1
|
Fyie JQ, Stratton CA, Morrison WR, Murrell EG. Intercropping Alters Phytochemical Defenses Against Insect Herbivory. RESEARCH SQUARE 2024:rs.3.rs-4920649. [PMID: 39315259 PMCID: PMC11419272 DOI: 10.21203/rs.3.rs-4920649/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical defenses of pest-susceptible crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on aerial volatile organic compound (VOC) emission profiles by intercropping Melilotus alba and Triticum aestivum with Silphium integrifolium in AMF-inoculated soil. We also assessed the impact of intercropping on induced plant defenses by conducting an in-situ, no-choice bioassay with Spodoptera frugiperda. Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was induced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on pest resistance in agroecological systems could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.
Collapse
|
2
|
Diab MK, Mead HM, Khedr MA, Nafie MS, Abu-Elsaoud AM, El-Shatoury SA. Metabolite profiling and in-silico studies show multiple effects of insecticidal actinobacterium on Spodoptera littoralis. Sci Rep 2024; 14:3057. [PMID: 38321075 PMCID: PMC10847143 DOI: 10.1038/s41598-024-53096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
The polyphagous pest, Spodoptera littoralis (Boisduval), poses a significant global economic threat by gregariously feeding on over a hundred plant species, causing substantial agricultural losses. Addressing this challenge requires ongoing research to identify environmentally safe control agents. This study aimed to elucidate the insecticidal activity of the metabolite (ES2) from a promising endophytic actinobacterium strain, Streptomyces sp. ES2 EMCC2291. We assessed the activity of ES2 against the eggs and fourth-instar larvae of S. littoralis through spectrophotometric measurements of total soluble protein, α- and β-esterases, polyphenol oxidase (PPO), and catalase enzyme (CAT). The assessments were compared to commercial Biosad® 22.8% SC. Untargeted metabolomics using LC-QTOF-MS/MS identified 83 metabolic compounds as chemical constituents of ES2. The median lethal concentration (LC50) of ES2 (165 mg/mL) for treated Spodoptera littoralis eggs showed significant differences in polyphenol oxidase and catalase enzymatic activities, while the LC50 of ES2 (695 mg/mL) for treated S. littoralis fourth instar larvae showed lower significance in α- and β-esterase activities. Molecular docking of ES2 identified seven potent biocidal compounds, showing strong affinity to PPO and catalase CAT proteins in S. littoralis eggs while displaying limited binding to alpha and beta esterase proteins in the larvae. The results contribute to the understanding of ES2 as a promising alternative biopesticide, providing insights for future research and innovative applications in sustainable pest management strategies.
Collapse
Affiliation(s)
- Mohamed Khaled Diab
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt.
| | - Hala Mohamed Mead
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | - Mohamad Ahmad Khedr
- Agricultural Research Center, Cotton Leafworm Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | - Mohamed S Nafie
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Sahar Ahmed El-Shatoury
- Faculty of Science, Microbiology & Botany Department, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Diksha, Singh S, Mahajan E, Sohal SK. Growth inhibitory, immunosuppressive, cytotoxic, and genotoxic effects of γ-terpinene on Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci Rep 2023; 13:16472. [PMID: 37777624 PMCID: PMC10542352 DOI: 10.1038/s41598-023-43499-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
γ-Terpinene, a monoterpene widely present in essential oils of many medicinal and aromatic plants with numerous biological properties, was evaluated for its insecticidal activity against melon fruit fly, Zeugodacus cucurbitae (Coquillett). Different concentrations (5, 25, 125, 625, and 3125 ppm) of γ-terpinene along with control were fed to larvae of melon fly. The number of pupae formed and adults emerged declined significantly after treatment. Morphologically deformed adults and pupae were also observed. The developmental duration too prolonged in treated larvae. Food assimilated, mean relative growth rate, larval weight gain, and pupal weight also declined. In the larvae treated with LC30 and LC50 concentrations, there was a decline in the titers of phenoloxidase and total hemocyte count, and variations were observed in the differential hemocyte count, suggesting an immunosuppressive effect of γ-terpinene on melon fly. Both concentrations also led to an increase in the apoptotic and necrotic cells as well as decrease in the viable hemocytes in the circulating hemolymph of treated larvae. Comet parameters (tail length, % tail DNA, tail moment, and olive tail moment) of γ-terpinene fed larvae increased significantly. Given the observed effects of γ-terpinene on normal developmental and nutritional physiology, its immunosuppressive properties, and its potential for genome damage, it can be considered for incorporation into integrated pest management strategies for controlling Z. cucurbitae.
Collapse
Affiliation(s)
- Diksha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Evani Mahajan
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Diksha, Singh S, Mahajan E, Sohal SK. Immunomodulatory, cyto-genotoxic, and growth regulatory effects of nerolidol on melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Toxicon 2023; 233:107248. [PMID: 37562702 DOI: 10.1016/j.toxicon.2023.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Insects have evolved a robust immune system consisting of humoral and cellular branches and their orchestrated response enables insect to defend against exogenous stressors. Exploration of underlying immune mechanisms of insect pest under allelochemical stress can give us new insights on insect pest management. In this study, nerolidol, a plant sesquiterpene was evaluated for its insecticidal, growth regulatory, immunomodulatory, and cyto-genotoxic effects against melon fruit fly, Zeugodacus cucurbitae (Coquillett). First, second, and third instar larvae of Z. cucurbitae were fed on artificial diet containing different concentrations (5, 25, 125, 625, and 3125 ppm) of nerolidol. Results revealed a significant reduction in pupation and adult emergence as well as prolongation of developmental duration of treated larvae. Decline in growth indices showed remarkable growth inhibitory effects of nerolidol. Pupal weight and nutritional parameters viz. Larval weight gain, food assimilated, and mean relative growth rate declined after treatment. Immunological studies on second instar larvae depicted a drop in total hemocyte count and variations in proportions of plasmatocytes and granulocytes of LC30 and LC50 treated larvae. Phenoloxidase activity in nerolidol treated larvae initially increased but was suppressed after 72 h of treatment. The frequency of viable hemocytes decreased and that of apoptotic and necrotic hemocytes increased with both the lethal concentrations of nerolidol. Comet assay revealed a significant damage to DNA of hemocytes. The findings of the current study indicate that nerolidol exerts its insecticidal action through growth regulation, immunomodulation, and cyto-genotoxicity thus revealing its potential to be used as biopesticide against Z. cucurbitae.
Collapse
Affiliation(s)
- Diksha
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Evani Mahajan
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
5
|
Guan Y, He X, Wen D, Chen S, Chen F, Chen F, Jiang Y. Fusarium oxysporum infection on root elicit aboveground terpene production and salicylic acid accumulation in Chrysanthemum morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:11-23. [PMID: 36087542 DOI: 10.1016/j.plaphy.2022.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Underground infection of Fusarium oxysporum resulted in great yield losses in chrysanthemum (Chrysanthemum morifolium Ramat.) industry. However, the effect of F. oxysporum root disease on the terpenes production in above- and below-ground parts of plant is completely unexplored. The aim of this study was to investigate the systematic impact of Fusarium infection underground on the terpene production in aboveground parts of chrysanthemum. Terpene production in above- and below-ground parts was profiled in a time series of post-inoculation by GC-MS. Total terpenes were significantly induced from roots and leaves of Fusarium-infected versus healthy plants. These terpenes included monoterpenes, sesquiterpenes and diterpenes, in which sesquiterpenes were primarily induced in roots and leaves, while monoterpenes were produced only in leaves. Through transcriptome analysis, 8 differentially expressed terpene synthase genes (TPSs) were screened out. The relative expression levels of 8 TPS genes at different developmental stage and tissues indicated the spatial delay of the TPS genes in leaves. The induced terpenes from roots and leaves showed consistency with the expression pattern of TPS genes. The biochemical function of Cm-j-TPS1/2/7 were verified by enzymatic assay. Additionally, it's found that the content of salicylic acid (SA) in root and leaf significantly increased by F. oxysporum infection, suggesting a role of the SA signaling pathway in defense. Together, these results reveal the defense response of above- and below-ground parts of plants to root fungal attack and provide a theoretical basis for the effective prediction and control of F. oxysporum infection in chrysanthemum.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi He
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dian Wen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Mahajan E, Singh S, Diksha, Kaur S, Sohal SK. The genotoxic, cytotoxic and growth regulatory effects of plant secondary metabolite β-caryophyllene on polyphagous pest Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Toxicon 2022; 219:106930. [PMID: 36167142 DOI: 10.1016/j.toxicon.2022.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
Use of secondary metabolites as an alternative to organic pesticides is an eco-friendly and safe strategy in pest management. β-caryophyllene [(1R,4E,9S)-4,11,11-trimethyl-8-methylene bicyclo [7.2.0]undec-4-ene], a natural sesquiterpene is found as an essential oil in many plants like Syzygium aromaticum, Piper nigrum, Cannabis sativa. The present study aims at exploring the insecticidal, genotoxic and cytotoxic potential of β-caryophyllene against common cutworm Spodoptera litura (Fab.), a major polyphagous pest. S. litura larvae were fed on different concentrations (5, 25, 125, 625 and 3125 ppm) of β-caryophyllene. Results revealed delay in larval and pupal period with increase in concentration. Larval mortality increased and adult emergence declined significantly with increase in concentration. Higher concentrations of β-caryophyllene caused pupal and adult deformities. A negative impact of β-caryophyllene was also seen on the nutritional physiology of S. litura. Parameters such as relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food and approximate digestibility showed a significant reduction in a dose dependent manner. DNA damage assessed using comet assay revealed significant genotoxic effects at LC30 and LC50 concentrations. There was an increase in tail length, percent tail DNA, tail moment and olive tail moment. Phenol oxidase activity was suppressed at LC50 concentration with respect to control. Total hemocyte count also declined significantly at LC30 and LC50 concentrations as compared to control. β-caryophyllene induced genotoxic and cytotoxic damage affecting the growth and survival of S. litura larvae. Our findings suggest that β-caryophyllene has the potential to be used for the management of insect pests.
Collapse
Affiliation(s)
- Evani Mahajan
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Diksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India.
| |
Collapse
|
7
|
Lazarević J, Jevremović S, Kostić I, Vuleta A, Manitašević Jovanović S, Kostić M, Šešlija Jovanović D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front Physiol 2022; 13:842314. [PMID: 35250641 PMCID: PMC8892178 DOI: 10.3389/fphys.2022.842314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.
Collapse
|
8
|
Shahriari M, Zibaee A, Mirhaghparast SK, Pour SA, Ramzi S, Hoda H. Mortality and physiological impacts of the tea saponin against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1974042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Morteza Shahriari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Sarah Aghaeepour Pour
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Samar Ramzi
- Plant protection Department, Research Center for Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hassan Hoda
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension, Amol, Iran
| |
Collapse
|
9
|
Solouki N, Mohammadi-Gollou A, Sagha M, Mohammadzadeh-Vardin M. Origanum vulgare extract induces apoptosis in Molt-4 leukemic cell line. JOURNAL OF CELLULAR BIOTECHNOLOGY 2021; 6:105-112. [DOI: 10.3233/jcb-200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
OBJECTIVE: The purpose of this paper is to investigate the effect of Origanum vulgare extract as a plant with high anti-oxidant components on the induction of cell death in the Molt-4 cell line. BACKGROUND: Acute lymphocytic leukemia is characterized by the accumulation of a large number of lymphoblastic cells with high oxidant levels. METHODS: MTT assay was performed to determine the effect of O.vulgare extract on Molt-4 cells viability and the amount of 50% inhibitory concentration (IC50) was calculated. Changes in the expression of BAX and BCL-2 genes as involved in apoptosis and Nrf2 gene as a transcription factor of anti-oxidant genes in O.vulgare extract-treated Molt-4 cells were measured with Real-Time PCR. Treated Molt-4 cells were used to determine the stages of early and late apoptosis, and necrosis using acridine orange/ethidium bromide double staining. RESULTS: The results suggest survival inhibition and induction of apoptosis in Molt-4 cells treated with O.vulgare extract. Against Bax and Nrf2 genes expression, the expression of Bcl-2 gene has been reduced in Molt-4 cells following1/5 IC50 concentration of O. vulgare extract treatment. CONCLUSION: Given the oxidant drugs used in ALL treatment, and increased levels of oxidative stress in leukemic cells, induction of apoptosis by an anti-oxidant plant extract seems to be a promising way in leukemia treatment.
Collapse
Affiliation(s)
- Nona Solouki
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Mohammadi-Gollou
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mohammadzadeh-Vardin
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Liu L, Hou XL, Yue WB, Xie W, Zhang T, Zhi JR. Response of Protective Enzymes in Western Flower Thrips (Thysanoptera: Thripidae) to Two Leguminous Plants. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1191-1197. [PMID: 32794573 DOI: 10.1093/ee/nvaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The western flower thrips, Frankliniella occidentalis, is a major invasive pest of commercially important crops worldwide. We compared the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and the expressions of two putative SOD and two putative POD sequences in second instar larvae and adults after three generations of adaptation to kidney bean and broad bean plants. The results showed that the SOD, POD, and CAT activities in adults were significantly higher than those in the second instar larvae. The SOD activities were significantly higher in both the second instar larvae and the adults fed on kidney bean (Phaseolus vulgaris) plants versus broad bean (Vicia faba) plants, whereas the POD and CAT activities showed the opposite trend. The gene expression data showed that the FoPOD-2 expression levels were lower in the second instar larvae after three generations of feeding on broad bean plants versus kidney bean plants. The expression levels of FoSOD-1 and FoSOD-2, and FoPOD-1 under broad bean plant treatment were higher than those under kidney bean plant treatment. Additionally, gene expression fluctuated among the different generations. Our results indicated that western flower thrips demonstrated plasticity in gene expression and activity of protective enzymes, which is related to their adaptability to the host plants. Western flower thrips can change the expression of protective enzyme genes and enzyme activity in vivo to better adapt to kidney bean and broad bean plants.
Collapse
Affiliation(s)
- Li Liu
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Xiao-Lin Hou
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Wen-Bo Yue
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Wen Xie
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Tao Zhang
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Jun-Rui Zhi
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| |
Collapse
|
11
|
del Rosario Cappellari L, Chiappero J, Palermo TB, Giordano W, Banchio E. Impact of Soil Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Mentha piperita Leaf Secondary Metabolites. J Chem Ecol 2020; 46:619-630. [DOI: 10.1007/s10886-020-01193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
|
12
|
Mannino G, Abdi G, Maffei ME, Barbero F. Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour. PLoS One 2018; 13:e0209047. [PMID: 30586439 PMCID: PMC6306168 DOI: 10.1371/journal.pone.0209047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Coordinated social behaviour is fundamental for ant ecological success. However, even distantly-related organisms, such as plants, have evolved the ability to manipulate ant collective performances to their own advantage. In the parasitic system encompassing Maculinea butterflies, Myrmica ants, and Origanum vulgare plants, the ant-plant interaction elicits the release of a volatile terpenoid compound (carvacrol) which is used by the gravid butterfly to locate the ideal oviposition site. Here we show that this ant-plant association is maintained by the effect of O. vulgare terpenoids on ant behaviour and that food plants might gain protection by Myrmica ants by chemically manipulating workers to forage in their surroundings. The variation in the locomotor ability of three ant species (Formica cinerea, Tetramorium caespitum, and Myrmica scabrinodis) was studied after treatment with the two major O. vulgare terpenoid volatile compounds (i.e., carvacrol and thymol). The brain levels of three biogenic amines (dopamine, tyramine and serotonin) were analysed in ants exposed to the O. vulgare terpenoids by HPLC-ESI-MS/MS. Carvacrol and thymol increased the locomotor activity of all ant species tested, but if blended reduced the movement propensity of Myrmica scabrinodis. Dopamine and tyramine production was positively correlated with the worker locomotor activity. In Myrmica ants, both brain biogenic ammines were negatively correlated with the aggressive behaviour. Blends of O. vulgare volatiles affected the locomotor ability while increased the aggressiveness of Myrmica workers by altering the aminergic regulation in the ant brains. This behavioural manipulation, might enhance partner fidelity and plant protection. Our findings provide new insights supporting a direct role of plant volatiles in driving behavioural changes in social insects through biogenic amine modulation.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Gholamreza Abdi
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Massimo Emilio Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|