1
|
Gulino V, Brunasso L, Avallone C, Costa V, Adorno AA, Lombardo MC, Tumbiolo S, Iacopino DG, Maugeri R. Caregivers' Perspective and Burden of the End-of-Life Phase of Patients with Glioblastoma: A Multicenter Retrospective Study. World Neurosurg 2024; 192:e49-e55. [PMID: 39214291 DOI: 10.1016/j.wneu.2024.08.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Glioblastoma is the most common aggressive primary brain tumor in adults. Changes in cognition, personality, and behavior of patients as well as side effects of treatments cause unique challenges for providing care and may impact caregiver burden in different ways. METHODS This retrospective study included 45 patients with a diagnosis of glioblastoma treated between January 2022 and June 2023 in 2 neurosurgical departments. We investigated the quality of life and the experiences of patients with glioblastoma and caregivers in the end-of-life phase using a validated questionnaire consisting of 38 questions related to the caregiver's view of the patient's terminal phase and another 26 questions regarding caregiver's experiences and emotions during the last 3 months of the patient's life. RESULTS Fatigue, reduced consciousness, and sadness were the most common patient symptoms reported by their caregivers. The reported quality of life of caregivers was low and in accordance with the quality of life that they attributed to the patient. Symptoms of burnout and feelings of insufficient information emphasize the urgent need for psychological support and training dedicated to caregivers. CONCLUSIONS The end-of-life phases of patients with glioblastoma represent a critical factor that significantly affects not only the patient but also the caregiver's burden, caregiving tasks, and time. A multidisciplinary support program is needed to address and improve caregivers' burden.
Collapse
Affiliation(s)
- Vincenzo Gulino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Palermo, Italy.
| | - Chiara Avallone
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Vanessa Costa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | | | - Silvana Tumbiolo
- Department of Neurosurgery, Villa Sofia Hospital, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Rasouli A, Roshangar L, Hosseini M, Pourmohammadfazel A, Nikzad S. Beyond boundaries: The therapeutic potential of exosomes in neural microenvironments in neurological disorders. Neuroscience 2024; 553:98-109. [PMID: 38964450 DOI: 10.1016/j.neuroscience.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Neurological disorders are a diverse group of conditions that can significantly impact individuals' quality of life. The maintenance of neural microenvironment homeostasis is essential for optimal physiological cellular processes. Perturbations in this delicate balance underlie various pathological manifestations observed across various neurological disorders. Current treatments for neurological disorders face substantial challenges, primarily due to the formidable blood-brain barrier and the intricate nature of neural tissue structures. These obstacles have resulted in a paucity of effective therapies and inefficiencies in patient care. Exosomes, nanoscale vesicles that contain a complex repertoire of biomolecules, are identifiable in various bodily fluids. They hold substantial promise in numerous therapeutic interventions due to their unique attributes, including targeted drug delivery mechanisms and the ability to cross the BBB, thereby enhancing their therapeutic potential. In this review, we investigate the therapeutic potential of exosomes across a range of neurological disorders, including neurodegenerative disorders, traumatic brain injury, peripheral nerve injury, brain tumors, and stroke. Through both in vitro and in vivo studies, our findings underscore the beneficial influence of exosomes in enhancing the neural microenvironment following neurological diseases, offering promise for improved neural recovery and management in these conditions.
Collapse
Affiliation(s)
- Arefe Rasouli
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammadbagher Hosseini
- Department of Pediatrics, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pourmohammadfazel
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
5
|
Baselga M, Iruzubieta P, Castiella T, Monzón M, Monleón E, Berga C, Schuhmacher AJ, Junquera C. Spheresomes are the main extracellular vesicles in low-grade gliomas. Sci Rep 2023; 13:11180. [PMID: 37430101 DOI: 10.1038/s41598-023-38084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Cancer progression and its impact on treatment response and prognosis is deeply regulated by tumour microenvironment (TME). Cancer cells are in constant communication and modulate TME through several mechanisms, including transfer of tumour-promoting cargos through extracellular vesicles (EVs) or oncogenic signal detection by primary cilia. Spheresomes are a specific EV that arise from rough endoplasmic reticulum-Golgi vesicles. They accumulate beneath cell membrane and are released to the extracellular medium through multivesicular spheres. This study describes spheresomes in low-grade gliomas using electron microscopy. We found that spheresomes are more frequent than exosomes in these tumours and can cross the blood-brain barrier. Moreover, the distinct biogenesis processes of these EVs result in unique cargo profiles, suggesting different functional roles. We also identified primary cilia in these tumours. These findings collectively contribute to our understanding of glioma progression and metastasis.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
| | - Pablo Iruzubieta
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Tomás Castiella
- Department of Pathological Anatomy, Legal Medicine, and Toxicology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Marta Monzón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain.
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain.
| | - Carmen Berga
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018, Zaragoza, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
6
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
7
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
8
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Cifola I, Caratelli S, Sconocchia G, D'Agnano I, Cenciarelli C. Glioma extracellular vesicles for precision medicine: prognostic and theragnostic application. Discov Oncol 2022; 13:49. [PMID: 35716231 PMCID: PMC9206693 DOI: 10.1007/s12672-022-00514-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
EV produced by tumour cells carry a diverse population of proteins, lipids, DNA, and RNA molecules throughout the body and appear to play an important role in the overall development of the disease state, according to growing data. Gliomas account for a sizable fraction of all primary brain tumours and the vast majority of brain malignancies. Glioblastoma multiforme (GBM) is a kind of grade IV glioma that has a very dismal prognosis despite advancements in diagnostic methods and therapeutic options. The authors discuss advances in understanding the function of extracellular vesicles (EVs), in overall glioma growth, as well as how recent research is uncovering the utility of EVs in glioma diagnostics, prognostic and therapeutics approaches.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB)-CNR, Segrate, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
| | | | - Igea D'Agnano
- Institute for Biomedical Technologies (ITB)-CNR, Segrate, Italy
| | | |
Collapse
|
9
|
Comparative Proteomic Profiling of Ectosomes Derived from Thyroid Carcinoma and Normal Thyroid Cells Uncovers Multiple Proteins with Functional Implications in Cancer. Cells 2022; 11:cells11071184. [PMID: 35406748 PMCID: PMC8997476 DOI: 10.3390/cells11071184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Proteins carried by tumor-derived ectosomes play an important role in cancer progression, and are considered promising diagnostic markers. In the present study, a shotgun nanoLC–MS/MS proteomic approach was applied to profile and compare the protein content of ectosomes released in vitro by normal human thyroid follicular epithelial Nthy-ori 3-1 cells and human anaplastic thyroid carcinoma (TC) 8305C cells. Additionally, the pro-migratory and pro-proliferative effects of Nthy-ori 3-1- and 8305C-derived ectosomes exerted on the recipient cells were assessed in wound closure and Alamar Blue assays. A total of 919 proteins were identified in all replicates of 8305C-derived ectosomes, while Nthy-ori 3-1-derived ectosomes contained a significantly lower number of 420 identified proteins. Qualitative analysis revealed 568 proteins present uniquely in 8305C-derived ectosomes, suggesting their applicability in TC diagnosis and management. In addition, 8305C-derived ectosomes were able to increase the proliferation and motility rates of the recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. Our description of ectosome protein content and its related functions provides the first insight into the role of ectosomes in TC development and progression. The results also indicate the applicability of some of these ectosomal proteins for further investigation regarding their potential as circulating TC biomarkers.
Collapse
|
10
|
Huang Z, Keramat S, Izadirad M, Chen ZS, Soukhtanloo M. The Potential Role of Exosomes in the Treatment of Brain Tumors, Recent Updates and Advances. Front Oncol 2022; 12:869929. [PMID: 35371984 PMCID: PMC8968044 DOI: 10.3389/fonc.2022.869929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Exosomes are small endosomal derived membrane extracellular vesicles that contain cell-specific cargos such as lipid, protein, DNA, RNA, miRNA, long non-coding RNA, and some other cell components that are released into surrounding body fluids upon the fusion of multivesicular bodies (MVB) and the plasma membrane. Exosomes are a one-of-a-kind cell-to-cell communication mechanism that might pave the way for target therapy. The use of exosomes as a therapeutic potential in a variety of cancers has been and is still being investigated. One of the most important of these has been the use of exosomes in brain tumors therapy. Exosome contents play a crucial role in brain tumor progression by providing a favorable niche for tumor cell proliferation. Also, exosomes that are secreted from tumor cells, lead to the protection of tumor cells and their proliferation in the tumor environment by reducing the inflammatory response and suppression of the immune system. Although some treatment protocols such as surgery, chemotherapy, and radiotherapy are common in brain tumors, they do not result in complete remission in the treatment of some malignant and metastatic brain tumors. Identifying, targeting, and blocking exosomes involved in the progression of brain tumors could be a promising way to reduce brain tumor progression. On the other way, brain tumor therapy with effective therapeutic components such as siRNAs, mRNAs, proteins, could be developed. Finally, our research suggested that exosomes of nanoscale sizes might be a useful tool for crossing the blood-brain barrier and delivering effective content. However, further research is needed to fully comprehend the potential involvement of the exosome in brain tumor therapy protocols.
Collapse
Affiliation(s)
- Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shayan Keramat
- Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John’s University, New York, NY, United States
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Bonosi L, Ferini G, Giammalva GR, Benigno UE, Porzio M, Giovannini EA, Musso S, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Graziano F, Scalia G, Umana GE, Di Bonaventura R, Sturiale CL, Iacopino DG, Maugeri R. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life (Basel) 2022; 12:life12030407. [PMID: 35330158 PMCID: PMC8950809 DOI: 10.3390/life12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Gliomas, particularly high-grade gliomas, represent the most common and aggressive tumors of the CNS and are still burdened by high mortality and a very poor prognosis, regardless of the type of therapy. Their diagnosis and monitoring rely on imaging techniques and direct biopsy of the pathological tissue; however, both procedures have inherent limitations. To address these limitations, liquid biopsies have been proposed in this field. They could represent an innovative tool that could help clinicians in the early diagnosis, monitoring, and prognosis of these tumors. Furthermore, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost, with improved accuracy, providing a molecular profile of cancer and leading to better survival results and less disease burden. This paper focuses on the current clinical application of liquid biopsy in the early diagnosis and prognosis of cancer, introduces NGS-related methods, reviews recent progress, and summarizes challenges and future perspectives.
Collapse
Affiliation(s)
- Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95125 Catania, Italy;
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Evier Andrea Giovannini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95125 Catania, Italy;
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
12
|
Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol 2022; 86:112-126. [PMID: 35032650 DOI: 10.1016/j.semcancer.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth. Moreover, recent tumoroid models can be furnished with aspects of the tumor microenvironment, such as vasculature, hypoxia, and extracellular matrix. This review summarizes tumor tissue culture and engineering platforms compatible with EV research. For example, the combination experiments of 3D-tumoroids and EVs have revealed multifunctional proteins loaded in EVs, such as metalloproteinases and heat shock proteins. EVs or exosomes are able to transfer their cargo molecules to recipient cells, whose fates are often largely altered. In addition, the review summarizes approaches to EV labeling technology using fluorescence and luciferase, useful for studies on EV-mediated intercellular communication, biodistribution, and metastatic niche formation.
Collapse
|
13
|
Current landscape of tumor-derived exosomal ncRNAs in glioma progression, detection, and drug resistance. Cell Death Dis 2021; 12:1145. [PMID: 34887381 PMCID: PMC8660802 DOI: 10.1038/s41419-021-04430-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Glioma is the most common and fatal tumor of the central nervous system in humans. Despite advances in surgery, radiotherapy, and chemotherapeutic agents, glioma still has a poor prognosis. The tumor microenvironment (TME) of glioma is of highly complex heterogeneity, which relies on a network-based communication between glioma cells and other stromal cell types. Exosomes are the most common type of naturally occurring extracellular vesicles, ranging in size from 40 to 160 nm, and can serve as carriers for proteins, RNAs, and other biologically active molecules. Recent evidence has shown that glioma-derived exosomes (GDEs) can be integrally detected in the local tissue and circulatory blood samples, and also can be transferred to recipient cells to mediate transmission of genetic information. Non-coding RNAs (ncRNAs) mainly including microRNA, long non-coding RNA, and circular RNA, account for a large portion of the human transcriptome. A broad range of ncRNAs encapsulated in GDEs is reported to exert regulatory functions in various pathophysiological processes of glioma. Herein, this review summarizes the latest findings on the fundamental roles of GDE ncRNAs that have been implicated in glioma behaviors, immunological regulation, diagnosis potential, and treatment resistance, as well as the current limitations and perspectives. Undoubtedly, a thorough understanding of this area will provide comprehensive insights into GDE-based clinical applications for combating gliomas.
Collapse
|
14
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. The Role of Exosomal miRNAs in Glioma: Biological Function and Clinical Application. Front Oncol 2021; 11:686369. [PMID: 34540663 PMCID: PMC8442992 DOI: 10.3389/fonc.2021.686369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gliomas are complex and heterogeneous central nervous system tumors with poor prognosis. Despite the increasing development of aggressive combination therapies, the prognosis of glioma is generally unsatisfactory. Exosomal microRNA (miRNA) has been successfully used in other diseases as a reliable biomarker and even therapeutic target. Recent studies show that exosomal miRNA plays an important role in glioma occurrence, development, invasion, metastasis, and treatment resistance. However, the association of exosomal miRNA between glioma has not been systemically characterized. This will provide a theoretical basis for us to further explore the relationship between exosomal miRNAs and glioma and also has a positive clinical significance in the innovative diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | | | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
15
|
Sun B, Li G, Yu Q, Liu D, Tang X. HSP60 in cancer: a promising biomarker for diagnosis and a potentially useful target for treatment. J Drug Target 2021; 30:31-45. [PMID: 33939586 DOI: 10.1080/1061186x.2021.1920025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs), most of which are molecular chaperones, are highly conserved proteins produced by cells under physiological stress or pathological conditions. HSP60 (57-69 kDa) can promote or inhibit cell apoptosis through different mechanisms, and its abnormal expression is also related to tumour cell metastasis and drug resistance. In recent years, HSP60 has received increasing attention in the field of cancer research due to its potential as a diagnostic and prognostic biomarker or therapeutic target. However, in different types of cancer, the specific mechanisms of abnormally expressed HSP60 in tumour carcinogenesis and drug resistance are complicated and still require further study. In this article, we comprehensively review the regulative mechanisms of HSP60 on apoptosis, its applications as a cancer diagnostic biomarker and a therapeutic target, evidence of involvement in tumour resistance and the applications of exosomal HSP60 in liquid biopsy. By evaluating the current findings of HSP60 in cancer research, we highlight some core issues that need to be addressed for the use of HSP60 as a diagnostic or prognostic biomarker and therapeutic target in certain types of cancer.
Collapse
Affiliation(s)
- Bo Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ganghui Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xing Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
16
|
Molecular Chaperones and Thyroid Cancer. Int J Mol Sci 2021; 22:ijms22084196. [PMID: 33919591 PMCID: PMC8073690 DOI: 10.3390/ijms22084196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.
Collapse
|
17
|
The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors have a poor prognosis and progress must be made for developing efficacious treatments, but for this to occur their biology and interaction with the host must be elucidated beyond current knowledge. What has been learned from other tumors may be applied to study brain tumors, for example, the role of Hsp60, miRNAs, and extracellular vesicles (EVs) in the mechanisms of cell proliferation and dissemination, and resistance to immune attack and anticancer drugs. It has been established that Hsp60 increases in cancer cells, in which it occurs not only in the mitochondria but also in the cytosol and plasma-cell membrane and it is released in EVs into the extracellular space and in circulation. There is evidence suggesting that these EVs interact with cells near and far from their original cell and that this interaction has an impact on the functions of the target cell. It is assumed that this crosstalk between cancer and host cells favors carcinogenesis in various ways. We, therefore, propose to study the triad Hsp60-related miRNAs-EVs in brain tumors and have standardized methods for the purpose. These revealed that EVs with Hsp60 and related miRNAs increase in patients’ blood in a manner that reflects disease status. The means are now available to monitor brain tumor patients by measuring the triad and to dissect its effects on target cells in vitro, and in experimental models in vivo.
Collapse
|
18
|
Umana GE, Scalia G, Graziano F, Maugeri R, Alberio N, Barone F, Crea A, Fagone S, Giammalva GR, Brunasso L, Costanzo R, Paolini F, Gerardi RM, Tumbiolo S, Cicero S, Federico Nicoletti G, Iacopino DG. Navigated Transcranial Magnetic Stimulation Motor Mapping Usefulness in the Surgical Management of Patients Affected by Brain Tumors in Eloquent Areas: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:644198. [PMID: 33746895 PMCID: PMC7970041 DOI: 10.3389/fneur.2021.644198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The surgical strategy for brain glioma has changed, shifting from tumor debulking to a more careful tumor dissection with the aim of a gross-total resection, extended beyond the contrast-enhancement MRI, including the hyperintensity on FLAIR MR images and defined as supratotal resection. It is possible to pursue this goal thanks to the refinement of several technological tools for pre and intraoperative planning including intraoperative neurophysiological monitoring (IONM), cortico-subcortical mapping, functional MRI (fMRI), navigated transcranial magnetic stimulation (nTMS), intraoperative CT or MRI (iCT, iMR), and intraoperative contrast-enhanced ultrasound. This systematic review provides an overview of the state of the art techniques in the application of nTMS and nTMS-based DTI-FT during brain tumor surgery. Materials and Methods: A systematic literature review was performed according to the PRISMA statement. The authors searched the PubMed and Scopus databases until July 2020 for published articles with the following Mesh terms: (Brain surgery OR surgery OR craniotomy) AND (brain mapping OR functional planning) AND (TMS OR transcranial magnetic stimulation OR rTMS OR repetitive transcranial stimulation). We only included studies regarding motor mapping in craniotomy for brain tumors, which reported data about CTS sparing. Results: A total of 335 published studies were identified through the PubMed and Scopus databases. After a detailed examination of these studies, 325 were excluded from our review because of a lack of data object in this search. TMS reported an accuracy range of 0.4–14.8 mm between the APB hotspot (n1/4 8) in nTMS and DES from the DES spot; nTMS influenced the surgical indications in 34.3–68.5%. Conclusion: We found that nTMS can be defined as a safe and non-invasive technique and in association with DES, fMRI, and IONM, improves brain mapping and the extent of resection favoring a better postoperative outcome.
Collapse
Affiliation(s)
- Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy.,Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Nicola Alberio
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Fabio Barone
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Antonio Crea
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy.,Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Saverio Fagone
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Giuseppe Roberto Giammalva
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Lara Brunasso
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Roberta Costanzo
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Federica Paolini
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Rosa Maria Gerardi
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | | | - Salvatore Cicero
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Giovanni Federico Nicoletti
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| |
Collapse
|
19
|
Giammalva GR, Brunasso L, Costanzo R, Paolini F, Umana GE, Scalia G, Gagliardo C, Gerardi RM, Basile L, Graziano F, Gulì C, Messina D, Pino MA, Feraco P, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity. Front Oncol 2021; 11:645854. [PMID: 33738262 PMCID: PMC7960910 DOI: 10.3389/fonc.2021.645854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brain gliomas require a deep knowledge of their effects on brain connectivity. Understanding the complex relationship between tumor and functional brain is the preliminary and fundamental step for the subsequent surgery. The extent of resection (EOR) is an independent variable of surgical effectiveness and it correlates with the overall survival. Until now, great efforts have been made to achieve gross total resection (GTR) as the standard of care of brain tumor patients. However, high and low-grade gliomas have an infiltrative behavior and peritumoral white matter is often infiltrated by tumoral cells. According to these evidences, many efforts have been made to push the boundary of the resection beyond the contrast-enhanced lesion core on T1w MRI, in the so called supratotal resection (SpTR). SpTR is aimed to maximize the extent of resection and thus the overall survival. SpTR of primary brain tumors is a feasible technique and its safety is improved by intraoperative neuromonitoring and advanced neuroimaging. Only transient cognitive impairments have been reported in SpTR patients compared to GTR patients. Moreover, SpTR is related to a longer overall and progression-free survival along with preserving neuro-cognitive functions and quality of life.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | | | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Luigi Basile
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | - Carlo Gulì
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Messina
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Paola Feraco
- Neuroradiology Unit, S. Chiara Hospital, Trento, Italy
| | - Silvana Tumbiolo
- Department of Neurosurgery, Villa Sofia Hospital, Palermo, Italy
| | - Massimo Midiri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020; 21:E9441. [PMID: 33322419 PMCID: PMC7763751 DOI: 10.3390/ijms21249441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
This review is focused on the description and discussion of the alterations of astrocytes and microglia interplay in models of Alzheimer's disease (AD). AD is an age-related neurodegenerative pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD's histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key factor in both initiation and progression of the disease, and suppression of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions. Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess how these interactions can influence the state and progression of the disease, and will be critical for identifying therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
21
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
22
|
Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary and metastatic brain tumors are usually serious conditions with poor prognosis, which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve these objectives, progress must be made in the understanding of brain tumor biology, for example, how they resist natural defenses and therapeutic intervention. One resistance mechanism involves extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation and reprogram them by introducing their cargo. This consists of different molecules among which are microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target cells in the immune system to avoid antitumor reaction and chaperones are key survival molecules for the tumor cell. Extracellular vesicles cargo reflects the composition and metabolism of the original tumor cell; therefore, it is a source of markers, including the miRNAs and chaperones discussed in this article, with potential diagnostic and prognostic value. This and their relatively easy availability by minimally invasive procedures (e.g., drawing venous blood) illustrate the potential of extracellular vesicles as useful materials to manage brain tumor patients. Furthermore, understanding extracellular vesicles circulation and interaction with target cells will provide the basis for using this vesicle for delivering therapeutic compounds to selected tumor cells.
Collapse
|
23
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
24
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|
25
|
Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21020661. [PMID: 31963896 PMCID: PMC7013437 DOI: 10.3390/ijms21020661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.
Collapse
|
26
|
Griffiths SG, Ezrin A, Jackson E, Dewey L, Doucette AA. A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins. Cell Stress Chaperones 2019; 24:1197-1209. [PMID: 31650515 PMCID: PMC6882979 DOI: 10.1007/s12192-019-01041-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
As an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them. Extracellular HSPs are also characteristic of chronic inflammation and sepsis. Accordingly, interrogation of extracellular HSPs secreted from cell culture models may represent a facile means of identifying translational biomarker signatures for targeting in situ. In the current study, we evaluated a simple peptide-based multivalent HSP affinity approach using the Vn96 peptide for low speed pelleting of HSP complexes from bioreactor cultures of cell lines with varying invasive phenotype in xenotransplant models: U87 (glioblastoma multiforme; invasive); HELA (choriocarcinoma; minimally invasive); HEK293T (virally transformed immortalized; embryonic). Proteomic profiling by bottom-up mass spectrometry revealed a comprehensive range of candidate biomarkers including primary HSP ligands. HSP complexes were associated with additional chaperones of prognostic significance such as protein disulfide isomerases, as well as pleiotropic metabolic enzymes, established as proportionally reflective of invasive phenotype. Biomarkers of inflammatory and mechanotransductive phenotype were restricted to the most invasive cell model U87, including chitinase CHI3L1, lamin C, amyloid derivatives, and histone isoforms.
Collapse
Affiliation(s)
| | - Alan Ezrin
- NX Development Corporation, Louisville, KY, USA
| | - Emily Jackson
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | - Lisa Dewey
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | | |
Collapse
|
27
|
Diana A, Gaido G, Murtas D. MicroRNA Signature in Human Normal and Tumoral Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174123. [PMID: 31450858 PMCID: PMC6747235 DOI: 10.3390/ijms20174123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Giuseppe Gaido
- Department of Surgery, Cottolengo Mission Hospital Charia, 60200 Meru, Kenya
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
28
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
29
|
Basu B, Ghosh MK. Extracellular Vesicles in Glioma: From Diagnosis to Therapy. Bioessays 2019; 41:e1800245. [PMID: 31188499 DOI: 10.1002/bies.201800245] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) secreted from tumor cells play a key role in the overall progression of the disease state. EVs such as exosomes are secreted by a wide variety of cells and transport a varied population of proteins, lipids, DNA, and RNA species within the body. Gliomas constitute a significant proportion of all primary brain tumors and majority of brain malignancies. Glioblastoma multiforme (GBM) represents grade IV glioma and is associated with very poor prognosis despite the cumulative advances in diagnostic procedures and treatment strategies. Here, the authors describe the progress in understanding the role of EVs, especially exosomes, in overall glioma progression, and how new research is unraveling the utilities of exosomes in glioma diagnostics and development of next-generation therapeutic systems. Finally, based on an understanding of the latest scientific literature, a model for the possible working of therapeutic exosomes in glioma treatment is proposed.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
30
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
31
|
On the Choice of the Extracellular Vesicles for Therapeutic Purposes. Int J Mol Sci 2019; 20:ijms20020236. [PMID: 30634425 PMCID: PMC6359369 DOI: 10.3390/ijms20020236] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane vesicles released by all human cells and are widely recognized to be involved in many cellular processes, both in physiological and pathological conditions. They are mediators of cell-cell communication, at both paracrine and systemic levels, and therefore they are active players in cell differentiation, tissue homeostasis, and organ remodeling. Due to their ability to serve as a cargo for proteins, lipids, and nucleic acids, which often reflects the cellular source, they should be considered the future of the natural nanodelivery of bio-compounds. To date, natural nanovesicles, such as exosomes, have been shown to represent a source of disease biomarkers and have high potential benefits in regenerative medicine. Indeed, they deliver both chemical and bio-molecules in a way that within exosomes drugs are more effective that in their exosome-free form. Thus, to date, we know that exosomes are shuttle disease biomarkers and probably the most effective way to deliver therapeutic molecules within target cells. However, we do not know exactly which exosomes may be used in therapy in avoiding side effects as well. In regenerative medicine, it will be ideal to use autologous exosomes, but it seems not ideal to use plasma-derived exosomes, as they may contain potentially dangerous molecules. Here, we want to present and discuss a contradictory relatively unmet issue that is the lack of a general agreement on the choice for the source of extracellular vesicles for therapeutic use.
Collapse
|
32
|
Fais S, Logozzi M, Alberti G, Campanella C. Exosomal Hsp60: A Tumor Biomarker? HEAT SHOCK PROTEIN 60 IN HUMAN DISEASES AND DISORDERS 2019. [DOI: 10.1007/978-3-030-23154-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|