1
|
Broekhuis JM, Lu D, Aryal RP, Matsumoto Y, Pepi LE, Chaves N, Gomez-Mayorga JL, James BC, Cummings RD. Thyroid Carcinoma Glycoproteins Express Altered N-Glycans with 3-O-Sulfated Galactose Residues. Biomolecules 2024; 14:1482. [PMID: 39766189 PMCID: PMC11727208 DOI: 10.3390/biom14121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the N-glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies. Glycomic analyses focused on Asn-linked (N)-glycans and employed mass spectrometry (MS), along with Western blot approaches of total solubilized materials that were examined for binding by specific lectins and a monoclonal antibody (mAb) O6, specific for 3-O-sulfated galactose residues. We observed major differences in PTC versus paired normal specimens, as PTC specimens exhibited higher levels of N-glycan branching and bisection with N-acetylglucosamine residues, consistent with RNAseq data. We also found that 3-O-sulfated galactose was present in N-glycans of multiple glycoproteins from both PTC and control specimens, as recognized by the O6 mAb and as confirmed by MS analyses. These results provide new insights into the N-glycans present in glycoproteins of thyroid cancer and context for further studies of these altered glycans as biomarkers and targets for therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.M.B.); (D.L.); (R.P.A.); (Y.M.); (L.E.P.); (N.C.); (J.L.G.-M.); (B.C.J.)
| |
Collapse
|
2
|
Yoo S, Cheon CK. NANS-CDG: Expanding clinical insights with a novel patient with novel variants. Am J Med Genet A 2024; 194:e63721. [PMID: 38822623 DOI: 10.1002/ajmg.a.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
N-acetyl-d-neuraminic acid synthase-congenital disorder of glycosylation (NANS-CDG) is a rare autosomal recessive defect in the N-acetyl-neuraminic acid biosynthesis pathway. Herein, we report the first Korean NANS-CDG patient. A 10-year-old boy was referred to our clinic because of incidental radiographic findings indicating spondyloepimetaphyseal dysplasia. The patient had microcephaly, cavum septum pellucidum, and ventriculomegaly at birth, and at 10 years, a very short stature. He had a history of idiopathic chronic immune thrombocytopenia, central adrenal insufficiency, and hypothyroidism since infancy. The first unprovoked seizure occurred at the age of 2 years, and he was subsequently admitted to the hospital frequently because of respiratory infections and intractable seizures. Exome sequencing identified unreported biallelic variants of the NANS gene. Clinical and genetic confirmation of NANS-CDG highlights its expanding phenotypic and genotypic diversity.
Collapse
Affiliation(s)
- Sukdong Yoo
- Department of Pediatrics, School of Medicine, Pusan National University, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
3
|
K N, P J, Nalla SV, Dubey I, Kushwaha S. Arsenic-Induced Thyroid Hormonal Alterations and Their Putative Influence on Ovarian Follicles in Balb/c Mice. Biol Trace Elem Res 2024; 202:4087-4100. [PMID: 38093019 DOI: 10.1007/s12011-023-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Thyroid issues are common among women in their reproductive years, and women with thyroid dysfunction often encounter challenges with fertility. Arsenic is known for its toxic effects on the thyroid and ovaries, investigated independently. However, there is no known study directly or indirectly addressing the association between arsenic, thyroid function, and ovarian reserve. This study aims to investigate the effect of arsenic on thyroid function and its possible implications on ovarian follicular reserve. Female Balb/c mice were given sodium arsenite (0.2 ppm, 2 ppm, and 20 ppm) via drinking water for 30 days. Findings showed that arsenic decreased thyroid hormone levels (fT3 and fT4) while increasing TSH levels, which might have led to elevated levels of FSH and LH. Furthermore, arsenic treatment not only decreased thyroid follicle sizes but also altered the ovarian follicular count. The finding demonstrates that arsenic significantly reduced the expression of LAMP1, a lysosomal marker protein. This reduction leads to increased lysosomal permeability in the thyroid, resulting in a significant release of cathepsin B. These changes led to hypothyroidism, which might indirectly affect the ovaries. Also, the elevated levels of growth differentiation factor-8 in arsenic-treated ovaries indicate impaired folliculogenesis and ovulation. Furthermore, arsenic significantly increased the expressions of pAkt and pFoxo3a, implying that arsenic accelerated the activation of the primordial follicular pools. In conclusion, arsenic disrupts lysosomal stabilization, potentially leading to a decline in circulating fT3 and fT4 levels. This disturbance could, in turn, affect the estrous cycle and may alter the pattern of follicular development.
Collapse
Affiliation(s)
- Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
4
|
Маркова ТН, Косова ЕВ, Мищенко НК. [Pituitary disorders in patients with end-stage chronic renal failure]. PROBLEMY ENDOKRINOLOGII 2024; 69:37-46. [PMID: 38311993 PMCID: PMC10848192 DOI: 10.14341/probl13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 02/06/2024]
Abstract
Disorders in the kidneys lead to disturbance of homeostasis. As the glomerular filtration rate decreases, the metabolism of numerous biologically active substances, including pituitary hormones, decreases. The article presents an overview of pituitary dysfunction in patients with chronic kidney disease (CKD) and discusses the possible reasons of the pathogenetic mechanisms. Particular focus is being given to the assessment of changes in the concentration of pituitary hormones in patients with end-stage chronic kidney disease (CKD) and discusses the pathogenetic mechanisms of their formation. Particular attention is paid to the assessment of changes in the concentration of pituitary hormones in patients receiving renal replacement therapy (RRT). CKD leads to an increase in the level of prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Concentrations of growth hormone (GH), isulin-like growth factor-1 (IGF-1), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH) and vasopressin may remain within normal values or increase in this group of patients. RRT does not reduce the levels of prolactin, LH, FSH, while the concentration of growth hormone, IGF-1, TSH tends to normalize. The content of ACTH and vasopressin may remain unchanged or decrease. Kidney transplantation in most cases corrects hormonal disorders. Correction of hormonal changes can improve the clinical outcome and quality of life of patients with end stage CKD.
Collapse
Affiliation(s)
- Т. Н. Маркова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Городская клиническая больница № 52 ДЗМ
| | - Е. В. Косова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | | |
Collapse
|
5
|
Wallace EN, West CA, McDowell CT, Lu X, Bruner E, Mehta AS, Aoki-Kinoshita KF, Angel PM, Drake RR. An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry. Sci Rep 2024; 14:489. [PMID: 38177192 PMCID: PMC10766640 DOI: 10.1038/s41598-023-50957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.
Collapse
Affiliation(s)
- Elizabeth N Wallace
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Fröhlich E, Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int J Mol Sci 2023; 24:11699. [PMID: 37511458 PMCID: PMC10380753 DOI: 10.3390/ijms241411699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Xu Y, Huo J, Nie R, Ge L, Xie C, Meng Y, Liu J, Wu L, Qin X. Altered profile of glycosylated proteins in serum samples obtained from patients with Hashimoto's thyroiditis following depletion of highly abundant proteins. Front Immunol 2023; 14:1182842. [PMID: 37457741 PMCID: PMC10348014 DOI: 10.3389/fimmu.2023.1182842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives Hashimoto's thyroiditis (HT) is one of the most common autoimmune disorders; however, its underlying pathological mechanisms remain unclear. Although aberrant glycosylation has been implicated in the N-glycome of immunoglobulin G (IgG), changes in serum proteins have not been comprehensively characterized. This study aimed to investigate glycosylation profiles in serum samples depleted of highly abundant proteins from patients with HT and propose the potential functions of glycoproteins for further studies on the pathological mechanisms of HT. Methods A lectin microarray containing 70 lectins was used to detect and analyze glycosylation of serum proteins using serum samples (N=27 HT; N=26 healthy control [HC]) depleted of abundant proteins. Significant differences in glycosylation status between HT patients and the HC group were verified using lectin blot analysis. A lectin-based pull-down assay combined with mass spectrometry was used to investigate potential glycoproteins combined with differentially present lectins, and an enzyme-linked immunosorbent assay (ELISA) was used to identify the expression of targeted glycoproteins in 131 patients with papillary thyroid carcinoma (PTC), 131 patients with benign thyroid nodules (BTN) patients, 130 patients with HT, and 128 HCs. Results Compared with the HC group, the majority of the lectin binding signals in HT group were weakened, while the Vicia villosa agglutinin (VVA) binding signal was increased. The difference in VVA binding signals verified by lectin blotting was consistent with the results of the lectin microarray. A total of 113 potential VVA-binding glycoproteins were identified by mass spectrometry and classified by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses. Using ELISA, we confirmed that lactoferrin (LTF) and mannan-binding lectin-associated serine protease 1 (MASP-1) levels were elevated in the serum of patients with HT and PTC. Conclusion Following depletion of abundant proteins, remaining serum proteins in HT patients exhibited lower glycosylation levels than those observed in HCs. An increased level of potential VVA-binding glycoproteins may play an important role in HT development. LTF and MASP-1 expression was significantly higher in the serum of HT and PTC patients, providing novel insight into HT and PTC.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jiawen Huo
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ruili Nie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Lili Ge
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
8
|
Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:366-395. [PMID: 37455827 PMCID: PMC10344901 DOI: 10.37349/etat.2023.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer serum biomarkers are valuable or even indispensable for cancer diagnostics and/or monitoring and, currently, many cancer serum markers are routinely used in the clinic. Most of those markers are glycoproteins, carrying cancer-specific glycan structures that can provide extra-information for cancer monitoring. Nonetheless, in the majority of cases, this differential feature is not exploited and the corresponding analytical assays detect only the protein amount, disregarding the analysis of the aberrant glycoform. Two exceptions to this trend are the biomarkers α-fetoprotein (AFP) and cancer antigen 19-9 (CA19-9), which are clinically monitored for their cancer-related glycan changes, and only the AFP assay includes quantification of both the protein amount and the altered glycoform. This narrative review demonstrates, through several examples, the advantages of the combined quantification of protein cancer biomarkers and the respective glycoform analysis, which enable to yield the maximum information and overcome the weaknesses of each individual analysis. This strategy allows to achieve higher sensitivity and specificity in the detection of cancer, enhancing the diagnostic power of biomarker-based cancer detection tests.
Collapse
Affiliation(s)
- Maria Luísa S. Silva
- Unidade de Aprendizagem ao Longo da Vida, Universidade Aberta, 1269-001 Lisboa, Portugal
| |
Collapse
|
9
|
Cabibi D, Giannone AG, Bellavia S, Lo Coco R, Lo Bianco A, Formisano E, Scerrino G, Graceffa G. Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland. Diagnostics (Basel) 2023; 13:2042. [PMID: 37370937 DOI: 10.3390/diagnostics13122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Previous studies have reported a correlation between serum anti-Thyroglobulin-antibodies (TgAb) and papillary thyroid carcinoma. The aim of our study was to evaluate whether serum TgAb and anti-thyroid-peroxidase antibody (TPO) positivity was also related to pre-neoplastic histological changes such as papillary-like nuclear features (PLNF) and with the presence of lymphocytic infiltrate (LI) in thyroid surgical specimens. (2) Methods: The study was retrospectively carried out on 70 consecutively recruited patients who underwent thyroidectomy for benign process and whose TgAb and TPOAb values were retrieved from clinical records. Histological sections of thyroid surgical samples were revised, looking for PLNF and lymphocytic infiltrate. HBME1 expression was assessed by immunohistochemistry. (3) Results: Our results showed a significant association between TgAb, PLNF, and lymphocytic infiltrate. The presence of TgAb was highly specific, but less sensitive, in predicting the presence of PLNF (sensitivity = 0.6, specificity = 0.9; positive predictive value (PPV) = 0.88; negative predictive value (NPV) = 0.63). TgAb positivity showed a good association with the presence of lymphocytic infiltrate (sensitivity = 0.62, specificity = 0.9; PPV = 0.88 and NPV = 0.68). HBME1 immunoreactivity was observed in the colloid of follicles showing PLNF and/or closely associated with LI. (4) Conclusions: The presence of PLNF and LI is associated with serum TgAb positivity. The presence of TgAb and of LI could be triggered by an altered thyroglobulin contained in the HBME1-positive colloid, and could be a first defense mechanism against PLNF that probably represent early dysplastic changes in thyrocytes.
Collapse
Affiliation(s)
- Daniela Cabibi
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Antonino Giulio Giannone
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Sandro Bellavia
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Roberta Lo Coco
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Anna Lo Bianco
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Eleonora Formisano
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Gregorio Scerrino
- Unit of General and Emergency Surgery, Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| | - Giuseppa Graceffa
- Unit of General and Oncological Surgery, Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University Hospital AOU Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Ma Z, Wang H, Shan S, Zhu K, Yuan L. Effect of metformin on type 2 diabetes mellitus based on the volume of thyroid nodules tracked by artificial intelligence. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Association of TSHR gene single nucleotide intronic polymorphism with the risk of hypothyroid and hyperthyroid disorders in Yazd province. Sci Rep 2022; 12:15745. [PMID: 36130976 PMCID: PMC9492782 DOI: 10.1038/s41598-022-19822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was carried out, for the first time, to evaluate the association of rs2268458 polymorphism, biochemical and environmental factors on hypothyroid and hyperthyroid disorders in thyroid patients and healthy individuals in Yazd province, Iran. In this study, blood samples were collected from a total of 100 cases, including 60 hypothyroid, 20 hyperthyroid and 20 normal individuals. DNA was extracted from blood samples and the rs2268458 single nucleotide intronic polymorphism was evaluated using Restriction Fragment Length Polymorphism PCR (RFLP-PCR). The results have shown that 59 individuals were homozygote (TT), 40 cases were heterozygote (TC) and one homozygote (CC) case. Of 59 TT homozygote cases, 25 cases were hypothyroid females and 7 hypothyroid male patients. While, heterozygote TC group consisted of 20 hypothyroid females and 7 hypothyroid male cases. Furthermore, only 1 (CC) homozygote male hypothyroid patient was observed in this study. The hyperthyroid population consisted of 7 (TT) homozygote hyperthyroid female cases, 8 (TC) heterozygote hyperthyroid female cases, 3 (TT) homozygote hyperthyroid male cases and 2 (TC) heterozygote hyperthyroid male cases. According to our study, heterozygote cases (TC) showed less severe symptoms, while homozygote cases (TT) showed no serious symptoms and the (CC) homozygote case showed severe thyroid abnormalities. So, it can be concluded that the TSHR-related rs2268458 polymorphism is associated with hypothyroidism and hyperthyroidism in the male and female populations of Yazd Province, Iran and C allele can be a risk factor for some physio-biochemical and hormonal imbalance in the thyroid disorder patients.
Collapse
|
12
|
Fokina EF, Shpakov AO. Thyroid-Stimulating Hormone Receptor: the Role in the Development of Thyroid Pathology and Its Correction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
One of the key elements responsible for the thyroid response
to thyroid-stimulating hormone (TSH) is the TSH receptor (TSHR),
which belongs to the G protein-coupled receptor superfamily. Binding
of TSH or stimulatory autoantibodies to the TSHR extracellular domain
triggers multiple signaling pathways in target cells that are mediated
through various types of G proteins and β-arrestins. Inhibitory
autoantibodies, in contrast, suppress TSHR activity, inducing hypothyroid states.
Activating mutations lead to constitutively active TSHR forms and
can trigger cancer. Therefore, the TSHR is one of the key targets
for the regulation of thyroid function and thyroid status, as well
as correction of diseases caused by changes in TSHR activity (autoimmune
hyper- and hypothyroidism, Graves’ ophthalmopathy, thyroid cancer).
TSH preparations are extremely rarely used in medicine due to their
immunogenicity and severe side effects. Most promising is the development
of low-molecular allosteric TSHR regulators with an activity of
full and inverse agonists and neutral antagonists, which are able
to penetrate into the allosteric site located in the TSHR transmembrane
domain and specifically bind to it, thus controlling the ability
of the receptor to interact with G proteins and β-arrestins. Allosteric
regulators do not affect the binding of TSH and autoantibodies to
the receptor, which enables mild and selective regulation of thyroid function,
while avoiding critical changes in TSH and thyroid hormone levels.
The present review addresses the current state of the problem of
regulating TSHR activity, including the possibility of using ligands
of its allosteric sites.
Collapse
|
13
|
Khalid W, Maqbool Z, Arshad MS, Kousar S, Akram R, Siddeeg A, Ali A, Qin H, Aziz A, Saeed A, Rahim MA, Zubair Khalid M, Ali H. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, China
| | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | | | - Hina Ali
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N. Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 2022; 155:111099. [DOI: 10.1016/j.foodres.2022.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
15
|
Fernanda Alves Mariano Soares de Farias M, Leite de Siqueira Patriota L, Bernadete de Souza Lira C, Maria de Souza Aguiar L, Rafaela da Silva Barros B, Maria Guedes Paiva P, Moutinho Lagos de Melo C, Diniz de Lima Santos N, Henrique Napoleão T. Purification, characterization, and immunomodulatory activity of a lectin from the seeds of horse chestnut (Aesculus hippocastanum L.). CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
16
|
Benabdelkamel H, Rafiullah M, Masood A, Alsaif A, Musambil M, Alfadda AA. Proteomic profiling of thyroid tissue in patients with obesity and benign diffuse goiter. Front Endocrinol (Lausanne) 2022; 13:923465. [PMID: 35966064 PMCID: PMC9365950 DOI: 10.3389/fendo.2022.923465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Goiter is a term to describe the enlargement of the thyroid gland. The pathophysiology and molecular changes behind development of diffuse benign goiter remains unclear. The present study targeted to identify and describe the alterations in the thyroid tissue proteome from patients (obese euthyroid) with benign diffuse goiter (BDG) using proteomics approach. Thyroid tissue samples, from 7 age and sex matched, patients with BDG and 7 controls were obtained at the time of surgery. An untargeted proteomic analysis of the thyroid tissue was performed out utilizing two-dimensional difference (2D-DIGE) in gel electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for identification of the proteins. Progenesis software was used to identify changes in expression of tissue proteins and found statistically significant differences in abundance in a total of 90 proteins, 46 up and 44 down (1.5-fold change, ANOVA, p ≤ 0.05) in BDG compared to the control group. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of signalling pathways linked to ERK1/2, Glutathione peroxidase and NADPH oxidase associated to organismal injury and abnormalities, endocrine system disorders and cancer. The thyroid tissue proteome in patients with BDG revealed a significant decrease in thyroglobulin along with dysregulation of glycolysis and an increase in prooxidant peroxidase enzymes. Dysregulation of metabolic pathways related to glycolysis, redox proteins, and the proteins associated with maintaining the cytoskeletal structure of the thyrocytes was also identified.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Rafiullah
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaif
- Division of Endocrine and Breast Surgery, Department of Surgery, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Assim A. Alfadda,
| |
Collapse
|
17
|
Identification and expression analysis of thyroid-stimulating hormone β subunit, and effects of T3 on gonadal differentiation-related gene expression in rice field eel, Monopterus albus. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110681. [PMID: 34688906 DOI: 10.1016/j.cbpb.2021.110681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Thyroid-stimulating hormone (TSH) is an important glycoprotein in hypothalamic-pituitary-thyroid axis, which plays a crucial role in the synthesis and release of thyroid hormones in vertebrates. Rice field eel, Monopterus albus, a protogynous hermaphroditic fish, which undergoes sex reversal from a functional female to a male, is an ideal model to investigate the regulation of sex differentiation. In this study, we obtained the cDNA sequence of thyroid-stimulating hormone β subunit (tshβ) from rice field eel, which contained a complete open reading frame and encoded a putative protein of 151 amino acids. Multiple alignment of protein sequences showed that tshβ was highly conserved in teleost. The tissue distribution indicated that tshβ showed high expression in the pituitary, moderate expression in the brain region, gonad, intestine and liver, and low expression in other peripheral tissues. During natural sex reversal, the expression of tshβ had no significant difference in the pituitary. Compared to that in the ovary, the expression of tshβ increased significantly in the gonad at late intersexual and male stages. After treatment by different doses of triiodothyronine (T3) (1 μg/g, 10 μg/g and 100 μg/g body weight), serum T3 and free triiodothyronine (FT3) increased sharply, while the expression of tshβ were inhibited significantly in the pituitary. Although T3 had no significant effect on the levels of serum E2, it stimulated the release of serum 11-KT at high-dose group. We also detected the effects of T3 on the expression of gonadal differentiation-related genes in rice field eel. T3 treatment inhibited the expression of foxl2, cyp19a1a and dax1, while stimulated the expression of sox9a1. These results indicate that TSH may be involved in sex differentiation, and THs may play roles in the regulation of male development and sex reversal in rice field eel.
Collapse
|
18
|
Agapito G, Cannataro M. Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data. BMC Bioinformatics 2021; 22:376. [PMID: 34592927 PMCID: PMC8482563 DOI: 10.1186/s12859-021-04297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a well-established methodology for interpreting a list of genes and proteins of interest related to a condition under investigation. This paper aims to extend our previous work in which we introduced a preliminary comparative analysis of pathway enrichment analysis tools. We extended the earlier work by providing more case studies, comparing BiP enrichment performance with other well-known PEA software tools. METHODS PEA uses pathway information to discover connections between a list of genes and proteins as well as biological mechanisms, helping researchers to overcome the problem of explaining biological entity lists of interest disconnected from the biological context. RESULTS We compared the results of BiP with some existing pathway enrichment analysis tools comprising Centrality-based Pathway Enrichment, pathDIP, and Signaling Pathway Impact Analysis, considering three cancer types (colorectal, endometrial, and thyroid), for a total of six datasets (that is, two datasets per cancer type) obtained from the The Cancer Genome Atlas and Gene Expression Omnibus databases. We measured the similarities between the overlap of the enrichment results obtained using each couple of cancer datasets related to the same cancer. CONCLUSION As a result, BiP identified some well-known pathways related to the investigated cancer type, validated by the available literature. We also used the Jaccard and meet-min indices to evaluate the stability and the similarity between the enrichment results obtained from each couple of cancer datasets. The obtained results show that BiP provides more stable enrichment results than other tools.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Legal, Economic and Social Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
19
|
Characterization of Human Medullary Thyroid Carcinoma Glycosphingolipids Identifies Potential Cancer Markers. Int J Mol Sci 2021; 22:ijms221910463. [PMID: 34638800 PMCID: PMC8509059 DOI: 10.3390/ijms221910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) accounts for only 1–2% of thyroid cancers; however, metastatic MTC is a mortal disease with no cure. In this study, glycosphingolipids were isolated from human MTCs and characterized by mass spectrometry and binding of carbohydrate recognizing ligands. The tissue distribution of selected compounds was investigated by immunohistochemistry. The amount of acid glycosphingolipids in the MTCs was higher than in the normal thyroid glands. The major acid glycosphingolipid was the GD3 ganglioside. Sulfatide and the gangliosides GM3 and GD1a were also present. The majority of the complex non-acid glycosphingolipids had type 2 (Galβ4GlcNAc) core chains, i.e., the neolactotetraosylceramide, the Lex, H type 2 and x2 pentaosylceramides, the Ley and A type 2 hexaosylceramides, and the A type 2 heptaosylceramide. There were also compounds with globo (GalαGalβ4Glc) core, i.e., globotriaosylceramide, globotetraosylceramide, the Forssman pentaosylceramide, and the Globo H hexaosylceramide. Immunohistochemistry demonstrated an extensive expression av Ley in the MTC cells and also a variable intensity and prevalence of Globo H and Lex. One individual with multiple endocrine neoplasia type 2B expressed the Forssman determinant, which is rarely found in humans. This study of human MTC glycosphingolipids identifies glycans that could serve as potential tumor-specific markers.
Collapse
|
20
|
Zhang Z, Wu J, Liu P, Kang L, Xu X. Diagnostic Potential of Plasma IgG N-glycans in Discriminating Thyroid Cancer from Benign Thyroid Nodules and Healthy Controls. Front Oncol 2021; 11:658223. [PMID: 34476207 PMCID: PMC8406750 DOI: 10.3389/fonc.2021.658223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Novel biomarkers are urgently needed to distinguish between benign and malignant thyroid nodules and detect thyroid cancer in the early stage. The associations between serum IgG N-glycosylation and thyroid cancer risk have been revealed. We aimed to explore the potential of IgG N-glycan traits as biomarkers in the differential diagnosis of thyroid cancer. Methods Plasma IgG N-glycome analysis was applied to a discovery cohort followed by independent validation. IgG N-glycan profiles were obtained using a robust quantitative strategy based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. IgG N-glycans were relatively quantified, and classification performance was evaluated based on directly detected and derived glycan traits. Results Four directly detected glycans were significantly changed in thyroid cancer patients compared to that in non-cancer controls. Derived glycan traits and a classification glycol-panel were generated based on the directly detected glycan traits. In the discovery cohort, derived trait BN (bisecting type neutral N-glycans) and the glyco-panel showed potential in distinguishing between thyroid cancer and non-cancer controls with AUCs of 0.920 and 0.917, respectively. The diagnostic potential was further validated. Derived trait BN and the glycol-panel displayed “accurate” performance (AUC>0.8) in discriminating thyroid cancer from benign thyroid nodules and healthy controls in the validation cohort. Meanwhile, derived trait BN and the glycol-panel also showed diagnostic potential in detecting early-stage thyroid cancer. Conclusions IgG N-glycome analysis revealed N-glycomic differences that allow classification of thyroid cancer from non-cancer controls. Our results suggested that derived trait BN and the classification glyco-panel rather than single N-glycans may serve as candidate biomarkers for further validation.
Collapse
Affiliation(s)
- Zejian Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Kang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Jankovic J, Dettwiler M, Fernández MG, Tièche E, Hahn K, April-Monn S, Dettmer MS, Kessler M, Rottenberg S, Campos M. Validation of Immunohistochemistry for Canine Proteins Involved in Thyroid Iodine Uptake and Their Expression in Canine Follicular Cell Thyroid Carcinomas (FTCs) and FTC-Derived Organoids. Vet Pathol 2021; 58:1172-1180. [PMID: 34056980 DOI: 10.1177/03009858211018813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, and thyroid peroxidase (TPO) are essential for the uptake of iodine by follicular thyroid cells. The aim of this study was to establish immunohistochemistry (IHC) protocols for TSHR, NIS, pendrin, and TPO in canine tissues and characterize their expression in organoids derived from canine follicular cell thyroid carcinoma (FTC) and in the respective primary tumors. This constitutes a fundamental step to establish organoids as a model to study the uptake of iodine in canine FTC. Commercially available antibodies directed against human proteins were selected. Antibody specificity was confirmed by western blot using lysates of the HTori-3 human thyroid cell line and healthy canine thyroid gland. IHC was validated using HTori-3 cells and a set of canine normal tissues including healthy thyroid gland. The expression of TSHR, NIS, pendrin, and TPO was evaluated in 3 organoid lines derived from FTC and respective primary tumors. All 4 antibodies produced specific bands by western blot and cytoplasmic labeling in follicular cells by IHC in both human HTori-3 cells and canine thyroid gland. NIS also showed basolateral membrane immunolabeling in follicular cells. All 4 proteins were highly expressed in organoids derived from FTC. The expression was similar or higher compared to the primary tumors. The results of this study characterize organoids derived from canine FTC as a suitable in vitro model to investigate iodine uptake, opening new research possibilities in the field of canine thyroid cancer therapy.
Collapse
|
22
|
Masunaga Y, Mochizuki M, Kadoya M, Wada Y, Okamoto N, Fukami M, Kato F, Saitsu H, Ogata T. Primary ovarian insufficiency in a female with phosphomannomutase-2 gene (PMM2) mutations for congenital disorder of glycosylation. Endocr J 2021; 68:605-611. [PMID: 33583911 DOI: 10.1507/endocrj.ej20-0706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a highly heterogeneous condition, and its underlying causes remain to be clarified in a large fraction of patients. Congenital disorders of glycosylation (CDG) are multisystem diseases caused by mutations of a number of genes involved in N-glycosylation or O-glycosylation, and the most frequent form is PMM2-CDG (alias, CDG-Ia) resulting from biallelic mutations in PMM2 encoding phosphomannomutase-2 involved in N-glycosylation. Here, we examined a 46,XX Japanese female with syndromic POI accompanied by an undetectable level of serum anti-Müllerian hormone (AMH). Whole exome sequencing identified biallelic pathogenic mutations of PMM2 (a novel c.34G>C:p.(Asp12His) of maternal origin and a recurrent c.310C>G:p.(Leu104Val) of paternal origin) (NM_000303.3), and N-glycosylation studies detected asialotransferrin and disialotransferrin characteristic of PMM2-CDG, in addition to normally glycosylated tetrasialotransferrin. Clinical assessment showed cerebellar hypotrophy, which is a fairly characteristic and highly prevalent feature in PMM2-CDG, together with multiple non-specific features reported in PMM2-CDG such as characteristic face, intellectual disability, skeletal abnormalities, and low blood antithrombin III value. These results including the undetectable level of serum AMH, in conjunction with previously reported findings suggestive of the critical role of glycosylation in oocyte development and function, imply that PMM2-CDG almost invariably leads to POI primarily because of the defective oogenesis and/or oocyte-dependent early folliculogenesis rather than the compromised bioactivity of FSH/LH with defective glycosylation. Thus, it is recommended to examine PMM2 in patients with syndromic POI, especially in those with cerebellar ataxia/hypotrophy.
Collapse
Affiliation(s)
- Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mie Mochizuki
- Department of Pediatrics, University of Yamanashi, Faculty of Medicine, Chuou 409-3898, Japan
| | - Machiko Kadoya
- Department of Molecular Medicine, Osaka Women's and Children's Hospital, Izumi 594-1101, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Women's and Children's Hospital, Izumi 594-1101, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women's and Children's Hospital, Izumi 594-1101, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
23
|
Masood A, Benabdelkamel H, Jammah AA, Ekhzaimy AA, Alfadda AA. Identification of Protein Changes in the Urine of Hypothyroid Patients Treated with Thyroxine Using Proteomics Approach. ACS OMEGA 2021; 6:2367-2378. [PMID: 33521475 PMCID: PMC7841925 DOI: 10.1021/acsomega.0c05686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
The thyroid gland and thyroid hormones control a multitude of homeostatic functions including maintenance of fluid and electrolyte balance and normal functioning of the kidneys. Thyroid dysfunction alters the sytemic hemodynamic and metabolic balance, thereby affecting the kidney. In this study, we aimed to identify and characterize the urinary proteome of the patients with hypothyroidism. An untargeted proteomic approach with network analysis was used to identify changes in total urinary proteome in patients with newly diagnosed overt hypothyroidism. Urine samples were collected from nine age-matched patients' before and after l-thyroxine treatment. Differences in the abundance of urinary proteins between hypothyroid and euthyroid states were determined using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled to matrix-assisted laser desorption and ionization time-of-flight (MALDI TOF) mass spectrometry. Alterations in the abundance of urinary proteins, analyzed by Progenesis software, revealed statistically significant differential abundance in a total of 49 spots corresponding to 42 proteins, 28 up and 14 down (≥1.5-fold change, analysis of variance (ANOVA), p ≤ 0.05). The proteins identified in the study are known to regulate processes related to transport, acute phase response, oxidative stress, generation of reactive oxygen species, cellular proliferation, and endocytosis. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of pathways related to amino acid metabolism, molecular transport, and small-molecule biochemistry and involved the MAPK kinase, vascular endothelial growth factor (VEGF), PI3 kinase/Akt, protein kinase C (PKC), signaling pathways. The identified proteins were involved in the regulation of thyroglobulin (Tg) and thyrotropin (TSH) metabolism. Alterations in their levels indicate the presence of a compensatory mechanism aimed at increasing the regulation of Tg in the hypothyroid state.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anwar A. Jammah
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Aishah A. Ekhzaimy
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
24
|
Pereira TM, Diem M, Bachmann L, Bird B, Miljković M, Zezell DM. Evaluating biochemical differences in thyroglobulin from normal and goiter tissues by infrared spectral imaging. Analyst 2021; 145:7907-7915. [PMID: 33016272 DOI: 10.1039/d0an00700e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thyroglobulin is a glycoiodoprotein that is produced by thyroid follicular cells; it is stored in follicles in structures known as colloids. The main function of this protein is to stock the hormones triiodothyronine (T3) and thyroxine (T4) until the body requires them. This study aims to demonstrate that infrared spectral imaging with appropriate multivariate analysis can reveal biochemical changes in this glycoprotein. The results achieved herein point out biochemical differences in the colloid samples obtained from normal and goiter patients including glycosylation and changes in the secondary conformational structure. We have presented the first spectral histopathology-based method to detect biochemical differences in thyroid colloids, such as TG iodination, glycosylation, and changes in the secondary structure in normal and goiter patients. The observed changes in the colloids were mainly due to the alterations in amide I and amide II (secondary conformation of proteins) and there is a correlation with different glycosylation between normal and goiter tissues.
Collapse
Affiliation(s)
- Thiago Martini Pereira
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Rua Talim, 330-12231-280 - São José dos Campos, Brazil.
| | | | | | | | | | | |
Collapse
|
25
|
Ząbczyńska M, Link-Lenczowski P, Pocheć E. Glycosylation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:205-218. [PMID: 34495537 DOI: 10.1007/978-3-030-70115-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases are accompanied by changes in protein glycosylation, in both the immune system and target tissues. The best-studied alteration in autoimmunity is agalactosylation of immunoglobulin G (IgG), characterized primarily in rheumatoid arthritis (RA), and then detected also in systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), and multiple sclerosis (MS). The rebuilding of IgG N-glycans in RA correlates with the relapses and remissions of the disease, is associated with physiological states such as pregnancy but also depends on applied anti-inflammatory therapy. In turn, a decreased core fucosylation of the whole pool of IgG N-glycans is a serum glycomarker in autoimmune thyroid diseases (AITD) encompassing Hashimoto's thyroiditis (HT) and Grave's disease (GD). However, fucosylation of anti-thyroglobulin IgG (an immunological marker of HT) was elevated in HT serum. Core fucosylation of IgG oligosaccharides was also lowered in MS and SLE. In AITD and IBD, chronic inflammation T lymphocytes showed the reduced expression of MGAT5 gene encoding β1,6-N-acetylglucosaminyltransferase V (GnT-V) responsible for β1,6-branching of N-glycans, which is important for T cell receptor activation. Structural changes of glycans have a profound effect on the pro-inflammatory activity of immune cells and serum immune proteins, including IgG in autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
26
|
Zhu WZ, Olson A, Portman M, Ledee D. Sex impacts cardiac function and the proteome response to thyroid hormone in aged mice. Proteome Sci 2020; 18:11. [PMID: 33372611 PMCID: PMC7722307 DOI: 10.1186/s12953-020-00167-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice. Methods Aged (18–20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting. Results Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways. Conclusion We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.
Collapse
Affiliation(s)
- Wei Zhong Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Aaron Olson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA
| | - Michael Portman
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA
| | - Dolena Ledee
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA. .,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA.
| |
Collapse
|
27
|
de Oliveira IM, Cavallin MD, Corrêa DEDC, Razera A, Mariano DD, Ferreira F, Romano MA, Marino Romano R. Proteomic Profiles of Thyroid Gland and Gene Expression of the Hypothalamic-Pituitary-Thyroid Axis Are Modulated by Exposure to AgNPs during Prepubertal Rat Stages. Chem Res Toxicol 2020; 33:2605-2622. [PMID: 32972137 DOI: 10.1021/acs.chemrestox.0c00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) have potent antimicrobial activity and, for this reason, are incorporated into a variety of products, raising concern about their potential risks and impacts on human health and the environment. The developmental period is highly dependent on thyroid hormones (THs), and puberty is a sensitive period, where changes in the hormonal environment may have permanent effects. We evaluated the hypothalamic-pituitary (HP)-thyroid axis after exposure to low doses of AgNPs using a validated protocol to assess pubertal development and thyroid function in immature male rats. For stimulatory events of the HP-thyroid axis, we observed an increase in the expression of Trh mRNA and serum triiodothyronine. Negative feedback reduced the hypothalamic expression of Dio2 mRNA and increased the expression of Thra1, Thra2, and Thrb2 mRNAs. In the pituitary, there was a reduced expression of Mct-8 mRNA and Dio2 mRNA. For peripheral T3-target tissues, a reduced expression of Mct-8 mRNA was observed in the heart and liver. An increased expression of Dio3 mRNA was observed in the heart and liver, and an increased expression of Thrb2 mRNA was observed in the liver. The quantitative proteomic profile of the thyroid gland indicated a reduction in cytoskeletal proteins (Cap1, Cav1, Lasp1, Marcks, and Tpm4; 1.875 μg AgNP/kg) and a reduction in the profile of chaperones (Hsp90aa1, Hsp90ab1, Hspa8, Hspa9, P4hb) and proteins that participate in the N-glycosylation process (Ddost, Rpn1 and Rpn2) (15 μg AgNP/kg). Exposure to low doses of AgNPs during the window of puberty development affects the regulation of the HP-thyroid axis with further consequences in thyroid gland physiology.
Collapse
Affiliation(s)
- Isabela Medeiros de Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Mônica Degraf Cavallin
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Deborah Elzita do Carmo Corrêa
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Amanda Razera
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Danielle Dobner Mariano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Francine Ferreira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Marco Aurélio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| |
Collapse
|
28
|
The Molecular Function and Clinical Role of Thyroid Stimulating Hormone Receptor in Cancer Cells. Cells 2020; 9:cells9071730. [PMID: 32698392 PMCID: PMC7407617 DOI: 10.3390/cells9071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023] Open
Abstract
The thyroid stimulating hormone (TSH) and its cognate receptor (TSHR) are of crucial importance for thyrocytes to proliferate and exert their functions. Although TSHR is predominantly expressed in thyrocytes, several studies have revealed that functional TSHR can also be detected in many extra-thyroid tissues, such as primary ovarian and hepatic tissues as well as their corresponding malignancies. Recent advances in cancer biology further raise the possibility of utilizing TSH and/or TSHR as a therapeutic target or as an informative index to predict treatment responses in cancer patients. The TSH/TSHR cascade has been considered a pivotal modulator for carcinogenesis and/or tumor progression in these cancers. TSHR belongs to a sub-group of family A G-protein-coupled receptors (GPCRs), which activate a bundle of well-defined signaling transduction pathways to enhance cell renewal in response to external stimuli. In this review, recent findings regarding the molecular basis of TSH/TSHR functions in either thyroid or extra-thyroid tissues and the potential of directly targeting TSHR as an anticancer strategy are summarized and discussed.
Collapse
|
29
|
Pérez-Campos Mayoral L, Hernández-Huerta MT, Mayoral-Andrade G, Pérez-Campos Mayoral E, Zenteno E, Martínez-Cruz R, Martínez Ruíz H, Martínez Cruz M, Pérez Santiago AD, Pérez-Campos E. TSH Levels in Subclinical Hypothyroidism in the 97.5th Percentile of the Population. Int J Endocrinol 2020; 2020:2698627. [PMID: 32612652 PMCID: PMC7306879 DOI: 10.1155/2020/2698627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The debate regarding the cutoff point in the treatment of patients with subclinical hypothyroidism (Shypo) is ongoing. Generally, two different groups are identified for treatment by levels of 10 and 20 mIU/L. Nevertheless, the question remains, "what cutoff point should be chosen?" We have written a selective nonsystematic review focused on the 97.5 percentile reference value reported in healthy subjects in a number of countries and observed important disparities, which partly show the challenge of identifying a single cutoff point for those patients needing medication. We identified studies of TSH on the natural history of subclinical hypothyroidism from population-based prospective cohort studies, which follow up patients for several years. The evolution of TSH levels in these patients is variable. Some cases of TSH may return to lower levels at different stages over the years, but others may not, possibly even developing into overt thyroid failure, also variable. We analyzed factors that may explain the normalization of serum TSH levels. In addition, we found that thorough population-based prospective cohort studies following up on TSH levels, thyroid antibodies, and ultrasonography are important in decisions made in the treatment of patients. However, the 97.5 percentile reference value varies in different countries; therefore, an international cutoff point for subclinical hypothyroidism cannot be recommended.
Collapse
Affiliation(s)
- Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juírez de Oaxaca, Oaxaca 68020, Mexico
| | | | - Gabriel Mayoral-Andrade
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juírez de Oaxaca, Oaxaca 68020, Mexico
| | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juírez de Oaxaca, Oaxaca 68020, Mexico
| | - Edgar Zenteno
- Facultad de Medicina de la Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ruth Martínez-Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juírez de Oaxaca, Oaxaca 68020, Mexico
| | - Héctor Martínez Ruíz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juírez de Oaxaca, Oaxaca 68020, Mexico
| | | | | | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica “Dr. Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
30
|
Zhang Y, Mao Y, Zhao W, Su T, Zhong Y, Fu L, Zhu J, Cheng J, Yang H. Glyco-CPLL: An Integrated Method for In-Depth and Comprehensive N-Glycoproteome Profiling of Human Plasma. J Proteome Res 2019; 19:655-666. [PMID: 31860302 DOI: 10.1021/acs.jproteome.9b00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Zhang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonghong Mao
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Thoracic Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linru Fu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Zhang Y, Zhao W, Zhao Y, Mao Y, Su T, Zhong Y, Wang S, Zhai R, Cheng J, Fang X, Zhu J, Yang H. Comparative Glycoproteomic Profiling of Human Body Fluid between Healthy Controls and Patients with Papillary Thyroid Carcinoma. J Proteome Res 2019; 19:2539-2552. [PMID: 31800250 DOI: 10.1021/acs.jproteome.9b00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Yonghong Mao
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Thoracic Surgery Research Labouratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Ząbczyńska M, Link-Lenczowski P, Novokmet M, Martin T, Turek-Jabrocka R, Trofimiuk-Müldner M, Pocheć E. Altered N-glycan profile of IgG-depleted serum proteins in Hashimoto's thyroiditis. Biochim Biophys Acta Gen Subj 2019; 1864:129464. [PMID: 31669586 DOI: 10.1016/j.bbagen.2019.129464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an autoimmune disease characterized by chronic inflammation of thyroid gland. Although HT is the most common cause of hypothyroidism, the pathogenesis of this disease is not fully understood. Glycosylation of serum proteins was examined in HT only to a limited extent. The study was designed to determine the glycosylation pattern of IgG-depleted sera from HT patients. METHODS Serum N-glycans released by N-glycosidase F (PNGase F) digestion were analyzed by normal-phase high-performance liquid chromatography (NP-HPLC). N-glycan structures in each collected HPLC fraction were determined by liquid chromatography-mass spectrometry (LC-MS) and exoglycosidase digestion. Fucosylation and sialylation was also analyzed by lectin blotting. RESULTS The results showed an increase of monosialylated tri-antennary structure (A3G3S1) and disialylated diantennary N-glycan with antennary fucose (FA2G2S2). Subsequently, we analyzed the serum N-glycan profile by lectin blotting using lectins specific for fucose and sialic acid. We found a significant decrease of Lens culinaris agglutinin (LCA) staining in HT samples, which resulted from the reduction of α1,6-linked core fucose in HT serum. We also observed an increase of Maackia amurensis II lectin (MAL-II) reaction in HT due to the elevated level of α2,3-sialylation in HT sera. CONCLUSIONS The detected alterations of serum protein sialylation might be caused by chronic inflammation in HT. The obtained results complete our previous IgG N-glycosylation analysis in autoimmune thyroid patients and show that the altered N-glycosylation of serum proteins is characteristic for autoimmunity process in HT. General Significance Thyroid autoimmunity is accompanied by changes of serum protein sialylation.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Kraków, Poland.
| | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83h, 10000 Zagreb, Croatia.
| | - Tiphaine Martin
- Tisch Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA.
| | - Renata Turek-Jabrocka
- Department of Endocrinology, Jagiellonian University Hospital, Kopernika 17, 31-501 Kraków, Poland.
| | | | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Koçak ÖF, Kayili HM, Albayrak M, Yaman ME, Kadıoğlu Y, Salih B. N-glycan profiling of papillary thyroid carcinoma tissues by MALDI-TOF-MS. Anal Biochem 2019; 584:113389. [PMID: 31400301 DOI: 10.1016/j.ab.2019.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023]
Abstract
Papillary thyroid carcinoma (PTC) is a type of thyroid cancer whose incidence rate has increased recently all over the world. Glycosylation is a crucial post-translational modification (PTM) for the regulation of thyroid hormone synthesis in thyroid glands. However, our knowledge regarding the N-glycosylation change in PTC is limited. To the best of our knowledge, this is the first study to profile glycans in PTC tissues by mass spectrometry. Herein, we have analyzed the N-glycans of formalin-fixed paraffin-embedded (FFPE) tissues of patients diagnosed with PTC in a matched case-control study. Using MALDI-TOF(/TOF)-MS, 35 enzymatically released N-glycan compositions were characterized. The statistical analyses showed significant differences including six N-glycan compositions (p < 0.001) between patients and controls. It was determined that four of them (H5N4E1, H5N4F1E1, H5N4F1L1E1 and H5N4F1E2, E: α2,6-linked sialic acid; L: α2,3-linked sialic acid) were up-regulated in PTC tissues, whereas two N-glycans (H8N2 and H9N2) found to be down-regulated. Besides, a significant difference was found in six different N-glycan traits. Variants of PTC (follicular, classical, hurtle cell) were also studied to define specific N-glycan change for each variant.
Collapse
Affiliation(s)
- Ömer Faruk Koçak
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, 25240, Erzurum, Turkey
| | - Hacı Mehmet Kayili
- Karabuk University, Faculty of Engineering, Department of Biomedical Engineering, 78000, Karabuk, Turkey.
| | - Mevlüt Albayrak
- Atatürk University, Health Services Vocational Training School, Department of Medical Laboratory Techniques, 25240, Erzurum, Turkey
| | - Mehmet Emrah Yaman
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, 25240, Erzurum, Turkey
| | - Yücel Kadıoğlu
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, 25240, Erzurum, Turkey.
| | - Bekir Salih
- Hacettepe University, Faculty of Science, Department of Chemistry, 06800, Ankara, Turkey.
| |
Collapse
|
34
|
Grimm D. Cell and Molecular Biology of Thyroid Disorders. Int J Mol Sci 2019; 20:ijms20122895. [PMID: 31200596 PMCID: PMC6627965 DOI: 10.3390/ijms20122895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
- Department of Microgravity and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
35
|
Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Rudan I, Polašek O, Barbalić M, Hayward C, Zemunik T. Genetic Variants in the ST6GAL1 Gene Are Associated with Thyroglobulin Plasma Level in Healthy Individuals. Thyroid 2019; 29:886-893. [PMID: 30929638 DOI: 10.1089/thy.2018.0661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Thyroglobulin (Tg) is a 660 kDa iodoglycoprotein that serves as a scaffold for thyroid hormone synthesis. Although a twin study showed that variability of serum Tg levels has a substantial genetic basis, no genome-wide association study (GWAS) of serum/plasma Tg levels has been performed to date. The aim of this study was to identify genetic variants associated with plasma Tg levels among healthy individuals. Methods: A GWAS was conducted on two Croatian cohorts, and a combined analysis was performed. The analyses included 1094 individuals. A total of 7,597,379 variants, imputed using the 1000 Genomes reference panel, were analyzed for association. GWAS was performed under an additive model, controlling for age, sex, and relatedness within each data set. Combined analysis was conducted using the inverse-variance fixed-effects method. Results: Sixteen variants located on chromosome 3, within the ST6GAL1 gene, reached genome-wide significance. The lead SNP was rs4012172 ( \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$p = 1.29 \times {10^{ - 10}}$$ \end{document} ), which explained 3.19% of the variance in Tg levels. ST6GAL1 belongs to the sialyltransferase protein family, which has a fundamental role in the synthesis of specific sialylated structures on various glycoproteins, including Tg. It is known that only immature Tg (poorly sialylated or desialylated) can be transferred to the bloodstream. Conclusions: A highly biologically plausible locus was identified that could have a role in the regulation of plasma Tg levels in healthy individuals.
Collapse
Affiliation(s)
- Antonela Matana
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| | - Marijana Popović
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| | - Thibaud Boutin
- 2 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine; University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Vesela Torlak
- 3 Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Dubravka Brdar
- 3 Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Ivana Gunjača
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| | - Ivana Kolčić
- 4 Department of Public Health, School of Medicine; University of Split, Split, Croatia
| | - Vesna Boraska Perica
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| | - Ante Punda
- 3 Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Igor Rudan
- 5 Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics; University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ozren Polašek
- 4 Department of Public Health, School of Medicine; University of Split, Split, Croatia
| | - Maja Barbalić
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| | - Caroline Hayward
- 2 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine; University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Tatijana Zemunik
- 1 Department of Medical Biology; School of Medicine; University of Split, Split, Croatia
| |
Collapse
|
36
|
Khatami F, Payab M, Sarvari M, Gilany K, Larijani B, Arjmand B, Tavangar SM. Oncometabolites as biomarkers in thyroid cancer: a systematic review. Cancer Manag Res 2019; 11:1829-1841. [PMID: 30881111 PMCID: PMC6395057 DOI: 10.2147/cmar.s188661] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Thyroid cancer (TC) is an important common endocrine malignancy, and its incidence has increased in the past decades. The current TC diagnosis and classification tools are fine-needle aspiration (FNA) and histological examination following thyroidectomy. The metabolite profile alterations of thyroid cells (oncometabolites) can be considered for current TC diagnosis and management protocols. METHODS This systematic review focuses on metabolite alterations within the plasma, FNA specimens, and tissue of malignant TC contrary to benign, goiter, or healthy TC samples. A systematic search of MEDLINE (PubMed), Scopus, Embase, and Web of Science databases was conducted, and the final 31 studies investigating metabolite biomarkers of TC were included. RESULTS A total of 15 targeted studies and 16 untargeted studies revealed several potential metabolite signatures of TC such as glucose, fructose, galactose, mannose, 2-keto-d-gluconic acid and rhamnose, malonic acid and inosine, cholesterol and arachidonic acid, glycosylation (immunoglobulin G [IgG] Fc-glycosylation), outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 4 (MCT4), choline, choline derivatives, myo-/scyllo-inositol, lactate, fatty acids, several amino acids, cell membrane phospholipids, estrogen metabolites such as 16 alpha-OH E1/2-OH E1 and catechol estrogens (2-OH E1), and purine and pyrimidine metabolites, which were suggested as the TC oncometabolite. CONCLUSION Citrate was suggested as the first most significant biomarker and lactate as the second one. Further research is needed to confirm these biomarkers as the TC diagnostic oncometabolite.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolomics Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Metabolomics and Genomics Research Center, Endocrinology and Metabolomics Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Acercr, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
37
|
Jia L, Zhang J, Ma T, Guo Y, Yu Y, Cui J. The Function of Fucosylation in Progression of Lung Cancer. Front Oncol 2018; 8:565. [PMID: 30619732 PMCID: PMC6296341 DOI: 10.3389/fonc.2018.00565] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a disease that influences human health and has become a leading cause of cancer mortality worldwide. However, it is frequently diagnosed at the advanced stage. It is necessary by means of biology to identify specific lung tumor biomarkers with high sensitivity. Glycosylation is one of the most important post-translational modifications and is related to many different diseases. It is involved in numerous essential biological processes, such as cell proliferation, differentiation, migration, cell-cell integrity and recognition, and immune modulation. However, little was known about deregulation of glycosylation in lung cancer and contribution to tumor–microenvironment interactions. Among the numerous glycosylations, fucosylation is the most common modification of glycoproteins and glycosylated oligosaccharides. Increased levels of fucosylation have been detected in various pathological conditions, as well as in lung cancer. In this article, we reviewed the role of fucosylation in lung cancer. We highlighted some of the fucosylation alterations currently being pursued in sera or tissues of lung cancer patients. Moreover, we elaborated on the regulation mechanism of fucosylation in proliferative invasion and metastasis of lung tumor cells. In summary, alterations in fucosylation provide potential biomarkers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Liyuan Jia
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yayuan Guo
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| | - Jihong Cui
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| |
Collapse
|