1
|
Najafi D, Siri G, Sadri M, Yazdani O, Esbati R, Karimi P, Keshavarz A, Mehmandar-Oskuie A, Ilktac M. Combination MEG3 lncRNA and Ciprofloxacin dramatically decreases cell migration and viability as well as induces apoptosis in GC cells in vitro. Biotechnol Appl Biochem 2024; 71:809-816. [PMID: 38499448 DOI: 10.1002/bab.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Gastric cancer (GC) is a prominent cause of cancer-related mortality worldwide. Long noncoding RNA (lncRNA) maternal expression gene3 (MEG3) participates in numerous signaling pathways by targeting the miRNA-mRNA axis. Studies on human tumors have demonstrated that the antibiotic Ciprofloxacin induces cell cycle changes, programmed cell death, and growth suppression. In this study, we transfected MEG3 lncRNA and Ciprofloxacin into the MKN-45 GC cell line. qRT-PCR was employed to evaluate the effects on the specific microRNA and mRNA. The wound healing test, MTT assay, and flow cytometry were used to assess the impact of their administration on cell migration, viability, and apoptosis, respectively. Research showed that miR-147 expression fell even more after MEG3 lncRNA transfection, leading to an increase in B-cell lymphoma 2 (BCL-2) levels. Ciprofloxacin transfection did not significantly affect the axis, except for MEG3, which led to its slight upregulation. MEG3 lncRNA inhibited the migration of MKN-45 cells compared to the control group. When MEG3 lncRNA was coupled with Ciprofloxacin, there was a significant reduction in cell migration compared to untreated groups and controls. MTT assay and flow cytometry demonstrated that MEG3 lncRNA decreased cell viability and triggered apoptosis. Simultaneous administration of MEG3 lncRNA and Ciprofloxacin revealed a significant reduction in cell viability caused by increased apoptosis obtained from MTT or flow cytometry assays. Modulating the miR-147-BCL-2 axis decreases cell migration and survival while promoting cell death. In conclusion, combining MEG3 lncRNA with Ciprofloxacin may be an effective therapeutic approach for GC treatment by influencing the miR-14-BCl-2 axis, resulting in reduced cell viability, migration, and increased apoptosis.
Collapse
Affiliation(s)
- Dena Najafi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Yazdani
- Department of Medical Science, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Karimi
- Fars Population-Based Cancer Registry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehmet Ilktac
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| |
Collapse
|
2
|
Zhu SL, Qi M, Chen MT, Lin JP, Huang HF, Deng LJ, Zhou XW. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155377. [PMID: 38503154 DOI: 10.1016/j.phymed.2024.155377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.
Collapse
Affiliation(s)
- Su-Li Zhu
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mei-Ting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Jia-Peng Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hai-Fu Huang
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, PR China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xing-Wang Zhou
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
3
|
Pashapour N, Dehghan-Nayeri MJ, Babaei E, Khalaj-Kondori M, Mahdavi M. The Assessment of Cytotoxicity, Apoptosis Inducing Activity and Molecular Docking of a new Ciprofloxacin Derivative in Human Leukemic Cells. J Fluoresc 2024; 34:1379-1389. [PMID: 37535231 DOI: 10.1007/s10895-023-03350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
The fluoroquinolone class of antibiotics includes derivatives of the drug ciprofloxacin. These substances have recently been advocated for the treatment of cancer. In the current study, we examined the cytotoxicity and apoptosis-inducing potential of a novel synthetic ciprofloxacin derivative in the human myeloid leukemia KG1-a cell line. With an IC50 of 25µM, this ciprofloxacin derivative, 7-(4-(2-(benzhydryloxy)-2-oxoethyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4 dihydroquinoline-3- carboxylic acid (4-BHPCP), was an active drug. Through Hoechst 33,258 staining and Annexin V/PI double staining experiments, the apoptotic activity of the 4-BHPCP was assessed morphologically. Real-time quantitative PCR was used to assess changes in the expression level of certain apoptosis-related genes, including Bcl-2, Bax, and Survivin (qRT PCR). The results of the qRT PCR analysis demonstrated that 4-BHPCP promotes apoptosis in the KG1-a cell line by down-regulating Survivin and Bcl2, up-regulating Bax, and increasing the Bax/Bcl2 transcripts in a time-dependent manner. These results imply that this novel chemical may be a promising therapy option for acute myeloid leukemia.
Collapse
Affiliation(s)
- Neda Pashapour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Wang D, Qiu Y, Fan J, Liu Y, Chen W, Li Z, Chen W, Wang X. Upregulation of C/EBP Homologous Protein induced by ER Stress Mediates Epithelial to Myofibroblast Transformation in ADTKD-UMOD. Int J Med Sci 2022; 19:364-376. [PMID: 35165522 PMCID: PMC8795802 DOI: 10.7150/ijms.65036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease due to UMOD mutations (ADTKD-UMOD) results in chronic interstitial nephritis, which gradually develops into end-stage renal disease. It is believed that the accumulation of mutant uromodulin causes the endoplasmic reticulum (ER) stress, then leads to the kidney damage. But the underlying mechanism remains unclear. To find the ADTKD-UMOD patients, UMOD gene screening was performed in 26 patients with unexplained chronic interstitial nephritis, during the past 10 years in our department, and among them three ADTKD-UMOD cases were discovered. Routine pathological staining and electron microscopy sections were reviewed again to confirm their kidney lesions. Immunostaining of UMOD and ER stress marker GRP78, as well as CHOP have all been done. The strong colocalization of UMOD with GRP78 and CHOP in ADTKD-UMOD patients but not in other chronic interstitial nephritis patients had been found. Moreover in vitro experiments, ER stress induced by tunicamycin (TM) not only significantly increased the expression of GRP78 and CHOP, but also caused the epithelial to myofibroblast transformation (EMT) of renal tubular epithelial cells, evidenced by decreased expression of E-cadherin and increased expression of vimentin, and extracellular matrix (ECM) deposition, evidenced by increased expression of fibronectin (FN). CHOP knockdown could restore the upregulation of vimentin and FN induced by TM. Thus, specific activation of CHOP in renal tubular epithelial cells induced by UMOD protein might be the key reason of renal interstitial fibrosis in ADTKD-UMOD patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Yagui Qiu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Yuanying Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| |
Collapse
|
5
|
Naimi A, Safaei S, Entezari A, Solali S, Hassanzadeh A. Knockdown of Enhancer of Zeste Homolog 2 Affects mRNA Expression of Genes Involved in the Induction of Resistance to Apoptosis in MOLT-4 Cells. Anticancer Agents Med Chem 2021; 20:571-579. [PMID: 32000648 DOI: 10.2174/1871520620666200130091955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Enhancer of Zeste Homolog 2 (EZH2) is a subunit of the polycomb repressive complex 2 that silences the gene transcription via H3K27me3. Previous studies have shown that EZH2 has an important role in the induction of the resistance against the Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis (TIA) in some leukemia cells. OBJECTIVE The aim of this study was to determine the effect of silencing EZH2 gene expression using RNA interference on the expression of death receptors 4 and 5 (DR4/5), Preferentially expressed Antigen in Melanoma (PRAME), and TRAIL human lymphoid leukemia MOLT-4 cells. METHODS Quantitative RT-PCR was used to detect the EZH2 expression and other candidate genes following the siRNA knockdown in MOLT-4 cells. The toxicity of the EZH2 siRNA was evaluated using Annexin V/PI assay following the transfection of the cells by 80 pM EZH2 siRNA at 48 hours. RESULTS Based on the flow-cytometry results, the EZH2 siRNA had no toxic effects on MOLT-4 cells. Also, the EZH2 inhibition increased the expression of DR4/5 but reduced the PRAME gene expression at the mRNA levels. Moreover, the EZH2 silencing could not change the TRAIL mRNA in the transfected cells. CONCLUSION Our results revealed that the down-regulation of EZH2 in MOLT-4 cells was able to affect the expression of important genes involved in the induction of resistance against TIA. Hence, we suggest that the silencing of EZH2 using RNA interference can be an effective and safe approach to help defeat the MOLT-4 cell resistance against TIA.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Science, Sabzevar, Iran.,Department of Medical Laboratory Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Entezari
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Eslami F, Mahdavi M, Babaei E, Hussen BM, Mostafavi H, Shahbazi A, Hidayat HJ. Down-regulation of Survivin and Bcl-2 concomitant with the activation of caspase-3 as a mechanism of apoptotic death in KG1a and K562 cells upon exposure to a derivative from ciprofloxacin family. Toxicol Appl Pharmacol 2020; 409:115331. [PMID: 33171188 DOI: 10.1016/j.taap.2020.115331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Ciprofloxacin derivatives belong to a family of antibiotics called fluoroquinolones. Recently, these compounds have been recommended for the treatment of cancer. In the present study, we assessed the cytotoxicity of several new synthetic ciprofloxacin derivatives and the apoptosis-inducing activity of the most efficient derivative in two human myeloid leukemia K562 and KG1-a cell lines. Among the prepared ciprofloxacin derivatives, 1-cyclopropyl-7-(4-(2-((3,7-dimethyloct-6-en-1-yl)oxy)-2-oxoethyl)piperazin-1-yl)-6-fluoro-4-oxo-1,4dihydroquinoline-3-carboxylic acid (4-DMOCP) was more active compound with IC50 of 19.56 and 22.13 μM for K562 and KG1-a, respectively. Apoptotic activity of the 4-DMOCP was examined morphologically through Hoechst 33258 staining, Annexin V/PI double staining, and caspase-3 activity assays. Changes in the expression level of some apoptosis-related genes and protein, including Bcl-2, Bax, Survivin, p53, Caspase-8 and Caspase-9 were evaluated by the real-time quantitative PCR (qRT PCR) and western blotting. The qRT PCR analysis showed that 4-DMOCP induces apoptosis in both cell lines via the down-regulation of Survivin and Bcl2, up-regulation of caspase-8 and -9, as well as a time-dependent increase in the Bax/Bcl2 transcripts. The mRNA level of p53 was also increased in both cell lines. In addition, western blot analysis revealed that treatment with the compound, down-regulated the protein expression levels of Bcl2 and Survivin and up-regulated the protein level of Bax in both cell lines. These findings suggest that these new compounds can be good candidates for the treatment of acute and chronic myeloid leukemia.
Collapse
Affiliation(s)
- Farhad Eslami
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hossein Mostafavi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahmad Shahbazi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
7
|
Shahzad SA, Sarfraz A, Yar M, Khan ZA, Naqvi SAR, Naz S, Khan NA, Farooq U, Batool R, Ali M. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs. Bioorg Chem 2020; 100:103876. [PMID: 32388426 DOI: 10.1016/j.bioorg.2020.103876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Over expression of thymidine phosphorylase (TP) in various human tumors compared to normal healthy tissue is associated with progression of cancer and proliferation. The 2-deoxy-d-ribose is the final product of thymidine phosphorylase (TP) catalyzed reaction. Both TP and 2-deoxy-d-ribose are known to promote unwanted angiogenesis in cancerous cells. Discovery of potent inhibitors of thymidine phosphorylase (TP) can offer appropriate approach in cancer treatment. A series of ciprofloxacin 2, 3a-3c, 4a-4d, 5a-5b, 6 and 7 has been synthesized and characterized using spectroscopic techniques. Afterwards, inhibitory potential of synthesized ciprofloxacin 2, 3a-3c, 4a-4d, 5a-5b, 6 and 7 against thymidine phosphorylase enzyme was assessed. Out of these twelve analogs of ciprofloxacin nine analogues 3a-3c, 4a-4c, 5a-5b and 6 showed good inhibitory activity against thymidine phosphorylase. Inhibitory activity as presented by their IC50 values was found in the range of 39.71 ± 1.13 to 161.89 ± 0.95 μM. The 7-deazaxanthine was used as a standard inhibitor with IC50 = 37.82 ± 0.93 μM. Furthermore, the chick chorionic allantoic membrane (CAM) assay was used to investigate anti-angiogenic activity of the most active ciprofloxacin-based inhibitor 3b. To enlighten the important binding interactions of ciprofloxacin derivatives with target enzyme, the structure activity relationship and molecular docking studies of chosen ciprofloxacin analogues was discussed. Docking studies revealed key π-π stacking, π-cation and hydrogen bonding interactions of ciprofloxacin analogues with active site residues of thymidine phosphorylase enzyme.
Collapse
Affiliation(s)
- Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Ayesha Sarfraz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sadia Naz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Razia Batool
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Ali
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman
| |
Collapse
|
8
|
Yu S, Wang S, Zou P, Chai G, Lin YW, Velkov T, Li J, Pan W, Zhou QT. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int J Pharm 2020; 575:118915. [PMID: 31816354 PMCID: PMC7313379 DOI: 10.1016/j.ijpharm.2019.118915] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to design and characterize dry powder inhaler formulations of ciprofloxacin and colistin co-loaded liposomes prepared by the ultrasonic spray-freeze-drying (USFD) technique. Liposomal formulations and powder production parameters were optimized to achieve optimal characteristics and in-vitro performance such as encapsulation efficiency (EE), particle size, particle distribution index (PDI), fine particle fraction (FPF), emitted dose (ED) and in vitro antibacterial activity. The formulation (F6) with the mannitol (5% w/v) as the internal lyoprotectant and sucrose (5%, w/v), mannitol (10%, w/v) and leucine (5%, w/w) as the external lyoprotectants/aerosolization enhancers showed an optimal rehydrated EE values of ciprofloxacin and colistin (44.9 ± 0.9% and 47.0 ± 0.6%, respectively) as well as satisfactory aerosol performance (FPF: 45.8 ± 2.2% and 43.6 ± 1.6%, respectively; ED: 97.0 ± 0.5% and 95.0 ± 0.6%, respectively). For the blank liposomes, there was almost no inhibitory effect on the cell proliferation in human lung epithelial A549 cells, showing that the lipid materials used in the liposome formulation is safe for use in pulmonary drug delivery. The cytotoxicity study demonstrated that the optimized liposomal formulation (F6) was not cytotoxic at least at the drug concentrations of colistin 5 μg/mL and ciprofloxacin 20 μg/mL. Colistin (2 mg/L) monotherapy showed no antibacterial effect against P. aeruginosa H131300444 and H133880624. Ciprofloxacin (8 mg/L) monotherapy showed moderate bacterial killing for both clinical isolates; however, regrowth was observed in 6 h for P. aeruginosa H133880624. The liposomal formulation displayed superior antibacterial activity against clinical isolates of Pseudomonas aeruginosa H131300444 and P. aeruginosa H133880624 compared to each antibiotic per se. These results demonstrate that the liposomal powder formulation prepared by USFD could potentially be a pulmonary delivery system for antibiotic combination to treat multi-drug resistant Gram-negative lung infections.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Shaoning Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peizhi Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Guihong Chai
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Pospíšilová Š, Malík I, Bezouskova K, Kauerova T, Kollar P, Csöllei J, Oravec M, Cizek A, Jampilek J. Dibasic Derivatives of Phenylcarbamic Acid as Prospective Antibacterial Agents Interacting with Cytoplasmic Membrane. Antibiotics (Basel) 2020; 9:E64. [PMID: 32041117 PMCID: PMC7168207 DOI: 10.3390/antibiotics9020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
1-[2-[({[2-/3-(Alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium/azepan- ium oxalates or dichlorides (alkoxy = butoxy to heptyloxy) were recently described as very promising antimycobacterial agents. These compounds were tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. 1-[3-(Dipropylammonio)-2-({[3-(pentyloxy-/hexyloxy-/heptyloxy)phenyl]carbamoyl}oxy)propyl]pyrrolidinium dichlorides showed high activity against staphylococci and enterococci comparable with or higher than that of used controls (clinically used antibiotics and antiseptics). The screening of the cytotoxicity of the compounds as well as the used controls was performed using human monocytic leukemia cells. IC50 values of the most effective compounds ranged from ca. 3.5 to 6.3 µM, thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. The antibacterial activity is based on the surface activity of the compounds that are influenced by the length of their alkoxy side chain, the size of the azacyclic system, and hydro-lipophilic properties, as proven by in vitro experiments and chemometric principal component analyses. Synergistic studies showed the increased activity of oxacillin, gentamicin, and vancomycin, which could be explained by the direct activity of the compounds against the bacterial cell wall. All these compounds demonstrate excellent antibiofilm activity, when they inhibit and disrupt the biofilm of S. aureus in concentrations close to minimum inhibitory concentrations against planktonic cells. Expected interactions of the compounds with the cytoplasmic membrane are proven by in vitro crystal violet uptake assays.
Collapse
Affiliation(s)
- Šárka Pospíšilová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic;
| | - Ivan Malík
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Kristyna Bezouskova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1946/1, 612 42 Brno, Czech Republic; (K.B.); (A.C.)
| | - Tereza Kauerova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic; (T.K.); (P.K.)
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic; (T.K.); (P.K.)
| | - Jozef Csöllei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic;
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic;
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1946/1, 612 42 Brno, Czech Republic; (K.B.); (A.C.)
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
10
|
Effects of Levofloxacin on Blood Lymphocyte Apoptosis in Patients with Pulmonary Tuberculosis: an In Vitro Study. Bull Exp Biol Med 2019; 168:109-112. [PMID: 31773352 DOI: 10.1007/s10517-019-04659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 10/25/2022]
Abstract
The effects of a fluroquinolone levofloxacin on apoptosis of peripheral blood lymphocytes from patients with infiltrative pulmonary tuberculosis were studied in vitro. It was found that levofloxacin stimulated apoptotic cell death in tuberculosis. Addition of levofloxacin to cell suspension from patients with drug-susceptible form of tuberculosis led to an increase in the number of CD95+ and AnnV+ lymphocytes. In patients with drug-resistant form of tuberculosis, only the number of apoptotic lymphocytes, but not the count of CD95+ cells increased under these conditions.
Collapse
|
11
|
Uchida M, Kamoi K, Ando N, Wei C, Karube H, Ohno-Matsui K. Safety of Infliximab for the Eye Under Human T-Cell Leukemia Virus Type 1 Infectious Conditions in vitro. Front Microbiol 2019; 10:2148. [PMID: 31620105 PMCID: PMC6759608 DOI: 10.3389/fmicb.2019.02148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022] Open
Abstract
Use of biologics has been widely advocated for inflammatory diseases recently. Anti-tumor necrosis factor (TNF)-α antibody therapy is reportedly effective against ocular inflammation. However, side effects of TNF-α inhibition have been reported, particularly in the form of exacerbation of infections such as tuberculosis. Paradoxical reactions such as exacerbated inflammation are also well known. Around 20 million humans are infected with human T-cell leukemia virus type 1 (HTLV-1) globally, and this virus can cause adult T-cell leukemia, HTLV-1-associated myelopathy and HTLV-1 uveitis. As for ophthalmic concerns, it has not been identified whether anti-TNF-α antibody stimulates HTLV-1-infected cells and ocular cells to induce HTLV-1 uveitis in HTLV-1 carriers. Here we investigated the effects of anti-TNF-α antibody on ocular status under HTLV-1 infectious conditions using ocular cells and HTLV-1-infected cells in vitro. We used the ARPE-19 human retinal pigment epithelial cell line as ocular cells considered to play an important role in the blood-ocular barrier, and the MT2 HTLV-1-infected cell line. Jurkat cells were used as controls. Infliximab (IFX) was used as an anti-TNF-α antibody to achieve TNF-α inhibition. We evaluated the production of inflammatory cytokines and intercellular adhesion molecule (ICAM)-1, proliferation of ARPE-19, expression of TNF-α receptor (TNF-R) and HTLV-1 proviral DNA, and the percentage of apoptotic ARPE-19. Inflammatory cytokines such as interleukin (IL)-6, IL-8, TNF, and ICAM-1 were significantly elevated through contact between ARPE-19 and MT2. Treatment with IFX tented to inhibit TNF production, although the level of production was low, but changes in IL-6, IL-8, and ICAM-1 remained unaffected. Expression of TNFR was unaltered by IFX treatment. HTLV-1 proviral DNA was not significantly changed with treatment. No change in cell growth rate or apoptotic rate of ARPE-19 was seen with the addition of IFX. In conclusion, IFX did not exacerbate production of inflammatory cytokines, and did not affect expression of TNFR, proliferation of ARPE-19, HTLV-1 proviral load, or apoptosis of ARPE-19. These results suggest that IFX does not exacerbate HTLV-1-related inflammation in the eye and represents an acceptable treatment option under HTLV-1 infectious conditions.
Collapse
Affiliation(s)
- Minami Uchida
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Ando
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenxi Wei
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisako Karube
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Aldaghi SA, Jalal R. Concentration-Dependent Dual Effects of Ciprofloxacin on SB-590885-Resistant BRAF V600E A375 Melanoma Cells. Chem Res Toxicol 2019; 32:645-658. [PMID: 30829029 DOI: 10.1021/acs.chemrestox.8b00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BRAF inhibitors (BRAFi) have been applied to treat melanoma harboring V600E mutations. Several studies showed that BRAFi-resistant melanomas are dependent on mitochondrial biogenesis. Therefore, the present study aimed to investigate the influence of ciprofloxacin (CIP), a mitochondria-targeting antibiotic, on SB-590885-resistant BRAFV600E A375 melanoma (A375/SB) cells. The cytotoxicity activity of CIP and SB-590885, a potent and specific BRAFi, on A375 and A375/SB cells was evaluated by MTT, colony formation, migration, and spheroid formation assays. Moreover, SB-590885-induced cell death in A375 cells was analyzed. SB-590885 showed time- and concentration-dependent cytotoxic effects on A375 cells. Twenty-five μg/mL CIP decreased the cell viability of A375 and A375/SB cells in a time-dependent manner. This concentration of CIP markedly decreased clonogenicity in both cells and caused a reduction in the growth of A375/SB spheroids. The cytotoxicity of 5 μg/mL CIP on A375/SB cells was less than that of A375 cells. The colony formation and migration ability of A375/SB cells was increased in the presence of 5 μg/mL CIP. Ten μM SB-590885 induced a massive vacuolization in A375 cells. Cell death assays suggested a simultaneous activation of autophagy, paraptosis, apoptosis, and necrosis. For the first time, this study reveals that CIP at the maximum concentration in serum (5 μg/mL) can enhance the colony formation and migration abilities in BRAFi-resistant melanoma cells, while it has cytotoxic activity against these cells at a higher concentration than serum level. This study suggests that CIP may promote aggressive growth properties in BRAFi-resistant melanomas, at a concentration present in serum.
Collapse
Affiliation(s)
- Seyyede Araste Aldaghi
- Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran.,Department of Research Cell and Molecular Biology, Institute of Biotechnology , Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|