1
|
Li R, Fang H, Shen J, Jin Y, Zhao Y, Wang R, Fu Y, Tian Y, Yu H, Zhang J. Curcumin Alleviates LPS-Induced Oxidative Stress, Inflammation and Apoptosis in Bovine Mammary Epithelial Cells via the NFE2L2 Signaling Pathway. Toxins (Basel) 2021; 13:208. [PMID: 33809242 PMCID: PMC7999830 DOI: 10.3390/toxins13030208] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin, which may cause immune response and inflammation of bovine mammary glands. Mastitis impairs animal health and results in economic loss. Curcumin (CUR) is a naturally occurring diketone compound, which has attracted widespread attention as a potential anti-inflammatory antioxidant. The purpose of this study is to investigate whether CUR can reduce the damage of bovine mammary epithelial cells (MAC-T) induced by LPS and its underlying molecular mechanism. The MAC-T cell line was treated with different concentrations of LPS and CUR for 24 h. The results showed that CUR rescued the decrease of MAC-T cell viability and cell damage induced by LPS. At the same time, 10 µM CUR and 100 µg/mL LPS were used to treat the cells in the follow-up study. The results showed CUR treatment reduced the accumulation of reactive oxygen species (ROS), the expression of inflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-8 (IL-8), IL-6 and IL-1β) and the rate of apoptosis induced by LPS. These effects were associated with the activation of the nuclear factor E2-related factor 2 (NFE2L2)-antioxidant response element (ARE) pathway coupled with inactivation of the nuclear factor-κB (NF-κB) inflammatory and caspase/Bcl2 apoptotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.L.); (H.F.); (J.S.); (Y.J.); (Y.Z.); (R.W.); (Y.F.); (Y.T.)
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.L.); (H.F.); (J.S.); (Y.J.); (Y.Z.); (R.W.); (Y.F.); (Y.T.)
| |
Collapse
|
2
|
Lepiarczyk E, Bossowska A, Majewska M, Skowrońska A, Kaleczyc J, Majewski M. Distribution and chemical coding of phoenixin-immunoreactive nerve structures in the spinal cord of the pig. Ann Anat 2020; 232:151559. [PMID: 32569824 DOI: 10.1016/j.aanat.2020.151559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Phoenixin (PNX) is a newly described peptide found in both neural and non-neural tissues. Until now, no attempts have been made to investigate the expression of PNX in the nervous system of animals other than laboratory rodents, in which an enzyme immunoassay revealed the highest quantity of the substance in the spinal cord. Since the domestic pig, due to its anatomical and histological resemblance to humans, is often used as an animal model in biomedical investigations, the present study was designed to examine PNX-immunoreactivity in the spinal cords of female pigs (n=5). The spinal cords were dissected and divided into the cervical, thoracic, lumbar, sacral and coccygeal segments, which were sectioned transversally into 10-μm-thick serial sections. The sections from each spinal cord segment were processed for double-labelling immunohistochemistry using antibodies against PNX in a mixture with those against calcitonin gene-related peptide (CGRP), substance P (SP) or choline acetyltransferase (CHAT). The PNX-immunoreactivity had a similar distribution in the grey matter of all the spinal cord sections examined and was mainly observed in varicose nerve fibres (NF) that formed a dense plexus in laminae I and II of the dorsal horn. Nearly all of the PNX-immunoreactive NF stained also for CGRP or SP and, interestingly, many of them were CHAT-positive. The present study has provided for the first time the detailed information on the arrangement and chemical features of nerve structures expressing PNX-immunoreactivity in the spinal cord of a large mammal. The exact function of PNX in the spinal cord is not known yet. However, the distribution pattern and immunohistochemical characteristics of PNX-IR NF clearly suggest that this peptite most likely plays a role in spinal noxious signalling.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
3
|
Transcriptome, Spliceosome and Editome Expression Patterns of the Porcine Endometrium in Response to a Single Subclinical Dose of Salmonella Enteritidis Lipopolysaccharide. Int J Mol Sci 2020; 21:ijms21124217. [PMID: 32545766 PMCID: PMC7352703 DOI: 10.3390/ijms21124217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.
Collapse
|
4
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
5
|
Lee JS, Jeon YJ, Park SY, Son CG. An Adrenalectomy Mouse Model Reflecting Clinical Features for Chronic Fatigue Syndrome. Biomolecules 2020; 10:E71. [PMID: 31906307 PMCID: PMC7023174 DOI: 10.3390/biom10010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is one of the most intractable diseases and is characterized by severe central fatigue that impairs even daily activity. To date, the pathophysiological mechanisms are uncertain and no therapies exist. Therefore, a proper animal model reflecting the clinical features of CFS is urgently required. We compared two CFS animal models most commonly used, by injection with lipopolysaccharide (LPS from Escherichia coli O111:B4) or polyinosinic: polycytidylic acid (poly I:C), along with bilateral adrenalectomy (ADX) as another possible model. Both LPS- and poly I:C-injected mice dominantly showed depressive behaviors, while ADX led to fatigue-like performances with high pain sensitivity. In brain tissues, LPS injection notably activated microglia and the 5-hydroxytryptamine (HT)1A receptor in the prefrontal cortex and hippocampus. Poly I:C-injection also remarkably activated the 5-HT transporter and 5-HT1A receptor with a reduction in serotonin levels in the brain. ADX particularly activated astrocytes and transforming growth factor beta (TGF-β) 1 in all brain regions. Our results revealed that LPS and poly I:C animal models approximate depressive disorder more closely than CFS. We suggest that ADX is a possible method for establishing a mouse model of CFS reflecting clinical features, especially in neuroendocrine system.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| | - Yoo-Jin Jeon
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| | - Samuel-Young Park
- Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34323, Korea;
| | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| |
Collapse
|
6
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
7
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
Mikołajczyk A, Złotkowska D. Neuroimmunological Implications of Subclinical Lipopolysaccharide from Salmonella Enteritidis. Int J Mol Sci 2018; 19:ijms19103274. [PMID: 30360353 PMCID: PMC6214136 DOI: 10.3390/ijms19103274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence has indicated that lipopolysaccharide (LPS) is implicated in neuroimmunological responses, but the body’s response to subclinical doses of bacterial endotoxin remains poorly understood. The influence of a low single dose of LPS from Salmonella Enteritidis, which does not result in any clinical symptoms of intoxication (subclinical lipopolysaccharide), on selected cells and signal molecules of the neuroimmune system was tested. Five juvenile crossbred female pigs were intravenously injected with LPS from S. Enteritidis (5 μg/kg body weight (b.w.)), while five pigs from the control group received sodium chloride in the same way. Our data demonstrated that subclinical LPS from S. Enteritidis increased levels of dopamine in the brain and neuropeptides such as substance P (SP), galanin (GAL), neuropeptide Y (NPY), and active intestinal peptide (VIP) in the cervical lymph nodes with serum hyperhaptoglobinaemia and reduction of plasma CD4 and CD8 T-lymphocytes seven days after lipopolysaccharide administration. CD4 and CD8 T-lymphocytes from the cervical lymph node and serum interleukin-6 and tumour necrosis factor α showed no significant differences between the control and lipopolysaccharide groups. Subclinical lipopolysaccharide from S. Enteritidis can affect cells and signal molecules of the neuroimmune system. The presence of subclinical lipopolysaccharide from S. Enteritidis is associated with unknown prolonged consequences and may require eradication and a deeper search into the asymptomatic carrier state of Salmonella spp.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|