1
|
Wu J, Fu G, Luo C, Chen L, Liu Q. Cuproptosis-related ceRNA axis triggers cell proliferation and cell cycle through CBX2 in lung adenocarcinoma. BMC Pulm Med 2024; 24:85. [PMID: 38355480 PMCID: PMC10865584 DOI: 10.1186/s12890-024-02887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has high morbidity and mortality. Despite substantial advances in treatment, the prognosis of patients with LUAD remains unfavorable. The ceRNA axis has been reported to play an important role in the pathogenesis of LUAD. In addition, cuproptosis is considered an important factor in tumorigenesis. The expression of CBX2 has been associated with the development of multiple tumors, including LUAD. However, the precise molecular mechanisms through which the cuproptosis-related ceRNA network regulates CBX2 remain unclear. METHODS The DEGs between tumor and normal samples of LUAD were identified in TCGA database. The "ConsensusClusterPlus" R package was used to perform consensus clustering based on the mRNA expression matrix and cuproptosis-related gene expression profile. Then, LASSO-COX regression analysis was performed to identify potential prognostic biomarkers associated with cuproptosis, and the ceRNA network was constructed. Finally, the mechanisms of ceRNA in LUAD was studied by cell experiments. RESULTS In this study, the AC144450.1/miR-424-5p axis was found to promote the progression of LUAD by acting on CBX2. The expression of AC144450.1 and miR-424-5p can be altered to regulate CBX2 and is correlated with cell proliferation and cell cycle of LUAD. Mechanistically, AC144450.1 affects the expression of CBX2 by acting as the ceRNA of miR-424-5p. In addition, a cuproptosis-related model were constructed in this study to predict the prognosis of LUAD. CONCLUSIONS This study is the first to demonstrate that the AC144450.1/miR-424-5p/CBX2 axis is involved in LUAD progression and may serve as a novel target for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Guang Fu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Chao Luo
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Liang Chen
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
2
|
Anilkumar AK, Vij P, Lopez S, Leslie SM, Doxtater K, Khan MM, Yallapu MM, Chauhan SC, Maestre GE, Tripathi MK. Long Non-Coding RNAs: New Insights in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2268. [PMID: 38396946 PMCID: PMC10889599 DOI: 10.3390/ijms25042268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are gradually becoming a burden to society. The adverse effects and mortality/morbidity rates associated with these NDDs are a cause of many healthcare concerns. The pathologic alterations of NDDs are related to mitochondrial dysfunction, oxidative stress, and inflammation, which further stimulate the progression of NDDs. Recently, long non-coding RNAs (lncRNAs) have attracted ample attention as critical mediators in the pathology of NDDs. However, there is a significant gap in understanding the biological function, molecular mechanisms, and potential importance of lncRNAs in NDDs. This review documents the current research on lncRNAs and their implications in NDDs. We further summarize the potential implication of lncRNAs to serve as novel therapeutic targets and biomarkers for patients with NDDs.
Collapse
Affiliation(s)
- Adithya K. Anilkumar
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Samantha Lopez
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sophia M. Leslie
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Kyle Doxtater
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M. Yallapu
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Gladys E. Maestre
- Department of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78550, USA
- South Texas Alzheimer’s Disease Research Center, School of Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Manish K. Tripathi
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Tous C, Muñoz-Redondo C, Gavilán A, Bravo-Gil N, Baco-Antón F, Navarro-González E, Antiñolo G, Borrego S. Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion. Int J Mol Sci 2024; 25:1587. [PMID: 38338866 PMCID: PMC10855357 DOI: 10.3390/ijms25031587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilán
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Fátima Baco-Antón
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
4
|
Zou Z, Zhang M, Xu S, Zhang Y, Zhang J, Li Z, Zhu X. Computational identification of long non-coding RNAs associated with graphene therapy in glioblastoma multiforme. Brain Commun 2023; 6:fcad293. [PMID: 38162904 PMCID: PMC10754320 DOI: 10.1093/braincomms/fcad293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/26/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024] Open
Abstract
Glioblastoma multiforme represents the most prevalent primary malignant brain tumour, while long non-coding RNA assumes a pivotal role in the pathogenesis and progression of glioblastoma multiforme. Nonetheless, the successful delivery of long non-coding RNA-based therapeutics to the tumour site has encountered significant obstacles attributable to inadequate biocompatibility and inefficient drug delivery systems. In this context, the use of a biofunctional surface modification of graphene oxide has emerged as a promising strategy to surmount these challenges. By changing the surface of graphene oxide, enhanced biocompatibility can be achieved, facilitating efficient transport of long non-coding RNA-based therapeutics specifically to the tumour site. This innovative approach presents the opportunity to exploit the therapeutic potential inherent in long non-coding RNA biology for treating glioblastoma multiforme patients. This study aimed to extract relevant genes from The Cancer Genome Atlas database and associate them with long non-coding RNAs to identify graphene therapy-related long non-coding RNA. We conducted a series of analyses to achieve this goal, including univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression. The resulting graphene therapy-related long non-coding RNAs were utilized to develop a risk score model. Subsequently, we conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses on the identified graphene therapy-related long non-coding RNAs. Additionally, we employed the risk model to construct the tumour microenvironment model and analyse drug sensitivity. To validate our findings, we referenced the IMvigor210 immunotherapy model. Finally, we investigated differences in the tumour stemness index. Through our investigation, we identified four promising graphene therapy-related long non-coding RNAs (AC011405.1, HOXC13-AS, LINC01127 and LINC01574) that could be utilized for treating glioblastoma multiforme patients. Furthermore, we identified 16 compounds that could be utilized in graphene therapy. Our study offers novel insights into the treatment of glioblastoma multiforme, and the identified graphene therapy-related long non-coding RNAs and compounds hold promise for further research in this field. Furthermore, additional biological experiments will be essential to validate the clinical significance of our model. These experiments can help confirm the potential therapeutic value and efficacy of the identified graphene therapy-related long non-coding RNAs and compounds in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Zhuoheng Zou
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo 255000, China
| | - Shang Xu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Youzhong Zhang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Junzheng Zhang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
5
|
Guo J, Xiao D, Lin Z, Sui C. The long non-coding RNA PANDAR regulates cell proliferation and epithelial-to-mesenchymal transition in glioma. Histol Histopathol 2023; 38:199-208. [PMID: 36073766 DOI: 10.14670/hh-18-511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Glioma is one of the most aggressive intracranial tumors in the central nervous system. The long non-coding RNA P21 associated ncRNA DNA damage activated (PANDAR) has been reported to be an oncogene or tumor suppressor in several cancers. However, the prognostic value and biological function of PANDAR in glioma have not been described. Here, we report that expression of PANDAR is significantly up-regulated in glioma tissues and cell lines. PANDAR expression was correlated with tumor size (p=0.044) and World Health Organization (WHO) grades (p=0.005), as shown by chi-squared test. Moreover, significant upregulation of PANDAR was found to correlate with poor prognosis in glioma, as shown using Kaplan-Meier method and Cox multivariate survival analysis. Furthermore, PANDAR knockdown suppressed cell proliferation, G1/S transition, migration and invasion, and promoted apoptosis in glioma cell lines (U251 and U87). PANDAR knockdown decreased expression of CDK4, Bcl-2, N-cadherin and Vimentin, but increased E-cadherin expression in glioma cells. In conclusion, our data suggest PANDAR as a potential prognostic biomarker and therapeutic candidate for glioma.
Collapse
Affiliation(s)
- Jianfeng Guo
- Department of Neurosurgy, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Deyong Xiao
- Department of Neurosurgy, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhijing Lin
- Department of Neurosurgy, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chengzhi Sui
- Department of Rehabilitation, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
7
|
Amer RG, Ezz El Arab LR, Abd El Ghany D, Saad AS, Bahie-Eldin N, Swellam M. Prognostic utility of lncRNAs (LINC00565 and LINC00641) as molecular markers in glioblastoma multiforme (GBM). J Neurooncol 2022; 158:435-444. [PMID: 35668225 PMCID: PMC9256564 DOI: 10.1007/s11060-022-04030-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022]
Abstract
Background and aim Glioblastoma multiforme (GBM) is primary brain tumor grade IV characterized by fast cell proliferation, high mortality and morbidity and most lethal gliomas. Molecular approaches underlying its pathogenesis and progression with diagnostic and prognostic value have been an area of interest. Long-non coding RNAs (lncRNAs) aberrantly expressed in GBM have been recently studied. The aim is to investigate the clinical role of lncRNA565 and lncRNA641 in GBM patients. Patients and methods Blood samples were withdrawn from 35 newly diagnosed GBM cases with 15 healthy individuals, then lncRNA565 and lncRNA641 expression were evaluated using real time-PCR. Their diagnostic efficacy was detected using receiver operating characteristic curve. Progression free survival (PFS) and overall survival (OS) were studied using Kaplan–Meier curves. Results lncRNAs expressions were increased significantly among GBM as compared to control group. Their expressions were correlated with clinico-pathological data and survival pattern for the studied GBM patients. Higher levels of both lncRNAs were correlated to worse performance status. Expression of lncRNA565 was increased with large tumor size (≥ 5 cm). Survival analysis showed that both investigated lncRNA were increased with worse PFS and OS. Conclusion Expression of lncRNA565 and lncRNA641 in a liquid biopsy sample can be used as prognostic biomarker for GBM patients.
Collapse
Affiliation(s)
- Rehab G Amer
- Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | | | | | - Amr S Saad
- Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | | | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Qin Y, Qi Y, Zhang X, Guan Z, Han W, Peng X. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. Int J Mol Sci 2022; 23:ijms23052828. [PMID: 35269968 PMCID: PMC8911140 DOI: 10.3390/ijms23052828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Differential expression of long noncoding RNAs (lncRNA) plays a key role in the development of gliomas. Because gliomas are the most common primary central nervous system tumor and glioblastomas have poor prognosis, it is urgent to develop new diagnostic methods. We have previously reported that lncRNA HOXD-AS2, which is specifically up-regulated in gliomas, can activate cell cycle and promote the development of gliomas. It is expected to be a new marker for molecular diagnosis of gliomas, but little is known about HOXD-AS2. Here, we demonstrate that TFE3 and miR-661 maintain the high expression level of HOXD-AS2 by regulating its production and degradation. We found that TFE3 acted as a transcription factor binding to the HOXD-AS2 promoter region and raised H3K27ac to activate HOXD-AS2. As the cytoplasmic-located lncRNA, HOXD-AS2 could be degraded by miR-661. This process was inhibited in gliomas due to the low expression of miR-661. Our study explains why HOXD-AS2 was specifically up-regulated in gliomas, helps to understand the molecular characteristics of gliomas, and provids insights for the search for specific markers in gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Wei Han
- Correspondence: (W.H.); or (X.P.)
| | | |
Collapse
|
9
|
Mutlu M, Tekin C, Ak Aksoy S, Taskapilioglu MO, Kaya S, Balcin RN, Ocak PE, Kocaeli H, Bekar A, Tolunay S, Tunca B. Long non-coding RNAs as a predictive markers of group 3 medulloblastomas. Neurol Res 2021; 44:232-241. [PMID: 34533098 DOI: 10.1080/01616412.2021.1975223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ObjectiveThe appropriate treatments for the different molecular subgroups of medulloblastomas are challenging to determine. Hence, this study aimed to examine the expression profiles of long non-coding RNAs (LncRNAs) to determine a marker that may be important for treatment selection in these subgroups.MethodsChanges in the expression of LncRNAs in the tissues of patients with medulloblastoma, which are classified into four subgroups according to their clinical characteristics and gene expression profiles, were examined via reverse transcription polymerase chain reaction. Moreover, there association with patient prognosis was evaluated.ResultsThe expression levels of MALAT1 and SNGH16 were significantly higher in patients with group 3 medulloblastoma than in those with other subtypes. Patients with high expression levels of MALAT1 and SNGH16 had a relatively shorter overall survival than those with low expression levels.ConclusionsPatients with group 3 medulloblastoma have a high MALAT1 level, which is associated with poor prognosis. Therefore, MALAT1 can be a new therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | | | - Seckin Kaya
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rabia Nur Balcin
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pınar Eser Ocak
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
10
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
11
|
Sorokin M, Raevskiy M, Zottel A, Šamec N, Skoblar Vidmar M, Matjašič A, Zupan A, Mlakar J, Suntsova M, Kuzmin DV, Buzdin A, Jovčevska I. Large-Scale Transcriptomics-Driven Approach Revealed Overexpression of CRNDE as a Poor Survival Prognosis Biomarker in Glioblastoma. Cancers (Basel) 2021; 13:3419. [PMID: 34298634 PMCID: PMC8303503 DOI: 10.3390/cancers13143419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the most common and malignant brain malignancy worldwide, with a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of research, there are no established biomarkers for early disease diagnosis and monitoring of patient response to treatment. High throughput sequencing technologies allow for the identification of unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify significant molecular changes between short- and long-term glioblastoma survivors by transcriptome RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data from the publicly available repositories The Cancer Genome Atlas (TCGA; number of annotated cases = 135) and Chinese Glioma Genome Atlas (CGGA; number of annotated cases = 218), and experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty of Medicine in Ljubljana corresponding to 2-58 months overall survival (n = 16). We found one differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes involved in cell growth, division, and migration, structure and dynamics of extracellular matrix, DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide additional information about the function of protein- and nonprotein-coding genes of interest and the processes in which they are involved. In the future, this can shape the design of more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Maxim Sorokin
- European Organization for Research and Treatment of Cancer (EORTC), Biostatistics and Bioinformatics Subgroup, 1000 Brussels, Belgium;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.R.); (D.V.K.)
| | - Mikhail Raevskiy
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.R.); (D.V.K.)
| | - Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| | | | - Alenka Matjašič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (A.Z.); (J.M.)
| | - Andrej Zupan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (A.Z.); (J.M.)
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (A.Z.); (J.M.)
| | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Denis V. Kuzmin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.R.); (D.V.K.)
| | - Anton Buzdin
- European Organization for Research and Treatment of Cancer (EORTC), Biostatistics and Bioinformatics Subgroup, 1000 Brussels, Belgium;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.R.); (D.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- OmicsWay Corp., Walnut, CA 91789, USA
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| |
Collapse
|
12
|
lncRNA SNHG7 promotes cell proliferation in glioma by acting as a competing endogenous RNA and sponging miR-138-5p to regulate EZH2 expression. Oncol Lett 2021; 22:565. [PMID: 34113393 PMCID: PMC8185700 DOI: 10.3892/ol.2021.12826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common type of primary brain cancer in adults. Accumulating studies have reported that long non-coding RNAs (lncRNAs) serve a significant role in the initiation and development of glioma. lncRNA small nucleolar RNA host gene 7 (SNHG7) has been previously demonstrated to serve a role in numerous glioma biological processes, including cell proliferation, invasion and migration. The present study aimed to investigate the role of SNHG7 in glioma through reverse transcription-quantitative PCR, western blotting and cell function assays. The results revealed that SNHG7 expression was upregulated in glioma tissues and cell lines, while microRNA (miR)-138-5p expression was downregulated. Moreover, the knockdown of SNHG7 expression decreased the proliferation of glioma cells. Mechanistic studies demonstrated that SNHG7 downregulated miR-138-5p expression, which subsequently affected the expression levels of its target gene, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In conclusion, the results of the present study suggested that SNHG7 may act as a competing endogenous RNA to sponge miR-138-5p and modulate EZH2 expression. Thus, SNHG7 may enhance glioma proliferation via modulating the miR-138-5p/EZH2 signaling axis.
Collapse
|
13
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
14
|
Balaji E V, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol 2020; 887:173549. [PMID: 32926916 DOI: 10.1016/j.ejphar.2020.173549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor (WHO grade 4 astrocytoma) with unknown causes and is associated with a reduced life expectancy. The available treatment options namely radiotherapy, surgery and chemotherapy have failed to improve life expectancy. Out of the various therapeutic approaches, epigenetic therapy is one of the most studied. Epigenetic therapy is involved in the effective treatment of GBM by inhibiting DNA methyltransferase, histone deacetylation and non-coding RNA. It also promotes the expression of the tumor suppressor gene and is involved in the suppression of the oncogene. Various targets are being studied to implement proper epigenetic regulation to control GBM effectively. Zinc is one of the micronutrients which is considered to maintain epigenetic regulation by promoting the proper DNA folding, protecting genetic material from the oxidative damage and controlling the enzyme activation involved in the epigenetic regulation. Here, we are discussing the importance of zinc in regulating the epigenetic modifications and assessing its role in glioblastoma research. The discussion also highlights the importance of artificial intelligence using epigenetics for envisaging the glioma progression, diagnosis and its management.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
15
|
Long non-coding RNA CASC2 targeting miR-18a suppresses glioblastoma cell growth, metastasis and EMT in vitro and in vivo. J Biosci 2020. [DOI: 10.1007/s12038-020-00077-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6:25. [PMID: 32922954 PMCID: PMC7398200 DOI: 10.1186/s41016-020-00207-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common form of primary brain tumor. Glioblastoma stem cells play an important role in tumor formation by activation of several signaling pathways. Wnt signaling pathway is one such important pathway which helps cellular differentiation to promote tumor formation in the brain. Glioblastoma remains to be a highly destructive type of tumor despite availability of treatment strategies like surgery, chemotherapy, and radiation. Advances in the field of cancer biology have revolutionized therapy by allowing targeting of tumor-specific molecular deregulation. In this review, we discuss about the significance of glioblastoma stem cells in cancer progression through Wnt signaling pathway and highlight the clinical targets being potentially considered for therapy in glioblastoma.
Collapse
Affiliation(s)
- Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| | - Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
17
|
Luo W, Li X, Song Z, Zhu X, Zhao S. Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in glioblastoma by epigenetically silencing TFPI2 through EZH2 and LSD1. Aging (Albany NY) 2020; 11:3811-3823. [PMID: 31186379 PMCID: PMC6594811 DOI: 10.18632/aging.102018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (LncRNAs) have attracted increasing attention for their important regulation functions in a wide range of malignancies. AGAP2-AS1 was demonstrated as an oncogene in several cancers, including glioblastoma (GBM). However, the biological mechanisms of AGAP2-AS1 in GBM progression are still unclear. Herein, we found that AGAP2-AS1 expression was up-regulated in GBM tissues and cells. High AGAP2-AS1 expression may predict a poor prognosis in GBM patients. Functionally, silencing of AGAP2-AS1 suppressed proliferation and invasion, while enhanced apoptosis in GBM cells. Overexpression of AGAP2-AS1 promoted cell proliferation and invasion. Mechanically, AGAP2-AS1 could interact with EZH2 and LSD1, recruiting them to TFPI2 promoter region to inhibit its transcription. Moreover, TFPI2 overexpression decreased proliferation and invasion, and facilitated apoptosis in GBM cells. Furthermore, the tumor-suppressive effects mediated by AGAP2-AS1 knockdown were greatly reversed following down-regulation of TFPI2. Also, suppression of AGAP2-AS1 impaired tumor growth of GBM in vivo. In summary, AGAP2-AS1 exerts oncogenic functions in GBM by epigenetically silencing TFPI2 expression through binding to EZH2 and LSD1, illuminating a novel mechanism of AGAP2-AS1 in GBM development and furnishing a prospective therapeutic method to combat GBM.
Collapse
Affiliation(s)
- Wenzheng Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Zhenyu Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Shanshan Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| |
Collapse
|
18
|
Chen L, Wang G, Xu Z, Lin K, Mu S, Pan Y, Shan M. Overexpression of LncRNA PSMG3-AS1 Distinguishes Glioblastomas from Sarcoidosis. J Mol Neurosci 2020; 70:2015-2019. [PMID: 32529538 DOI: 10.1007/s12031-020-01605-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
In clinical practices, glioblastomas (GBM) in some cases can be misdiagnosed as sarcoidosis. This study aimed to develop a biomarker to distinguish GBM from sarcoidosis. In this study, we found that PSMG3-AS1 was upregulated in plasma of GBM patients in comparison with that in sarcoidosis patients and healthy controls. Receiver operating characteristic (ROC) curve analysis showed that upregulation of PSMG3-AS1 effectively separated GBM patients from sarcoidosis patients and healthy controls. In GBM cells, overexpression of PSMG3-AS1 led to downregulated miR-34a and increased methylation of miR-34a gene. In addition, overexpression of PSMG3-AS1 reduced the inhibitory effects of miR-34a on GBM cell proliferation. In conclusion, overexpression of PSMG3-AS1 distinguishes GBM patients from patients with sarcoidosis, and PSMG3-AS1 may promote GBM cell proliferation by downregulating miR-34a through methylation.
Collapse
Affiliation(s)
- Liusheng Chen
- 75th Army Military Medical Research Center, Dali, Yunnan Province, 671003, People's Republic of China
| | - Guanliang Wang
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China.
| | - Zihui Xu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Army Military Medical University, Chongqing City, 400037, People's Republic of China
| | - Kailong Lin
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China
| | - Sen Mu
- 75th Army Military Medical Research Center, Dali, Yunnan Province, 671003, People's Republic of China
| | - Yicheng Pan
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China
| | - Mengya Shan
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Army Military Medical University, Chongqing City, 400037, People's Republic of China
| |
Collapse
|
19
|
Xu H, Zhang B, Yang Y, Li Z, Zhao P, Wu W, Zhang H, Mao J. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J Cell Mol Med 2020; 24:6362-6372. [PMID: 32319715 PMCID: PMC7294147 DOI: 10.1111/jcmm.15280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) belongs to the high-grade (IV) gliomas with extremely poor prognosis. Accumulating evidence uncovered the key roles of long non-coding RNAs (lncRNAs) in GBM development. This study aimed to determine the biological actions and the clinical relevance of lncRNA MIR4435-2 Host Gene (MIR4435-2HG) in GBM. Data from GEPIA database showed that MIR4435-2HG was up-regulated in GBM tissues and high expression of MIR4435-2HG correlated with shorter overall survival of GBM patients. Further experimental assays verified the up-regulation of MIR4435-2HG in GBM tissues and cell lines. In vitro cell studies and in vivo animal studies showed that knockdown of MIR4435-2HG resulted in the inhibition of GBM cell proliferation and invasion and in vivo tumour growth, while MIR4435-2HG overexpression driven GBM progression. Furthermore, MIR44435-2HG was found to sponge miR-1224-5p and suppress miR-1224-5p expression; overexpression of miR-1224-5p attenuated the enhancement in GBM cell proliferation and invasion induced by MIR4435-2HG overexpression. In a subsequent study, miR-1224-5p was found to target transforming growth factor-beta receptor type 2 (TGFBR2) and repressed TGFBR2 expression, and in vitro assays showed that miR-1224-5p exerted tumour-suppressive effects via targeting TGFBR2. More importantly, TGFRB2 knockdown antagonized hyper-proliferation and invasion of GBM cells with MIR4435-2HG overexpression. Clinically, the down-regulation of miR-1224-5p and up-regulation of TGFBR2 were verified in the GBM clinical samples. Taken together, the present study suggests the oncogenic role of MIR4435-2HG in GBM and underlies the key function of MIR4435-2HG-driven GBM progression via targeting miR-1224-5p/TGFBR2 axis.
Collapse
Affiliation(s)
- Hongchao Xu
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Beilin Zhang
- Department of NeurologyThe First Teaching Hospital of Jilin UniversityChangchunChina
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncologythe Clinical Innovation& Research Center (CIRC), Shenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityThe First Affiliated Hospital of Southern UniversityShenzhenChina
| | - Zihuang Li
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Pan Zhao
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Weiqing Wu
- Department of Physical ExaminationThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Huirong Zhang
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
- Department of Health managementThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Jie Mao
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
20
|
Chen H, Tian X, Luan Y, Lu H. Downregulated Long Noncoding RNA DGCR5 Acts as a New Promising Biomarker for the Diagnosis and Prognosis of Ovarian Cancer. Technol Cancer Res Treat 2020; 18:1533033819896809. [PMID: 31868103 PMCID: PMC6928542 DOI: 10.1177/1533033819896809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence have indicated that dysregulated long noncoding ribonucleic acids act as a novel diagnostic and therapeutic target in the progression of ovarian cancer. Long noncoding RNA DiGeorge syndrome critical region gene 5 has been reported to participate in some types of human cancer progresses, but its clinical roles in ovarian cancer had been rarely reported. This study aimed to explore the expression, clinicopathological features, diagnostic, and prognostic values of DiGeorge syndrome critical region gene 5 in ovarian cancer. The total levels of DiGeorge syndrome critical region gene 5 transcript variant 1 (NR_002733.2) and 2 (NR_045121.1) in patients with ovarian cancer were determined by quantitative reverse transcription polymerase chain reaction. The correlation of DiGeorge syndrome critical region gene 5 expression with clinicopathological factors was statistically analyzed by χ2 test. Overall survival analysis was carried out with the Kaplan–Meier curves with the log-rank test. Univariate and multivariate Cox regression analyses were performed to identify the prognostic significance of DiGeorge syndrome critical region gene 5 expression. Receiver operating characteristic curves were constructed to estimate the diagnostic and prognostic usefulness of DiGeorge syndrome critical region gene 5 in ovarian cancer. Results showed that relative DiGeorge syndrome critical region gene 5 expression was reduced by 36.81% and 65.79% in ovarian cancer tissues of patients and Gene Expression Omnibus DataSets (GSE119056) in contrast to normal tissues, respectively. Patients with lymph node metastasis and distant metastasis exhibited lower levels of DiGeorge syndrome critical region gene 5 in contrast to those patients with non-lymph node metastasis and non-distant metastasis, respectively. Low expression of DiGeorge syndrome critical region gene 5 was significantly associated with large tumor size, more lymph node metastasis, present distant metastasis, advanced clinical stage, and short overall survival in patients with ovarian cancer. Low expression of DiGeorge syndrome critical region gene 5 was an independent unfavorable prognostic factor for overall survival in patients with ovarian cancer. Receiver operating characteristics curves for prognosis yielded significant area under curves for lymph node metastasis, clinical stage, and overall survival. In conclusion, our study demonstrated that downregulated DiGeorge syndrome critical region gene 5 may be a new promising biomarker for predicting clinical progression and prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Hongxiao Chen
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiufang Tian
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yajing Luan
- Teaching Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
21
|
Jia L, Song Y, Mu L, Li Q, Tang J, Yang Z, Meng W. Long noncoding RNA TPT1-AS1 downregulates the microRNA-770-5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation. J Cell Physiol 2020; 235:3679-3689. [PMID: 31637705 DOI: 10.1002/jcp.29262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Through the microarray analysis, long noncoding RNA TPT1-AS1 (TPT1-AS1) was identified in the development of glioma. However, the specific effect of TPT1-AS1 on glioma autophagy in the recent years has not fully been investigated. Therefore, the purpose of our present study is to investigate the function of TPT1-AS1 on affecting autophagy of glioma cells through regulation of microRNA-770-5p (miR-770-5p)-mediated stathmin 1 (STMN1). Initially, the expression of TPT1-AS1, miR-770-5p, and STMN1 were determined in glioma cell lines, followed by the prediction and validation of their interaction. After that, the effects of TPT1-AS1, miR-770-5p, and STMN1 on the in vitro glioma cell proliferation and autophagy were assessed using EdU assay and macrophage-derived chemokine (MDC) and on the in vivo tumor development and autophagy were evaluated using a nude mouse xenograft tumor assay and immunofluorescence assay. In comparison with the normal cells, the glioma cells displayed upregulated expression of TPT1-AS1 and STMN1, but a downregulated miR-770-5p expression. miR-770-5p, which directly targeted STMN1, could be downregulated by TPT1-AS1. Subsequently, in glioma cells, TPT1-AS1 can function to competitively bind to miR-770-5p, thus regulatEing STMN1 expression. Moreover, glioma cell proliferation and autophagy could be mediated through the TPT1-AS1/miR-770-5p/STMN1 axis. From our data we conclude an inhibitory function of TPT1-AS1 in glioma cell autophagy by downregulating miR-770-5p and upregulating STMN1, which may be instrumental for the therapeutic targeting and clinical management of glioma.
Collapse
Affiliation(s)
- Lei Jia
- Department of Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuwen Song
- Department of Minimally Invasive Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyan Mu
- Department of Minimally Invasive Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingla Li
- Department of Minimally Invasive Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabin Tang
- Department of Minimally Invasive Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhao Yang
- Department of Minimally Invasive Neurosurgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjuan Meng
- Department of Comprehensive Archives, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Yin Z, Liao L, Mao S, Liu Y, Xie T, Yu H, Zhao W. Knockdown of lncRNA KCNQ1OT1 inhibits glioma progression by regulating miR-338-3p/RRM2. Open Life Sci 2020. [DOI: 10.1515/biol-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractThe dysregulated lncRNA play essential roles in glioma development. This study aimed to investigate the role and mechanism of lncRNA potassium voltage-gated channel subfamily Q member 1 opposite strand/ antisense transcript 1 (KCNQ1OT1) in glioma progression. Tumor tissues and adjacent normal samples were collected from 30 glioma patients. The expression levels of lncRNA KCNQ1OT1, microRNA (miR)-338-3p and ribonucleotide reductase M2 (RRM2) were detected by quantitative real-time polymerase chain reaction or western blot analyses. Levels of cell viability, apoptosis, cell migration and invasion in glioma cell lines were determined using cell counting kit-8, flow cytometry with annexin V-FITC and trans-well assays, respectively. The role of KCNQ1OT1 in glioma development in vivo was investigated using a xenograft model. The target association between miR-338-3p and KCNQ1OT1 or RRM2 was validated by luciferase reporter assay. The results found that expression of KCNQ1OT1 was enhanced in glioma tissues and cells, and KCNQ1OT1 knockdown inhibited cell viability, migration and invasion, and xenograft tumor growth, but promoted apoptosis. miR-338-3p was targeted via KCNQ1OT1 and could reverse the effect of KCNQ1OT1 on glioma progression. RRM2 was targeted via miR-338-3p and attenuated the suppressive effect of miR-338-3p on glioma cell viability, migration and invasion. Besides, KCNQ1OT1 overexpression increased RRM2 expression, and this event was weakened via miR-338-3p up-regulation. In conclusion, the present finding suggest that silencing of KCNQ1OT1 can suppress the development and progression of glioma by up-regulating miR-338-3p and down-regulating RRM2.
Collapse
Affiliation(s)
- Zhangxing Yin
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Liqing Liao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Sheng Mao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Tao Xie
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Hua Yu
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Wenxu Zhao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
24
|
Wu L, Zhu X, Song Z, Chen D, Guo M, Liang J, Ding D, Wang W, Yan D. Long Non-Coding RNA HOXA-AS2 Enhances The Malignant Biological Behaviors In Glioma By Epigenetically Regulating RND3 Expression. Onco Targets Ther 2019; 12:9407-9419. [PMID: 31819475 PMCID: PMC6844264 DOI: 10.2147/ott.s225678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction Long non-coding RNAs (LncRNAs) have been demonstrated to play a vital role in human carcinogenesis. HOXA cluster antisense RNA 2 (HOXA-AS2), a 1048-bp lncRNA located between the HOXA3 and HOXA4 genes, is identified as an oncogene in several malignancies, including glioma. However, the biological functions of HOXA-AS2 and its underlying molecular mechanisms in glioma progression remain to be investigated. Method The expression of HOXA-AS2 and RND3 mRNA was determined using qRT-PCR analysis. The protein level of RND3 and EZH2 was measured by Western blot analysis. The biological function of HOXA-AS2 or RND3 in glioma was detected by CCK-8 assay, colony formation assays, transwell assay, and flow cytometry. Dual-luciferase reporter, RIP, RNA-protein pull down and ChIP assays were performed to explore the molecular mechanism of HOXA-AS2 in glioma. The effect of HOXA-AS2 in vivo was examined using xenograft tumor assay. Results HOXA-AS2 expression was increased in glioma tissues and cells. High HOXA-AS2 expression was associated with larger tumor size and advanced pathological stage. Functionally, knockdown of HOXA-AS2 suppressed cell proliferation and invasion, and promoted apoptosis. Mechanically, HOXA-AS2 epigenetically inhibited RND3 transcription by binding to EZH2. Moreover, overexpression of RND3 exerted similar tumor-suppressive effects to the depletion of HOXA-AS2. Furthermore, the anti-cancer effects induced by si-HOXA-AS2 were greatly reversed by silencing of RND3. Finally, knockdown of HOXA-AS2 impaired tumor growth in vivo possibly via increasing RND3 expression. Conclusion Taken together, HOXA-AS2 recruits EZH2 to the promoter region of RND3 and inhibits its expression, thereby facilitating glioma progression. Our findings provide a prospective therapeutic strategy for glioma intervention.
Collapse
Affiliation(s)
- Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhenyu Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Mengguo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Junxin Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Daling Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Weiguang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
25
|
Construction of a competing endogenous RNA network using differentially expressed lncRNAs, miRNAs and mRNAs in non‑small cell lung cancer. Oncol Rep 2019; 42:2402-2415. [PMID: 31638248 PMCID: PMC6859443 DOI: 10.3892/or.2019.7378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
The competing endogenous RNA (ceRNA) network is crucial for the development and progression of tumors, including non-small cell lung cancer (NSCLC). However, what type of ceRNA network regulates NSCLC has not been clarified. The present study aimed to elucidate the long non-coding RNA (lncRNA)/microRNA (miRNA)/mRNA ceRNA network in NSCLC, particularly for the significance of lncRNAs in NSCLC. NSCLC-specific differentially expressed lncRNAs, miRNAs and mRNAs in the Cancer Genome Atlas (TCGA) were analyzed and their relationship was analyzed by a ceRNA network. Their potential functions of differentially expressed mRNAs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, the expression levels of four selected lncRNAs in TCGA were determined and their associated survival of patients was examined. In addition, the expression profiles of these four lncRNAs in 48 NSCLC specimens and cell lines, their cellular distribution and associated clinical parameters were examined. We successfully constructed a ceRNA network, including 113 lncRNAs, 12 miRNAs and 36 mRNAs differentially expressed between NSCLC and non-tumor tissues. LINC00525, MED4-AS1, STEAP2-AS1 and SYNPR-AS1 lncRNAs were selected and validated for their association with the survival of NSCLC patients. The expression of these lncRNAs was upregulated in 48 NSCLC tissues and was varying in NSCLC cells. While LINC00525 was mainly expressed in the cytoplasm, MED4-AS1 was in both the nucleus and cytoplasm of A549 cells. In addition, the expression of LINC00525 was significantly associated with smoking history (P<0.05); MED4-AS1 was significantly associated with women, poor differentiation and lymph node metastasis (P<0.05); STEAP2-AS1 was significantly associated with women (P<0.01); and SYNPR-AS1 was significantly associated with women and adenocarcinoma (P<0.05). These lncRNAs may be valuable biomarkers for prognosis of NSCLC and the ceRNA network may provide new insights in the pathogenesis of NSCLC.
Collapse
|
26
|
Petrescu GED, Sabo AA, Torsin LI, Calin GA, Dragomir MP. MicroRNA based theranostics for brain cancer: basic principles. J Exp Clin Cancer Res 2019; 38:231. [PMID: 31142339 PMCID: PMC6542029 DOI: 10.1186/s13046-019-1180-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Because of the complexity of the blood-brain barrier (BBB), brain tumors, especially the most common and aggressive primary malignant tumor type arising from the central nervous system (CNS), glioblastoma, remain an essential challenge regarding diagnostic and treatment. There are no approved circulating diagnostic or prognostic biomarkers, nor novel therapies like immune checkpoint inhibitors for glioblastoma, and chemotherapy brings only minimal survival benefits. The development of molecular biology led to the discovery of new potential diagnostic tools and therapeutic targets, offering the premise to detect patients at earlier stages and overcome the current poor prognosis. MAIN BODY One potential diagnostic and therapeutic breakthrough might come from microRNAs (miRNAs). It is well-known that miRNAs play a role in the initiation and development of various types of cancer, including glioblastoma. The review aims to answer the following questions concerning the role of RNA theranostics for brain tumors: (1) which miRNAs are the best candidates to become early diagnostic and prognostic circulating biomarkers?; (2) how to deliver the therapeutic agents in the CNS to overcome the BBB?; (3) which are the best methods to restore/inhibit miRNAs? CONCLUSIONS Because of the proven roles played by miRNAs in gliomagenesis and of their capacity to pass from the CNS tissue into the blood or cerebrospinal fluid (CSF), we propose miRNAs as ideal diagnostic and prognostic biomarkers. Moreover, recent advances in direct miRNA restoration (miRNA mimics) and miRNA inhibition therapy (antisense oligonucleotides, antagomirs, locked nucleic acid anti-miRNA, small molecule miRNA inhibitors) make miRNAs perfect candidates for entering clinical trials for glioblastoma treatment.
Collapse
Affiliation(s)
- George E. D. Petrescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar-Arseni Clinical Emergency Hospital, Department of Neurosurgery, Bucharest, Romania
| | - Alexandru A. Sabo
- Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Ligia I. Torsin
- Elias Clinical Emergency Hospital, Anaesthesiology and Critical Care Department, Bucharest, Romania
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
27
|
Paulmurugan R, Malhotra M, Massoud TF. The protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl) 2019; 97:909-925. [PMID: 31129756 DOI: 10.1007/s00109-019-01798-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins following transcription. We review the role of ncRNAs in the pathobiology of glioblastoma (GBM), and their potential applications for GBM therapy. Significant advances in our understanding of the protean manifestations of ncRNAs have been made, allowing us to better decipher the molecular complexity of GBM. A large number of regulatory ncRNAs appear to have a greater influence on the molecular pathology of GBM than thought previously. Importantly, also, a range of therapeutic approaches are emerging whereby ncRNA-based systems may be used to molecularly target GBM. The most successful of these is RNA interference, and some of these strategies are being evaluated in ongoing clinical trials. However, a number of limitations exist in the clinical translation of ncRNA-based therapeutic systems, such as delivery mechanisms and cytotoxicity; concerted research endeavors are currently underway in an attempt to overcome these. Ongoing and future studies will determine the potential practical role for ncRNA-based therapeutic systems in the clinical management of GBM. These applications may be especially promising, given that current treatment options are limited and prognosis remains poor for this challenging malignancy.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
| | - Meenakshi Malhotra
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA.
| |
Collapse
|
28
|
Xi X, Chu Y, Liu N, Wang Q, Yin Z, Lu Y, Chen Y. Joint bioinformatics analysis of underlying potential functions of hsa-let-7b-5p and core genes in human glioma. J Transl Med 2019; 17:129. [PMID: 30995921 PMCID: PMC6471881 DOI: 10.1186/s12967-019-1882-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioma accounts for a large proportion of cancer, and an effective treatment for this disease is still lacking because of the absence of specific driver molecules. Current challenges in the treatment of glioma are the accurate and timely diagnosis of brain glioma and targeted treatment plans. To investigate the diagnostic biomarkers and prospective role of miRNAs in the tumorigenesis and progression of glioma, we analyzed the expression of miRNAs and key genes in glioma based on The Cancer Genome Atlas database. METHODS Of the 701 cases that were downloaded, five were normal and 696 were glioma. Then, 1626 differentially expressed genes were identified, and 173 aberrantly expressed miRNAs were calculated by edgeR. GO and KEGG pathway enrichment analyses were performed using Cytoscape software. A coexpression network was built by weighted correlation network analysis (WGCNA). A cell scratch test and transwell, cell apoptosis and cell cycle assays were performed to validate the function of hsa-let-7b-5p. RESULTS Based on crosstalk genes in the KEGG, PPI network, and WGCNA analyses, PLK1, CCNA2, cyclin B2 (CCNB2), and AURKA were screened as candidate diagnostic marker genes. The survival analysis revealed that high mRNA expression of PLK1, CCNA2, and AURKA was significantly associated with poor overall survival. Furthermore, hsa-let-7b-5p was identified as a core miRNA in the regulation of candidate genes involved in glioma development. We confirmed that hsa-let-7b-5p could inhibit the migration, invasion, and cell cycle of glioma cells. CONCLUSIONS This study provides four potential biomarkers for the diagnosis of glioma, offers a potential explanation of its pathogenesis, and proposes hsa-let-7b-5p as a therapeutic target.
Collapse
Affiliation(s)
- Xiaonan Xi
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yahui Chu
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Zheng Yin
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yaxin Lu
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yue Chen
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| |
Collapse
|