1
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
2
|
Afify SM, Hassan G, Nawara HM, H Zahra M, Xu Y, Alam MJ, Saitoh K, Mansour H, Abu Quora HA, Sheta M, Monzur S, Du J, Oh SY, Seno A, Salomon DS, Seno M. Optimization of production and characterization of a recombinant soluble human Cripto-1 protein inhibiting self-renewal of cancer stem cells. J Cell Biochem 2022; 123:1183-1196. [PMID: 35578735 DOI: 10.1002/jcb.30272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12 cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 37°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCs at high dose and induced cell differentiation.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, 32511, Shebin El Kom, Menofiua, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Current address: Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hend M Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan
| | - Yanning Xu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan.,Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University, Tianjin, China
| | - Md Jahangir Alam
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Koichi Saitoh
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Hager Mansour
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Hagar A Abu Quora
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Mona Sheta
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sadia Monzur
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Juan Du
- Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | | | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - David S Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan.,Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
3
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
4
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
5
|
Hu C, Zhang Y, Zhang M, Li T, Zheng X, Guo Q, Zhang X. Exosomal Cripto-1 Serves as a Potential Biomarker for Perihilar Cholangiocarcinoma. Front Oncol 2021; 11:730615. [PMID: 34434900 PMCID: PMC8380828 DOI: 10.3389/fonc.2021.730615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Perihilar cholangiocarcinoma (PHCCA) has a poor prognosis, mainly due to diagnosis at an advanced stage. Cripto-1 functions as an oncogene and is highly expressed in several human cancers, however, its clinical application in PHCCA is poorly understood. Herein, we identified that Cripto-1 was released by PHCCA cells via exosomes in vitro and in vivo. Furthermore, an ELISA method was developed to detect exosomal Cripto-1 in the serum of 115 PHCCA patients, 47 cholangitis patients and 65 healthy controls, and it was found that exosomal Cripto-1 was increased in PHCCA patients and associated with metastasis. Compared with traditional serum tumor markers, CA19-9 and CEA, exosomal Cripto-1 demonstrated a larger area under ROC curve for PHCCA diagnosis. The cutoff value of exosomal Cripto-1 was 0.82, achieving a sensitivity of 79.1% and a specificity of 87.5%. As expected, exosomal Cripto-1 levels in immunohistochemically Cripto-1-high cases were significantly elevated compared to in Cripto-1-low cases. When measured 1-week postoperatively, Cripto-1 levels decreased on average from 1.25(0.96-3.26) to 0.85(0.62-1.82). Immunohistochemistry analysis showed Cripto-1 expression was negatively correlated with E-cadherin and was an independent prognostic biomarker for poor survival in PHCCA patients. In conclusion, exosomal Cripto-1 in sera can reflect its expression in the tissue of PHCAA patients and has the potential be a non-invasive biomarker for diagnosis and prognosis of PHCCA.
Collapse
Affiliation(s)
- Chunxiao Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
7
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
8
|
Li W, Zihan X, Yizhe W, Yanyang L, Zhixi L, Xi Y. Trilobatin Induces Apoptosis and Attenuates Stemness Phenotype of Acquired Gefitinib Resistant Lung Cancer Cells via Suppression of NF-κB Pathway. Nutr Cancer 2021; 74:735-746. [PMID: 33860693 DOI: 10.1080/01635581.2021.1912368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trilobatin is a common type of flavonoids compounds derived from Lithocarpus polystachyus Rehd leaves. Previous report suggests that trilobatin was potentially involved in pro-and anticancer, antioxidative and anti-hyperglycemic activities. Here, we investigated the anticancer efficiency of trilobatin on gefitinib resistant lung cancer cells. In this study, MTT assays, EdU incorporation assays, DAPI staining, tumor sphere formation assays, immunofluorescent staining and Western blot analysis were performed to explore the functional role of trilobatin on gefitinib resistant lung cancer cells. The results showed that trilobatin inhibits proliferation of gefitinib resistant lung cancer cells. In addition, the proportions of apoptotic cells were increased along with down-regulated expression levels of Bcl-2 and mitochondrial Cytochrome C while up-regulated Bax, Cleaved Caspase-3, -9, and cytosolic Cytochrome C expression. Moreover, trilobatin decreased tumor sphere formation and expression levels of multiple stemness markers (ALDH1, CD133, Nanog, and ABCG2) in gefitinib resistant lung cancer cells. Furthermore, investigation of the mechanism indicated that trilobatin suppressed activity of NF-κB via decreasing constitutive phosphorylation of NF-κB p65 and IκB-α in gefitinib resistant lung cancer cells. All these results indicate that trilobatin induces apoptosis and attenuates stemness phenotype of gefitinib resistant lung cancer cells, involved with, or partly, the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Wang Li
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Zihan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Yizhe
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liu Yanyang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Zhixi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Xi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Ishii H, Zahra MH, Takayanagi A, Seno M. A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth. Int J Mol Sci 2021; 22:ijms22041709. [PMID: 33567764 PMCID: PMC7915030 DOI: 10.3390/ijms22041709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Maram H. Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Atushi Takayanagi
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Correspondence: ; Tel./Fax: +81-86-251-8216
| |
Collapse
|
10
|
Wei Y, Jiang J, Wang C, Zou H, Shen X, Jia W, Jin S, Zhang L, Hu J, Yang L, Pang L. Prognostic value of cripto-1 expression in non-small-cell lung cancer patients: a systematic review and meta-analysis. Biomark Med 2020; 14:317-329. [PMID: 32134335 DOI: 10.2217/bmm-2019-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This systematic review and meta-analysis aimed to analyze the association between cripto-1 expression and prognosis as well as clinicopathological features of non-small-cell lung cancer (NSCLC) patients. Methods: The electronic databases for all articles about NSCLC and cripto-1 expression were searched. Results: Twelve articles were enrolled in this meta-analysis (3130 samples). In NSCLC patients, cripto-1 was expressed higher than in normal tissues. Cripto-1 expression was closely correlated with lymph node metastasis, histological differentiation and advanced clinical stage of NSCLC patients, but not related to smoking, age and gender. Pooled hazard ratios found that high cripto-1 expression had poor overall survival and progression-free survival. Conclusion: Cripto-1 could serve as a novel biomarker for predicting poor prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Jinfang Jiang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Chengyan Wang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Hong Zou
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Xihua Shen
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China
| | - Wei Jia
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Shan Jin
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lu Zhang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Jianming Hu
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lan Yang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| |
Collapse
|