230 W 125th St 3rd Floor, New York, NY 10027, USA
| | - Deborah Pacik
- Department of Rehabilitation, Montefiore Medical Center, 150 East 210th Street, Bronx, NY 10467, USA.,Currently at Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, 5 E 98th St 6th Floor, New York, NY 10003, USA
| | - Joshua Martin
- New Jersey Regenerative Institute LLC, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA.,Currently at Regenerative Orthopedics & Sports Medicine, 1145 19th St NW, Unit 410, Washington, DC 20036, USA
| | - Devin Oakes
- Department of Rehabilitation, Montefiore Medical Center, 150 East 210th Street, Bronx, NY 10467, USA
| | - Gerard A Malanga
- New Jersey Regenerative Institute LLC, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA.,Department of Physical Medicine & Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
12
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Roth SP, Burk J, Brehm W, Troillet A. MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic Mechanisms. Front Bioeng Biotechnol 2022; 10:855095. [PMID: 35445006 PMCID: PMC9015188 DOI: 10.3389/fbioe.2022.855095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-sensitive to their microenvironment, their therapeutic efficacy is influenced by their tissue-specific pathologically altered targets. These include not only cellular components, such as resident cells and invading immunocompetent cells, but also components of the tissue-characteristic extracellular matrix. Although numerous in vitro models have already shown potential MSC-related mechanisms of action in tendon and joint diseases, only a limited number reflect the disease-specific microenvironment and allow conclusions about well-directed MSC-based therapies for injured tendon and joint-associated tissues. In both injured tissue types, inflammatory processes play a pivotal pathophysiological role. In this context, MSC-mediated macrophage modulation seems to be an important mode of action across these tissues. Additional target cells of MSC applied in tendon and joint disorders include tenocytes, synoviocytes as well as other invading and resident immune cells. It remains of critical importance whether the context-sensitive interplay between MSC and tissue- and disease-specific targets results in an overall promotion or inhibition of the desired therapeutic effects. This review presents the authors’ viewpoint on disease-related targets of MSC therapeutically applied in tendon and joint diseases, focusing on the equine patient as valid animal model.
Collapse
Affiliation(s)
- Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Walter Brehm
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Antonia Troillet
- Clinic for Horses, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Antonia Troillet,
| |
Collapse
|
14
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
15
|
Depuydt E, Broeckx SY, Chiers K, Patruno M, Da Dalt L, Duchateau L, Saunders J, Pille F, Martens A, Van Hecke L, Spaas JH. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Front Vet Sci 2022; 8:789293. [PMID: 35281431 PMCID: PMC8907452 DOI: 10.3389/fvets.2021.789293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for the treatment of equine tendon disease is widely investigated because of their regenerative and immunomodulatory potential. However, questions have been raised concerning the immunogenic properties of allogeneic MSCs. Therefore, two studies were conducted to assess the safety of equine allogeneic peripheral blood-derived tenogenic primed MSCs (tpMSCs). The objective was to evaluate if a single and repeated tpMSC administration induced a cellular and humoral immune response in horses suffering from tendon injuries. Horses enrolled in the first study (n = 8) had a surgically induced superficial digital flexor tendon core lesion and were treated intralesionally with tpMSCs. Before and after treatment the cellular immunogenicity was assessed by modified mixed lymphocyte reactions. The humoral immune response was investigated using a crossmatch assay. Presence of anti-bovine serum albumin (BSA) antibodies was detected via ELISA. Horses enrolled in the second study (n = 6) suffered from a naturally occurring tendon injury and were treated twice with tpMSCs. Blood was collected after the second treatment for the same immunological assays. No cellular immune response was found in any of the horses. One out of eight horses in the first study and none of the horses in the second study had anti-tpMSC antibodies. This particular horse had an equine sarcoid and further investigation revealed presence of antibodies against sarcoid cells and epithelial-like stem cells before treatment, which increased after treatment. Additionally, formation of antibodies against BSA was observed. These findings might indicate a non-specific immune response generated after treatment. Serum from the other horses revealed no such antibody formation. These two studies showed that the administration of tpMSCs did not induce a cellular or humoral immune response following an intralesional single or repeated (two consecutive) allogeneic tpMSC treatment in horses with tendon injury, except for one horse. Therefore, a larger field study should confirm these findings and support the safe use of tpMSCs as a therapeutic for horses suffering from tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y. Broeckx
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Jan H. Spaas
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Impact of Electrospun Piezoelectric Core-Shell PVDFhfp/PDMS Mesh on Tenogenic and Inflammatory Gene Expression in Human Adipose-Derived Stem Cells: Comparison of Static Cultivation with Uniaxial Cyclic Tensile Stretching. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010021. [PMID: 35049730 PMCID: PMC8772741 DOI: 10.3390/bioengineering9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Specific microenvironments can trigger stem cell tenogenic differentiation, such as specific substrates or dynamic cell cultivation. Electrospun meshes composed by core–shell fibers (random or aligned; PDMS core; piezoelectric PVDFhfp shell) were fabricated by coaxial electrospinning. Elastic modulus and residual strain were assessed. Human ASCs were seeded on such scaffolds either under static conditions for 1 week or with subsequent 10% dynamic stretching for 10,800 cycles (1 Hz, 3 h), assessing load elongation curves in a Bose® bioreactor system. Gene expression for tenogenic expression, extracellular matrix, remodeling, pro-fibrotic and inflammatory marker genes were assessed (PCR). For cell-seeded meshes, the E modulus increased from 14 ± 3.8 MPa to 31 ± 17 MPa within 3 h, which was not observed for cell-free meshes. Random fibers resulted in higher tenogenic commitment than aligned fibers. Dynamic cultivation significantly enhanced pro-inflammatory markers. Compared to ASCs in culture flasks, ASCs on random meshes under static cultivation showed a significant upregulation of Mohawk, Tenascin-C and Tenomodulin. The tenogenic commitment expressed by human ASCs in contact with random PVDFhfp/PDMS paves the way for using this novel highly elastic material as an implant to be wrapped around a lacerated tendon, envisioned as a functional anti-adhesion membrane.
Collapse
|
17
|
Rho/ROCK Inhibition Promotes TGF- β3-Induced Tenogenic Differentiation in Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:8284690. [PMID: 34659420 PMCID: PMC8519677 DOI: 10.1155/2021/8284690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising therapeutic tool for tendon regeneration. Their tenogenic differentiation is crucial for tissue engineering approaches and may support their beneficial effects after cell transplantation in vivo. The transforming growth factor (TGF)-β, signalling via intracellular Smad molecules, is a potent paracrine mediator of tenogenic induction. Moreover, scaffold topography or tendon matrix components induced tenogenesis via activation of the Rho/ROCK cascade, which, however, is also involved in pathological adaptations in extracellular matrix pathologies. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-β3/Smad signalling in tenogenic differentiation in both human and equine MSC. Primary equine and human MSC isolated from adipose tissue were cultured as monolayers or on tendon-derived decellularized scaffolds to evaluate the influence of the ROCK inhibitor Y-27632 on TGF-β3-induced tenogenic differentiation. The MSC were incubated with and without TGF-β3 (10 ng/ml), Y-27632 (10 μM), or both. On day 1 and day 3, the signalling pathway of TGF-β and the actin cytoskeleton were visualized by Smad 2/3 and phalloidin staining, and gene expression of signalling molecules and tendon markers was assessed. ROCK inhibition was confirmed by disruption of the actin cytoskeleton. Activation of Smad 2/3 with nuclear translocation was evident upon TGF-β3 stimulation. Interestingly, this effect was most pronounced with additional ROCK inhibition in both species (p < 0.05 in equine MSC). In line with that, the tendon marker scleraxis showed the strongest upregulation when TGF-β3 and ROCK inhibition were combined (p < 0.05 in human MSC). The regulation pattern of tendon extracellular matrix components and the signalling molecules TGF-β3 and Smad 8 showed differences between human and equine MSC. The obtained results showed that ROCK inhibition promotes the TGF-β3/Smad 2/3 axis, with possible implications for future MSC priming regimes in tendon therapy.
Collapse
|
18
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Abstract
Three-dimensional (3D) cell cultures combining multipotent mesenchymal stromal cells (MSC), tendon extracellular matrix scaffolds, and mechanical stimulation by a bioreactor have been used to induce tenogenic differentiation in vitro. Yet, these conditions alone do not mimic the environment of acute inflammatory tendon disease adequately, thus the results of such studies are not representatives for tendon regeneration after acute injury. In this chapter, we describe two different approaches to introduce inflammatory stimuli, comprising co-culture with leukocytes and supplementation with the cytokines IL-1 β and TNF-α. The presented in vitro model of inflammatory tendon disease could be used to study musculoskeletal pathophysiology and regeneration in more depth.
Collapse
|
20
|
Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas JH, Pille F, Martens A. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model. Front Vet Sci 2021; 8:641441. [PMID: 33748217 PMCID: PMC7973085 DOI: 10.3389/fvets.2021.641441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Tendon injuries are very common in horses and jeopardize the athletic performance, and due to the high risk of reinjury may lead to early retirement. The use of mesenchymal stem cells for the treatment of equine tendon disease is widely investigated because of their regenerative potential. The objective of this study is to investigate the safety and efficacy of equine allogeneic tenogenic primed mesenchymal stem cells (tpMSCs) for the management of tendinitis in horses. Methods: A core lesion was surgically induced in the superficial digital flexor tendon of both forelimbs of eight horses. After 7 days, one forelimb was treated with tpMSCs, while the contralateral forelimb served as an intra-individual control and was treated with saline. A prescribed exercise program was started. All horses underwent a daily clinical evaluation throughout the entire study period of 112 days. Blood samples were taken at different time points for hematological and biochemical analysis. Tendon assessment, lameness examination, ultrasound assessment and ultrasound tissue characterization (UTC) were performed at regular time intervals. At the end of the study period, the superficial digital flexor tendons were evaluated macroscopically and histologically. Results: No suspected or serious adverse events occurred during the entire study period. There was no difference in local effects including heat and pain to pressure between a single intralesional injection of allogeneic tpMSCs and a single intralesional injection with saline. A transient moderate local swelling was noted in the tpMSC treated limbs, which dissipated by day 11. Starting at a different time point depending on the parameter, a significant improvement was observed in the tpMSC treated limbs compared to the placebo for echogenicity score, fiber alignment score, anterior-posterior thickness of the tendon and echo type by UTC assessment. Immunohistochemistry 112 days post-injection revealed that the amount of collagen type I and Von Willebrand factor were significantly higher in the tendon tissue of the tpMSC group, while the amount of collagen type III and smooth muscle actin was significantly lower. Conclusion: Equine allogeneic tenogenic primed mesenchymal stem cells were shown to be well-tolerated and may be effective for the management of tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Lore Van Hecke
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans van Schie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Research and Development, UTC Imaging, Stein, Netherlands
| | - Charlotte Beerts
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Rapamycin-Induced Autophagy Promotes the Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells in the Temporomandibular Joint in Response to IL-1 β. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4035306. [PMID: 33145347 PMCID: PMC7599423 DOI: 10.1155/2020/4035306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Cartilage defects in temporomandibular disorders (TMD) lead to chronic pain and seldom heal. Synovium-derived mesenchymal stem cells (SMSCs) exhibit superior chondrogenesis and have become promising seed cells for cartilage tissue engineering. However, local inflammatory conditions that affect the repair of articular cartilage by SMSCs present a challenge, and the specific mechanism through which the function remains unclear. Thus, it is important to explore the chondrogenesis of SMSCs under inflammatory conditions of TMD such that they can be used more effectively in clinical treatment. In this study, we obtained SMSCs from TMD patients with severe cartilage injuries. In response to stimulation with IL-1β, which is well known as one of the most prevalent cytokines in TMD, MMP13 expression increased, while that of SOX9, aggrecan, and collagen II decreased during chondrogenic differentiation. At the same time, IL-1β upregulated the expression of mTOR and decreased the ratio of LC3-II/LC3-I and the formation of autophagosomes. Further study revealed that rapamycin pretreatment promoted the migration of SMSCs and the expression of chondrogenesis-related markers in the presence of IL-1β by inducing autophagy. 3-Benzyl-5-((2-nitrophenoxy)methyl)-dihydrofuran-2(3H)-one (3BDO), a new activator of mTOR, inhibited autophagy and increased the expression of p-GSK3βser9 and β-catenin, simulating the effect of IL-1β stimulation. Furthermore, rapamycin reduced the expression of mTOR, whereas the promotion of LC3-II/LC3-I was blocked by the GSK3β inhibitor TWS119. Taken together, these results indicate that rapamycin enhances the chondrogenesis of SMSCs by inducing autophagy, and GSK3β may be an important regulator in the process of rapamycin-induced autophagy. Thus, inducing autophagy may be a useful approach in the chondrogenic differentiation of SMSCs in the inflammatory microenvironment and may represent a novel TMD treatment.
Collapse
|
22
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
23
|
Janvier AJ, Canty-Laird E, Henstock JR. A universal multi-platform 3D printed bioreactor chamber for tendon tissue engineering. J Tissue Eng 2020; 11:2041731420942462. [PMID: 32944210 PMCID: PMC7469720 DOI: 10.1177/2041731420942462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
A range of bioreactors use linear actuators to apply tensile forces in vitro, but differences in their culture environments can limit a direct comparison between studies. The widespread availability of 3D printing now provides an opportunity to develop a 'universal' bioreactor chamber that, with minimal exterior editing can be coupled to a wide range of commonly used linear actuator platforms, for example, the EBERS-TC3 and CellScale MCT6, resulting in a greater comparability between results and consistent testing of potential therapeutics. We designed a bioreactor chamber with six independent wells that was 3D printed in polylactic acid using an Ultimaker 2+ and waterproofed using a commercially available coating (XTC-3D), an oxirane resin. The cell culture wells were further coated with Sylgard-184 polydimethylsiloxane (PDMS) to produce a low-adhesion well surface. With appropriate coating and washing steps, all materials were shown to be non-cytotoxic by lactate dehydrogenase assay, and the bioreactor was waterproof, sterilisable and reusable. Tissue-engineered tendons were generated from human mesenchymal stem cells in a fibrin hydrogel and responded to 5% cyclic strain (0.5 Hz, 5 h/day, 21 days) in the bioreactor by increased production of collagen-Iα1 and decreased production of collagen-IIIα1. Calcification of the extracellular matrix was observed in unstretched tendon controls indicating abnormal differentiation, while tendons cultured under cyclic strain did not calcify and exhibited a tenogenic phenotype. The ease of manufacturing this bioreactor chamber enables researchers to quickly and cheaply reproduce this culture environment for use with many existing bioreactor actuator platforms by downloading the editable CAD files from a public database and following the manufacturing steps we describe.
Collapse
Affiliation(s)
- Adam J Janvier
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - James R Henstock
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
25
|
Evrova O, Kellenberger D, Calcagni M, Vogel V, Buschmann J. Supporting Cell-Based Tendon Therapy: Effect of PDGF-BB and Ascorbic Acid on Rabbit Achilles Tenocytes in Vitro. Int J Mol Sci 2020; 21:ijms21020458. [PMID: 31936891 PMCID: PMC7014238 DOI: 10.3390/ijms21020458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-based tendon therapies with tenocytes as a cell source need effective tenocyte in vitro expansion before application for tendinopathies and tendon injuries. Supplementation of tenocyte culture with biomolecules that can boost proliferation and matrix synthesis is one viable option for supporting cell expansion. In this in vitro study, the impacts of ascorbic acid or PDGF-BB supplementation on rabbit Achilles tenocyte culture were studied. Namely, cell proliferation, changes in gene expression of several ECM and tendon markers (collagen I, collagen III, fibronectin, aggrecan, biglycan, decorin, ki67, tenascin-C, tenomodulin, Mohawk, α-SMA, MMP-2, MMP-9, TIMP1, and TIMP2) and ECM deposition (collagen I and fibronectin) were assessed. Ascorbic acid and PDGF-BB enhanced tenocyte proliferation, while ascorbic acid significantly accelerated the deposition of collagen I. Both biomolecules led to different changes in the gene expression profile of the cultured tenocytes, where upregulation of collagen I, Mohawk, decorin, MMP-2, and TIMP-2 was observed with ascorbic acid, while these markers were downregulated by PDGF-BB supplementation. Vice versa, there was an upregulation of fibronectin, biglycan and tenascin-C by PDGF-BB supplementation, while ascorbic acid led to a downregulation of these markers. However, both biomolecules are promising candidates for improving and accelerating the in vitro expansion of tenocytes, which is vital for various tendon tissue engineering approaches or cell-based tendon therapy.
Collapse
Affiliation(s)
- Olivera Evrova
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Damian Kellenberger
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Correspondence: ; Tel.: +41-44-255-9895
| |
Collapse
|
26
|
Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4:22. [PMID: 31815001 PMCID: PMC6889290 DOI: 10.1038/s41536-019-0083-6] [Citation(s) in RCA: 1138] [Impact Index Per Article: 189.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
Collapse
|
27
|
Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis. Cells 2019; 8:cells8090990. [PMID: 31462003 PMCID: PMC6769780 DOI: 10.3390/cells8090990] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components including cartilage, joint capsule, bone and bone marrow, and ligaments. Particularly intraarticular ligaments, which connect the articulating bones such as the anterior cruciate ligament (ACL) and meniscotibial ligaments, fixing the fibrocartilaginous menisci to the tibial bone, are prone to the inflamed joint milieu in OA. However, the pathogenesis of ligament degeneration on the cellular level, most likely triggered by OA associated inflammation, remains poorly understood. Hence, this review sheds light into the intimate interrelation between ligament degeneration, synovitis, joint cartilage degradation, and dysbalanced subchondral bone remodeling. Various features of ligament degeneration accompanying joint cartilage degradation have been reported including chondroid metaplasia, cyst formation, heterotopic ossification, and mucoid and fatty degenerations. The entheses of ligaments, fixing ligaments to the subchondral bone, possibly influence the localization of subchondral bone lesions. The transforming growth factor (TGF)β/bone morphogenetic (BMP) pathway could present a link between degeneration of the osteochondral unit and ligaments with misrouted stem cell differentiation as one likely reason for ligament degeneration, but less studied pathways such as complement activation could also contribute to inflammation. Facilitation of OA progression by changed biomechanics of degenerated ligaments should be addressed in more detail in the future.
Collapse
|