1
|
Shin SH, Lee YE, Yoon HN, Yuk CM, An JY, Seo M, Yoon S, Oh MS, Shin SC, Kim JH, Kim YJ, Kim JC, Kim SC, Jang M. An innovative strategy harnessing self-activating CAR-NK cells to mitigate TGF-β1-driven immune suppression. Biomaterials 2025; 314:122888. [PMID: 39423512 DOI: 10.1016/j.biomaterials.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The dysfunction of natural killer (NK) cells, mediated by transforming growth factor β1 (TGFβ1) within the tumor microenvironment, impedes antitumor therapy and contributes to poor clinical outcomes. Our study introduces self-activating chimeric antigen receptor (CAR)-NK cells that block TGFβ1 signaling by releasing a specifically designed peptide, P6, which targets mesothelin in pancreatic tumors. P6 originates from the interaction sites between TGFβ1 and TGFβ receptor 1 and effectively disrupts TGFβ1's inhibitory signaling in NK cells. Our analysis demonstrates that P6 treatment interrupts the SMAD2/3 pathway in NK cells, mitigating TGFβ1-mediated suppression of NK cell activity, thereby enhancing their metabolic function and cytotoxic response against pancreatic tumors. These CAR-NK cells exhibit potent antitumor capabilities, as evidenced in spheroid cultures with cancer-associated fibroblasts and in vivo mouse models. Our approach marks a substantial advancement in overcoming TGFβ1-mediated immune evasion, offering a promising avenue for revolutionizing cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Hun Shin
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Young Eun Lee
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Han-Na Yoon
- Rare & Pediatric Cancer Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Chae Min Yuk
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jun Yop An
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Minkoo Seo
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Sangwon Yoon
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Min-Suk Oh
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Niu Q, Ye S, Zhao L, Qian Y, Liu F. The role of liver cancer stem cells in hepatocellular carcinoma metastasis. Cancer Biol Ther 2024; 25:2321768. [PMID: 38393655 PMCID: PMC10896152 DOI: 10.1080/15384047.2024.2321768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the "Metastatic cascade", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the "Metastatic cascade" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- School Hospital, Qingdao University of Science and Technology, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Smirne C, Crobu MG, Landi I, Vercellino N, Apostolo D, Pinato DJ, Vincenzi F, Minisini R, Tonello S, D’Onghia D, Ottobrelli A, Martini S, Bracco C, Fenoglio LM, Campanini M, Berton AM, Ciancio A, Pirisi M. Chronic Hepatitis C Infection Treated with Direct-Acting Antiviral Agents and Occurrence/Recurrence of Hepatocellular Carcinoma: Does It Still Matter? Viruses 2024; 16:1899. [PMID: 39772206 PMCID: PMC11680226 DOI: 10.3390/v16121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025] Open
Abstract
Hepatitis C virus (HCV) infection is a significant risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). Traditionally, the primary prevention strategy for HCV-associated HCC has focused on removing infection through antiviral regimes. Currently, highly effective direct-acting antivirals (DAAs) offer extraordinary success across all patient categories, including cirrhotics. Despite these advancements, recent studies have reported that even after sustained virologic response (SVR), individuals with advanced liver disease/cirrhosis at the time of DAA treatment may still face risks of HCC occurrence or recurrence. Based on this premise, this review tries to shed light on the multiple mechanisms that establish a tumorigenic environment, first, during chronic HCV infection and then, after eventual viral eradication by DAAs. Furthermore, it reviews evidence reported by recent observational studies stating that the use of DAAs is not associated with an increased risk of HCC development but rather, with a significantly lower chance of liver cancer compared with DAA-untreated patients. In addition, it seeks to provide some practical guidance for clinicians, helping them to manage HCC surveillance of patients who have achieved SVR with DAAs.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Maria Grazia Crobu
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy;
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, 10126 Turin, Italy
| | - Irene Landi
- Emergency Medicine Department, Michele e Pietro Ferrero Hospital, 12060 Verduno, Italy;
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - David James Pinato
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London SW7 2AZ, UK
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
| | - Antonio Ottobrelli
- Gastroenterology Unit, City of Health and Science University Hospital, 10126 Turin, Italy; (A.O.); (S.M.); (A.C.)
| | - Silvia Martini
- Gastroenterology Unit, City of Health and Science University Hospital, 10126 Turin, Italy; (A.O.); (S.M.); (A.C.)
| | - Christian Bracco
- Department of Internal Medicine, Santa Croce e Carle Hospital, 12100 Cuneo, Italy; (C.B.); (L.M.F.)
| | - Luigi Maria Fenoglio
- Department of Internal Medicine, Santa Croce e Carle Hospital, 12100 Cuneo, Italy; (C.B.); (L.M.F.)
| | - Mauro Campanini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandro Maria Berton
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126 Turin, Italy;
| | - Alessia Ciancio
- Gastroenterology Unit, City of Health and Science University Hospital, 10126 Turin, Italy; (A.O.); (S.M.); (A.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (N.V.); (D.A.); (D.J.P.); (F.V.); (R.M.); (S.T.); (D.D.); (M.C.); (M.P.)
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
5
|
Topiwala IS, Ramachandran A, A MS, Sengupta R, Dhar R, Devi A. Exosomes and tumor virus interlink: A complex side of cancer. Pathol Res Pract 2024; 266:155747. [PMID: 39647256 DOI: 10.1016/j.prp.2024.155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Extracellular Vesicles (EVs) based cancer research reveals several complicated sides of cancer. EVs are classified as several subpopulations such as microvesicles, apoptotic bodies, and exosomes. In cancer, exosomes play a significant role as a cellular messenger in tumor development and progression. Tumor-derived exosomes (TEXs) are also a theranostic tool for cancer. Tumor virus-infected cell-derived EVs promote cancer development. Exosomes (a subpopulation of EVs) play a significant role in converting noninfecting cells to infected cells. It transports several biological active cargo (DNA, RNA, protein, and virions) towards the noninfected cells. This cellular transport enhances infection rates via reprogramming of noninfected cells. In this review, we explore tumor viruses, exosomes and tumor viruses interlink, the theranostic landscape of exosomes in tumor virus-associated cancer and the future orientation of exosomes-based virus oncology.
Collapse
Affiliation(s)
- Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Aparna Ramachandran
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
6
|
Zhi R, Fan F. SLC1A3 is a novel prognostic biomarker associated with immunity and EMT in hepatocellular carcinoma. Discov Oncol 2024; 15:676. [PMID: 39560677 DOI: 10.1007/s12672-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Solute carrier family 1 member 3(SLC1A3), a member of the glutamate transporter family, is implicated in the progression of gastric carcinoma and the renewal of thyroid carcinoma stem cells. The purpose of this work is to use experimental validation and bioinformatics analysis to look at the possible involvement of SLC1A3 in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We examined the levels of SLC1A3 within HCC and its implications on immunological and epithelial-mesenchymal transition (EMT) features using the TCGA, ImmPort, and Molecular Signatures databases. The relationship between drug sensitivity and SLC1A3 expression was investigated using the GDSC database. Real-time quantitative polymerase chain reaction (qRT-PCR), Western blotting (WB), and cellular function assays were performed to assess SLC1A3 expression and its carcinogenic effects in HCC. RESULTS According to our research, SLC1A3 overexpression in HCC is associated with a poor prognosis. Elevated levels of SLC1A3 promote HCC cell motility and invasion and can affect the prognosis of HCC by modifying immune responses and epithelial-mesenchymal transition. SLC1A3 has emerged as a novel prognostic marker in HCC and is associated with resistance to certain antitumor drugs. CONCLUSION SLC1A3 functions as a cancer-promoting factor contributing to poor HCC prognosis by affecting immune cell infiltration and regulating the EMT process. Elevated SLC1A3 expression may also serve as a predictor of treatment response to specific antitumor drugs.
Collapse
Affiliation(s)
- Renhou Zhi
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fan Fan
- Department of Gastroenterology, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Zhu J, Jin A, Pan B, Guo W, Yang W, Wang B. Exploring the role of KIR3DL2 on NK cells in hepatocellular carcinoma and its potential prognostic implications. iScience 2024; 27:110637. [PMID: 39262781 PMCID: PMC11388180 DOI: 10.1016/j.isci.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent malignancy with a high recurrence rate, significantly impacting prognosis and survival. This study aims to identify prognostic molecular markers using single-cell sequencing of tumors and adjacent tissues in primary and recurrent HCC patients. We analyzed single-cell sequencing data from tumor and adjacent normal tissues of primary and recurrent HCC cases to compare immune cell quantity and gene expression profiles. Recurrent HCC patients exhibited a significant reduction in infiltrating NK cells expressing KIR3DL2. Pseudotemporal and cell communication analyses revealed these KIR3DL2high NK cells were in a quiescent state, suggesting NK cell exhaustion and poor prognosis. KIR3DL2 expression in peripheral blood NK cells correlated with that in tissues, highlighting its potential as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai 200940, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Chen AP, Gao P, Lin L, Ashok P, He H, Ma C, Zou DL, Allain V, Boyne A, Juillerat A, Duchateau P, Rath A, Teper D, Arulanandam A, Chang HM, Eyquem J, Li W. An improved approach to generate IL-15 +/+/TGFβR2 -/- iPSC-derived natural killer cells using TALEN. CELL REPORTS METHODS 2024; 4:100857. [PMID: 39260365 PMCID: PMC11440057 DOI: 10.1016/j.crmeth.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFβR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFβR2 in immune cells can enhance resistance to the suppressive TGF-β signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFβR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFβR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-β signaling.
Collapse
Affiliation(s)
| | - Peng Gao
- Cytovia Therapeutics, Inc., Natick, MA, USA
| | - Liang Lin
- Cytovia Therapeutics, Inc., Natick, MA, USA
| | | | - Hongzhi He
- Cytovia Therapeutics, Inc., Natick, MA, USA
| | - Chao Ma
- Cytovia Therapeutics, Inc., Natick, MA, USA
| | | | - Vincent Allain
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Armin Rath
- Cytovia Therapeutics, Inc., Aventura, FL, USA
| | | | | | | | - Justin Eyquem
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Li
- Cytovia Therapeutics, Inc., Natick, MA, USA.
| |
Collapse
|
9
|
Garcia A, Mathew SO. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2446. [PMID: 39001508 PMCID: PMC11240753 DOI: 10.3390/cancers16132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of death among many associated liver diseases. Various conventional strategies have been utilized for treatment, ranging from invasive surgeries and liver transplants to radiation therapy, but fail due to advanced disease progression, late screening/staging, and the various etiologies of HCC. This is especially evident within racially distinct populations, where incidence rates are higher and treatment outcomes are worse for racial/ethnic minorities than their Caucasian counterparts. However, with the rapid development of genetic engineering and molecular and synthetic biology, many novel strategies have presented promising results and have provided potential treatment options. In this review, we summarize past treatments, how they have shaped current treatments, and potential treatment strategies for HCC that may prove more effective in the future.
Collapse
Affiliation(s)
- Alexsis Garcia
- Department of Microbiology, Immunology & Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen O Mathew
- Department of Microbiology, Immunology & Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Ma RX, Wei JR, Hu YW. Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. Mol Cancer Ther 2024; 23:939-948. [PMID: 38490257 DOI: 10.1158/1535-7163.mct-23-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.
Collapse
Affiliation(s)
- Ru-Xue Ma
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Jian-Rui Wei
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Nguyen T, Chen PC, Pham J, Kaur K, Raman SS, Jewett A, Chiang J. Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma. Crit Rev Immunol 2024; 44:71-85. [PMID: 38618730 DOI: 10.1615/critrevimmunol.2024052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.
Collapse
Affiliation(s)
- Tu Nguyen
- UCLA David Geffen School of Medicine
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Janet Pham
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine The Jane and Jerry Weintraub Center of Reconstructive Biotechnology University of California School of Dentistry Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
14
|
Kim EY, Yoon YC, Hong TH. The role of natural killer cell activity as a milestone in oncologic outcome after curative resection of pancreatic adenocarcinoma. J Surg Oncol 2023; 128:1353-1364. [PMID: 37650829 DOI: 10.1002/jso.27432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The objective of this study was to investigate differences in oncologic outcomes of patients with pancreas cancer according to natural killer cell activity (NKA). METHODS A total of 118 patients who underwent curative resection for primary pancreas cancer in two hospitals were analyzed. NKA change pattern was analyzed. Difference in disease-free survival or overall survival was investigated by dividing subjects into two groups based on a normal NKA value for each period. RESULTS NKA value decreased after surgery compared to the value measured at admission. It recovered to normal levels at 5 weeks postoperatively. The low NKA (less than 250 pg/mL) group at admission, 5 weeks postoperatively, and before 1st chemotherapy had significantly poorer disease-free survival than the normal NKA group. In multivariate analysis, NKA values less than 250 pg/mL at admission (odds ratio = 2.267, p = 0.023) and N 1 or N2 category (odds ratio = 2.478, p = 0.023) were significant factors associated with recurrence after curative resection. CONCLUSIONS NKA in patients with pancreatic cancer demonstrated noticeable changes after surgery. Immunologically predisposed patients with a low NKA value had a high risk of early recurrence and a poor prognosis, although pancreatic cancer was surgically removed.
Collapse
Affiliation(s)
- Eun Young Kim
- Division of Trauma and Surgical Critical Care, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Chul Yoon
- Division of Hepatobiliary, Pancreas, and Abdominal Organ Transplant, Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae Ho Hong
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
15
|
Liu J, Liu B, Li Y, Mi Z, Tan H, Rong P. PCMT1 is a potential target related to tumor progression and immune infiltration in liver cancer. Eur J Med Res 2023; 28:289. [PMID: 37596654 PMCID: PMC10436427 DOI: 10.1186/s40001-023-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/08/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Liver cancer is a prevalent and deadly form of cancer with high incidence and mortality rates. The PCMT1 protein has been linked to cell anti-apoptosis and tumor metastasis, but its significance in liver hepatocellular carcinoma (LIHC) remains largely unexplored. METHODS We conducted a pan-cancer analysis to examine the expression differences of PCMT1. Kaplan-Meier curves were employed to assess the prognostic impact of PCMT1 on LIHC patients, and we investigated the association between PCMT1 and clinical features, which we validated using a GEO therapeutic dataset. Gene enrichment analysis helped identify signaling pathways associated with PCMT1 expression. Moreover, we evaluated the relationship between PCMT1 and immune cell infiltration, as well as the differences in gene mutations between high-expression and low-expression groups. In vitro and in vivo experiments were performed to assess the effect of PCMT1 on tumor cell lines and mouse tumor models, and potential pathways were explored through gene sequencing. RESULT PCMT1 is highly expressed in most tumors and exhibits a significant association with prognosis in LIHC patients. Pathway enrichment analysis revealed that PCMT1 is involved in cell cycle regulation, immunity, and other processes. Further immune analysis demonstrated that high expression of PCMT1 could reduce tumor-killing immune cell infiltration. In vitro experiments indicated that PCMT1 knockdown could inhibit cancer cell proliferation and migration while promoting apoptosis. In vivo experiments showed that PCMT1 knockdown significantly reduced tumor growth rate, enhanced CD8+T cell infiltration, and increased caspase-3 expression in the tumor area. Gene sequencing suggested that PCMT1 may function through the PI3K-AKT pathway. CONCLUSION Our findings suggest that PCMT1 acts as a promoter of liver cancer progression and may serve as a novel prognostic indicator and therapeutic target for patients with LIHC.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Baiying Liu
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| |
Collapse
|
16
|
Zhao H, Zhang Y, Zhang Y, Chen C, Liu H, Yang Y, Wang H. The role of NLRP3 inflammasome in hepatocellular carcinoma. Front Pharmacol 2023; 14:1150325. [PMID: 37153780 PMCID: PMC10157400 DOI: 10.3389/fphar.2023.1150325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasomes play an important role in innate immunity. As a signal platform, they deal with the excessive pathogenic products and cellular products related to stress and injury. So far, the best studied and most characteristic inflammasome is the NLR-family pyrin domain-containing protein 3(NLRP3) inflammasome, which is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. The formation of NLRP3 inflammasome complexes results in the activation of caspase-1, the maturation of interleukin (IL)-1β and IL-18, and pyroptosis. Many studies have demonstrated that NLRP3 inflammasome not only participates in tumorigenesis, but also plays a protective role in some cancers. Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Currently, due to the lack of effective treatment methods for HCC, the therapeutic effect of HCC has not been ideal. Therefore, it is particularly urgent to explore the pathogenesis of HCC and find its effective treatment methods. The increasing evidences indicate that NLRP3 inflammasome plays a vital role in HCC, however, the related mechanisms are not fully understood. Hence, we focused on the recent progress about the role of NLRP3 inflammasome in HCC, and analyzed the relevant mechanisms in detail to provide reference for the future in-depth researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yiming Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| | - Huiyang Liu
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yihan Yang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| |
Collapse
|
17
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
18
|
Sung PS. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol 2022; 28:333-350. [PMID: 34665953 PMCID: PMC9293612 DOI: 10.3350/cmh.2021.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment generally shows a substantial immunosuppressive activity in hepatocellular carcinoma (HCC), accounting for the suboptimal efficacy of immune-based treatments for this difficult-to-treat cancer. The crosstalk between tumor cells and various cell types in the tumor microenvironment is strongly related to HCC progression and treatment resistance. Monocytes are recruited to the HCC tumor microenvironment by various factors and become tumor-associated macrophages (TAMs) with distinct phenotypes. TAMs often contribute to weakened tumor-specific immune responses and a more aggressive phenotype of malignancy. Recent single-cell RNA-sequencing data have demonstrated the central roles of specific TAMs in tumorigenesis and treatment resistance by their interactions with various cell populations in the HCC tumor microenvironment. This review focuses on the roles of TAMs and the crosstalk between TAMs and neighboring cell types in the HCC tumor microenvironment.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
19
|
Chen X, Li W, Wu X, Zhao F, Wang D, Wu H, Gu Y, Li X, Qian X, Hu J, Li C, Xia Y, Rao J, Dai X, Shao Q, Tang J, Li X, Shu Y. Safety and Efficacy of Sintilimab and Anlotinib as First Line Treatment for Advanced Hepatocellular Carcinoma (KEEP-G04): A Single-Arm Phase 2 Study. Front Oncol 2022; 12:909035. [PMID: 35712486 PMCID: PMC9197581 DOI: 10.3389/fonc.2022.909035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Immune checkpoint inhibitors plus antiangiogenic tyrosine kinase inhibitors may offer a first-line treatment for advanced hepatocellular carcinoma (HCC). In this phase 2 trial [registered with clinicaltrials.gov (NCT04052152)], we investigated the safety and efficacy of first-line anti-PD-1 antibody sintilimab plus antiangiogenic TKI anlotinib for advanced HCC. Methods and Materials Pathologically-proven advanced HCC patients received sintilimab (200 mg) on day 1 and anlotinib (12 mg) once daily on days 1 to 14 every 3 weeks, with a safety run-in for the first six participants to assess dose-limiting toxicities (DLTs). The primary endpoints were safety and objective response rate (ORR) per RECIST v1.1. Results Twenty advanced HCC patients were enrolled. No DLTs occurred in the safety run-in. All patients had treatment-related adverse events (TRAEs). Grade 3 TRAEs occurred in 8 (40.0%) patients, the most common being decreased platelet count (10.0%) and increased γ-glutamyl transferase (10.0%). No grade 4/5 TRAEs occurred. Five (25%) patients developed immune-related AEs. The ORR was 35.0% (95%CI 15.4%-59.2%) per RECIST v1.1 and 55.0% (95%CI 31.5%-76.9%) per modified RECIST. At data cutoff (March 31, 2021), the median progression-free survival was 12.2 months (95%CI, 3.8 to not reached). The median PFS was significantly longer in patients with lower LDH levels (not reached [NR], 95% CI, 8.7 to NR vs. higher LDH levels 5.2 months, 95% CI 3.4 to NR; P=0.020) and a CONUT score ≤2 (NR, 95% CI 5.1 to NR vs. CONUT score >2 6.2 months, 95% CI 1.8 to NR; P=0.020). Furthermore, patients showing tumor response had a significantly higher median proportion of CD16+CD56+ NK cells than patients who had stable or progressive disease (21.6% vs. 14.6%; P=0.026). Conclusion Sintilimab plus anlotinib showed promising clinical activities with manageable toxicity as first-line treatment of advanced HCC.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Oncology, Pukou Branch of Jiangsu People’s Hospital, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiaofeng Wu
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fengjiao Zhao
- Department of Oncology, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital, Xuzhou Medical University, Huai’an, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hao Wu
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yanhong Gu
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Pathology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Oncology, Nanjing Red Cross Hospital, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Rao
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qianwen Shao
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Tang
- Department of Oncology, Liyang People’s Hospital, Liyang, China
| | - Xiangcheng Li
- Hepatobiliary Center, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Yongqian Shu,
| | - Yongqian Shu
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Yongqian Shu,
| |
Collapse
|
20
|
Zecca A, Barili V, Olivani A, Biasini E, Boni C, Fisicaro P, Montali I, Tiezzi C, Dalla Valle R, Ferrari C, Cariani E, Missale G. Targeting Stress Sensor Kinases in Hepatocellular Carcinoma-Infiltrating Human NK Cells as a Novel Immunotherapeutic Strategy for Liver Cancer. Front Immunol 2022; 13:875072. [PMID: 35677052 PMCID: PMC9168800 DOI: 10.3389/fimmu.2022.875072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells may become functionally exhausted entering hepatocellular carcinoma (HCC), and this has been associated with tumor progression and poor clinical outcome. Hypoxia, low nutrients, immunosuppressive cells, and soluble mediators characterize the intratumor microenvironment responsible for the metabolic deregulation of infiltrating immune cells such as NK cells. HCC-infiltrating NK cells from patients undergoing liver resection for HCC were sorted, and genome-wide transcriptome profiling was performed. We have identified a marked general upregulation of gene expression profile along with metabolic impairment of glycolysis, OXPHOS, and autophagy as well as functional defects of NK cells. Targeting p38 kinase, a stress-responsive mitogen-activated protein kinase, we could positively modify the metabolic profile of NK cells with functional restoration in terms of TNF-α production and cytotoxicity. We found a metabolic and functional derangement of HCC-infiltrating NK cells that is part of the immune defects associated with tumor progression and recurrence. NK cell exhaustion due to the hostile tumor microenvironment may be restored with p38 inhibitors with a selective mechanism that is specific for tumor-infiltrating-not affecting liver-infiltrating-NK cells. These results may represent the basis for the development of a new immunotherapeutic strategy to integrate and improve the available treatments for HCC.
Collapse
Affiliation(s)
- Alessandra Zecca
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Olivani
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Elisabetta Biasini
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Ilaria Montali
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Ferrari
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Lee HH, Cho H. Apigenin Increases Natural Killer Cytotoxicity to Human Hepatocellular Carcinoma Expressing HIF-1α through High Interaction of CD95/CD95L. J Microbiol Biotechnol 2022; 32:397-404. [PMID: 35283421 PMCID: PMC9628789 DOI: 10.4014/jmb.2201.01010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cell activity is more attenuated in hepatocellular carcinoma (HCC) patients than normal. Hypoxic-inducible factor (HIF)-1α is highly expressed in tumors to maintain their metabolism in a hypoxic environment. The expression of HIF-1α in cancers can lead to cell growth, proliferation, invasion/metastasis and immune escape. Although apigenin, a flavonoid, is known to have various biological activities, it has not been demonstrated in NK cell immune activity in HCC cells. In this study, NK-92 cells were directly cocultured with HCC SK-Hep1 cells for 24 h to evaluate NK cell activity in HCC cells or HCC cells expressing HIF-1α by apigenin. NK cell cytotoxicity to HCC cells expressing HIF-1α was significantly increased, and NK cell-activating receptors, NKG2D, NKp30 and NKp44 were highly expressed. The activating effect of apigenin on NK cells substantially induced apoptosis in HCC cells expressing HIF-1α through high expression of CD95L on the surface of NK-92 cells. Moreover, apigenin excellently inhibited the level of TGF-β1 in a coculture of NK cells and HCC cells. In conclusion, apigenin seems to be a good compound that increases NK cell cytotoxicity to HCC cells by controlling HIF-1α expression.
Collapse
Affiliation(s)
- Hwan Hee Lee
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea,Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,Corresponding authors H.H. Lee Phone: +82-2-901-8734 Fax: +82-2-901-8386 E-mail:
| | - Hyosun Cho
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea,Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,
H. Cho Phone: +82-2-901-8678 Fax: +82-2-901-8386 E-mail:
| |
Collapse
|
22
|
Rohr-Udilova N, Tsuchiya K, Timelthaler G, Salzmann M, Meischl T, Wöran K, Stift J, Herac M, Schulte-Hermann R, Peck-Radosavljevic M, Sieghart W, Eferl R, Jensen-Jarolim E, Trauner M, Pinter M. Morphometric Analysis of Mast Cells in Tumor Predicts Recurrence of Hepatocellular Carcinoma After Liver Transplantation. Hepatol Commun 2021; 5:1939-1952. [PMID: 34558826 PMCID: PMC8557312 DOI: 10.1002/hep4.1770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor-infiltrating immune cells are relevant prognostic and immunotherapeutic targets in hepatocellular carcinoma (HCC). Mast cells play a key role in allergic response but may also be involved in anticancer immunity. Digital morphometric analysis of patient tissue sections has become increasingly available for clinical routine and provides unbiased quantitative data. Here, we apply morphometric analysis of mast cells to retrospectively evaluate their relevance for HCC recurrence in patients after orthotopic liver transplantation (OLT). A total of 173 patients underwent OLT for HCC at the Medical University of Vienna (21 women, 152 men; 55.2 ± 7.9 years; 74 beyond Milan criteria, 49 beyond up-to-7 criteria for liver transplantation). Tissue arrays from tumors and corresponding surrounding tissues were immunohistochemically stained for mast cell tryptase. Mast cells were quantified by digital tissue morphometric analysis and correlated with HCC recurrence. Mast cells were detected in 93% of HCC tumors and in all available surrounding liver tissues. Tumor tissues revealed lower mast cell density than corresponding surrounding tissues (P < 0.0001). Patients lacking intratumoral mast cells (iMCs) displayed larger tumors and higher tumor recurrence rates both in the whole cohort (hazard ratio [HR], 2.74; 95% confidence interval [CI], 1.09-6.93; P = 0.029) and in patients beyond transplant criteria (Milan HR, 2.81; 95% CI, 1.04-7.62; P = 0.01; up-to-7 HR, 3.58; 95% CI, 1.17-10.92; P = 0.02). Notably, high iMC identified additional patients at low risk classified outside the Milan and up-to-7 criteria, whereas low iMC identified additional patients at high risk classified within the alpha-fetoprotein French and Metroticket criteria. iMCs independently predicted tumor recurrence in a multivariate Cox regression analysis (Milan HR, 2.38; 95% CI, 1.16-4.91; P = 0.019; up-to-7 HR, 2.21; 95% CI, 1.05-4.62; P = 0.035). Conclusion: Hepatic mast cells might be implicated in antitumor immunity in HCC. Morphometric analysis of iMCs refines prognosis of HCC recurrence after liver transplantation.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Kaoru Tsuchiya
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria.,Department of Gastroenterology and HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Gerald Timelthaler
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Tobias Meischl
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Wöran
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Judith Stift
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Merima Herac
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Rolf Schulte-Hermann
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology, Central Admission, and First AidPublic Hospital Klagenfurt am WoertherseeKlagenfurtAustria
| | | | - Robert Eferl
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria.,Comparative MedicineInteruniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University of Vienna and University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
23
|
Han J, Ke C, Jiang B, Zhou H, Xu H, Xie X. Down-regulation of PR/SET domain 10 underlies natural killer cell dysfunction in hepatocellular carcinoma. Clin Exp Immunol 2021; 206:366-377. [PMID: 34562314 DOI: 10.1111/cei.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the world's leading cause of tumor-related mortalities. Natural killer (NK) cells play a critical role at the first immunological defense line against HCC initiation and progression. NK cell dysfunction is therefore an important mechanism for immune evasion of HCC cells. In the present study using a murine HCC model, we revealed the down-regulation of PR/SET Domain 10 (PRDM10) in hepatic NK cells that were phenotypically and functionally exhausted. PRDM10 silencing diminished the expression of natural killer group 2 member D (NKG2D) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), augmented T cell immunoglobulin and ITIM domain (TIGIT) expression, and decreased the expression of interferon (IFN)-γ, perforin and granzyme B in normal hepatic NK cells in vitro. Consistently, PRDM10-deficient NK cells exhibited impaired cytotoxicity on target cells. In contrast, PRDM10 over-expression promoted NKG2D and Fas ligand (FasL) expression, reduced CD96 expression and enhanced transcripts of IFN-γ, perforin and granzyme B in NK cells in vivo. Moreover, PRDM10 silencing and PRDM10 over-expression down-regulated and up-regulated Eomesodermin (Eomes) expression, respectively. In summary, this study reveals PRDM10 down-regulation as a novel mechanism underlying NK cell dysfunction and identifies PRDM10 as a supporting factor of NK cell function.
Collapse
Affiliation(s)
- Jiantao Han
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hanbin Xu
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xingwang Xie
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
24
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
25
|
Sung PS, Han JW, Seo C, Ahn J, Lee SK, Nam HC, Choi HJ, You YK, Jang JW, Choi JY, Yoon SK. Real-Life Experience of mTOR Inhibitors in Liver Transplant Recipients in a Region Where Living Donation Is Predominant. Front Pharmacol 2021; 12:685176. [PMID: 34326770 PMCID: PMC8314303 DOI: 10.3389/fphar.2021.685176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Mammalian target of rapamycin (mTOR) inhibitors, such as everolimus and sirolimus, may be efficacious in preserving renal function in liver transplantation (LT) recipients while preventing hepatocellular carcinoma (HCC) recurrence. Materials and Methods: In this study, we retrospectively evaluated the safety, efficacy, and renoprotective effects of mTOR inhibitors in LT recipients. Among the 84 patients enrolled, mTOR inhibitor was commenced during the first year after LT. Renal function was measured by estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease equation. Results: Regarding the type of mTOR inhibitor, everolimus was used in 71 patients and sirolimus in 13 patients. Concomitant tacrolimus was used in 63 patients (75.0%). For total enrolled patients, kidney function did not significantly change during 12 months after initiation of mTOR inhibitors, although tacrolimus-withdrawn patients (n = 21) showed better kidney function compared to tacrolimus-minimized patients (n = 63) after conversion. However, a significant improvement in kidney function was observed in the eGFR <60 ml/min/1.73 m2 group (n = 19) 12 months after initiation of mTOR inhibitors, for both patient groups with early + mid starters (n = 7, stating within 1 year after LT) and late starters (n = 12, starting over 1 year after LT). mTOR inhibitors were safely administered without serious adverse events that led to drug discontinuation. Conclusion: We demonstrated that patients with renal impairment showed significant improvement in renal function regardless of the timing of mTOR inhibitor start, suggesting that switch to mTOR inhibitors may be beneficial when renal function declines.
Collapse
Affiliation(s)
- Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Changho Seo
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Joseph Ahn
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon Kyu Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Chul Nam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Joong Choi
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoung You
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jeong Won Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Kew Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Lee HA, Goh HG, Lee YS, Jung YK, Kim JH, Yim HJ, Lee MG, An H, Jeen YT, Yeon JE, Byun KS, Seo YS. Natural killer cell activity is a risk factor for the recurrence risk after curative treatment of hepatocellular carcinoma. BMC Gastroenterol 2021; 21:258. [PMID: 34118869 PMCID: PMC8199695 DOI: 10.1186/s12876-021-01833-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Natural killer (NK) cells have been known to contribute to surveillance and control of hepatocellular carcinoma (HCC). However, the association of NK cell activity with stage and recurrence risk of HCC have not been fully evaluated. Methods Untreated patients with newly diagnosed HCC were prospectively enrolled. Peripheral blood mononuclear cells were isolated at the time of diagnosis. Patients who had undergone surgery or radiofrequency ablation were classified as the curative treatment group, and their blood samples were collected again at 1 month after treatment. Results A total of 80 patients with HCC were enrolled. The mean age was 62.5 years. At baseline, interferon (IFN)-γ producing NK cell proportion was significantly lower in patients with Barcelona clinic liver cancer (BCLC) stage B, C, or D than in those with BCLC stage 0 (42.9% vs. 56.8%, P = 0.045). Among all patients, 56 patients had undergone curative treatment, and 42 patients re-visited at 1 month after curative treatment. There was no significant change in total NK cell and IFN-γ producing NK cell proportion from baseline to 1 month after treatment (all P > 0.05). During a median follow-up of 12.4 months, HCC recurred in 14 patients (33.3%). When patients were classified according to the IFN-γ producing NK cell proportion (group 1, ≥ 45%; and group 2, < 45%), HCC recurrence rate did not differ according to the IFN-γ producing NK cell proportion at baseline (log-rank test, P = 0.835). However, patients with < 45% IFN-γ producing NK cell proportion at 1 month after treatment had a significantly higher HCC recurrence rate than patients with that of ≥ 45% (log-rank test, P < 0.001). Multivariate analysis revealed that BCLC stage B (hazard ratio [HR] = 3.412, P = 0.045) and < 45% IFN-γ producing NK cell proportion at 1 month after treatment (HR = 6.934, P = 0.001) independently predicted an increased risk of HCC recurrence. Conclusions Decreased NK cell activity is significantly associated with the advanced stage of HCC, and the increased recurrence risk of HCC after curative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01833-2.
Collapse
Affiliation(s)
- Han Ah Lee
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea.,Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyun Gil Goh
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Hyung Joon Yim
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hyunggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Yoon Tae Jeen
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea.
| |
Collapse
|
27
|
Natural Killer Cells and T Cells in Hepatocellular Carcinoma and Viral Hepatitis: Current Status and Perspectives for Future Immunotherapeutic Approaches. Cells 2021; 10:cells10061332. [PMID: 34071188 PMCID: PMC8227136 DOI: 10.3390/cells10061332] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells account for 25–50% of the total number of hepatic lymphocytes, which implicates that NK cells play an important role in liver immunity. The frequencies of both circulating and tumor infiltrating NK cells are positively correlated with survival benefit in hepatocellular cancer (HCC) and have prognostic implications, which suggests that functional impairment in NK cells and HCC progression are strongly associated. In HCC, T cell exhaustion is accompanied by the interaction between immune checkpoint ligands and their receptors on tumor cells and antigen presenting cells (APC). Immune checkpoint inhibitors (ICIs) have been shown to interfere with this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as first-line therapy for HCC. NK cells are the first line effectors in viral hepatitis and play an important role by directly eliminating virus infected cells or by activating antigen specific T cells through IFN-γ production. Furthermore, chimeric antigen receptor (CAR)-engineered NK cells and T cells offer unique opportunities to create CAR-NK with multiple specificities learning from the experience gained with CAR-T cells with potentially less adverse effects. This review focus on the abnormalities of NK cells, T cells, and their functional impairment in patients with chronic viral hepatitis, which contributes to progression to hepatic malignancy. Furthermore, we discuss and summarize recent advances in the NK cell and T cell based immunotherapeutic approaches in HCC.
Collapse
|
28
|
Intratumor Regulatory Noncytotoxic NK Cells in Patients with Hepatocellular Carcinoma. Cells 2021; 10:cells10030614. [PMID: 33802077 PMCID: PMC7999652 DOI: 10.3390/cells10030614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies support the role of natural killer (NK) cells in controlling hepatocellular carcinoma (HCC) progression. However, ambiguity remains about the multiplicity and the role of different NK cell subsets, as a pro-oncogenic function has been suggested. We performed phenotypic and functional characterization of NK cells infiltrating HCC, with the corresponding nontumorous tissue and liver from patients undergoing liver resection for colorectal liver metastasis used as controls. We identified a reduced number of NK cells in tumors with higher frequency of CD56BRIGHTCD16- NK cells associated with higher expression of NKG2A, NKp44, and NKp30 and downregulation of NKG2D. Liver-resident (CXCR6+) NK cells were reduced in the tumors where T-bethiEomeslo expression was predominant. HCCs showed higher expression of CD49a with particular enrichment in CD49a+Eomes+ NK cells, a subset typically represented in the decidua and playing a proangiogenic function. Functional analysis showed reduced TNF-α production along with impaired cytotoxic capacity that was inversely related to CXCR6-, T-bethiEomeslo, and CD49a+Eomes+ NK cells. In conclusion, we identified a subset of NK cells infiltrating HCC, including non-liver-resident cells that coexpressed CD49a and Eomes and showed reduced cytotoxic potential. This NK cell subset likely plays a regulatory role in proangiogenic function.
Collapse
|
29
|
Jiang Z, Shi Y, Tan G, Wang Z. Computational screening of potential glioma-related genes and drugs based on analysis of GEO dataset and text mining. PLoS One 2021; 16:e0247612. [PMID: 33635875 PMCID: PMC7909668 DOI: 10.1371/journal.pone.0247612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high invasiveness and mortality of glioma as well as the unclear key genes and signaling pathways involved in the development of gliomas, there is a strong need to find potential gene biomarkers and available drugs. METHODS Eight glioma samples and twelve control samples were analyzed on the GSE31095 datasets, and differentially expressed genes (DEGs) were obtained via the R software. The related glioma genes were further acquired from the text mining. Additionally, Venny program was used to screen out the common genes of the two gene sets and DAVID analysis was used to conduct the corresponding gene ontology analysis and cell signal pathway enrichment. We also constructed the protein interaction network of common genes through STRING, and selected the important modules for further drug-gene analysis. The existing antitumor drugs that targeted these module genes were screened to explore their efficacy in glioma treatment. RESULTS The gene set obtained from text mining was intersected with the previously obtained DEGs, and 128 common genes were obtained. Through the functional enrichment analysis of the identified 128 DEGs, a hub gene module containing 25 genes was obtained. Combined with the functional terms in GSE109857 dataset, some overlap of the enriched function terms are both in GSE31095 and GSE109857. Finally, 4 antitumor drugs were identified through drug-gene interaction analysis. CONCLUSIONS In this study, we identified that two potential genes and their corresponding four antitumor agents could be used as targets and drugs for glioma exploration.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, Goggin C, MacEochagain C, Kennedy J, Lucas S, Finlay DK, Gardiner CM. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002044. [PMID: 33568351 PMCID: PMC7878131 DOI: 10.1136/jitc-2020-002044] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural killer (NK) cells provide important immune protection from cancer and are a key requirement for particular immunotherapies. There is accumulating evidence that NK cells become dysfunctional during cancer. Overcoming NK cell exhaustion would be an important step to allow them to function optimally in a range of NK cell therapies, including those that depend on autologos circulating NK cells. We have previously demonstrated that NK cells undergo a normal metabolic reprogramming in response to cytokine activation and that this is required for optimal function. The objective of this work was to investigate if cellular metabolism of circulating NK cells is dysregulated in patients with metastatic breast cancer and if so, to gain insights into potential mechanisms underpinning this. Such discoveries would provide important insights into how to unleash the full activity of NK cells for maximum immunotherapy output. Methods Single-cell analysis, metabolic flux and confocal analysis of NK cells from patients with metastatic breast cancer and healthy controls Results In addition to reduced interferon-γ production and cytotoxicity, peripheral blood NK cells from patients had clear metabolic deficits including reduced glycolysis and oxidative phosphorylation. There were also distinct morphologically alterations in the mitochondria with increased mitochondrial fragmentation observed. Transforminggrowth factor-β (TGFβ) was identified as a key driver of this phenotype as blocking its activity reversed many metabolic and functional readouts. Expression of glycoprotein-A repetitions predominant (GARP) and latency associated peptide (LAP), which are involved with a novel TGFβ processing pathway, was increased on NK cells from some patients. Blocking the GARP–TGFβ axis recapitulated the effects of TGFβ neutralization, highlighting GARP as a novel NK cell immunotherapy target for the first time. Conclusions TGFβ contributes to metabolic dysfunction of circulating NK cells in patients with metastatic breast cancer. Blocking TGFβ and/or GARP can restore NK cell metabolism and function and is an important target for improving NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Sam Marks
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sonya Chew
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Michael Conroy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | | | | | - John Kennedy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sophie Lucas
- Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Sung PS, Shin EC. Immunological Mechanisms for Hepatocellular Carcinoma Risk after Direct-Acting Antiviral Treatment of Hepatitis C Virus Infection. J Clin Med 2021; 10:E221. [PMID: 33435135 PMCID: PMC7827927 DOI: 10.3390/jcm10020221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Direct-acting antiviral agents (DAAs) that allow for rapid clearance of hepatitis C virus (HCV) may evoke immunological changes. Some cases of rapid de novo hepatocellular carcinoma (HCC) development or early recurrence of HCC after DAA treatment have been reported. During chronic HCV infection, natural killer (NK) cells exhibited a deviant functional phenotype with decreased production of antiviral cytokines and increased cytotoxicity; however, DAA treatment rapidly decreased their cytotoxic function. Effective DAA therapy also suppressed the intrahepatic activation of macrophages/monocytes. This was followed by a decrease in mucosal-associated invariant T (MAIT) cell cytotoxicity without normalization of cytokine production. Rapid changes in the phenotypes of NK and MAIT cells after DAA treatment may attenuate the cytotoxicity of these cells against cancer cells. Moreover, DAA treatment did not normalize the increased frequencies of regulatory T cells even after clearance of HCV infection. Thus, the persistently increased frequency of regulatory T cells may contribute to a local immunosuppressive milieu and hamper the clearance of cancer cells. This review will focus on recent studies describing the changes in innate and adaptive immune responses after DAA treatment in patients with chronic HCV infection in the context of de novo occurrence or recurrence of HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- The Catholic Liver Research Center, The Catholic University of Korea, Seoul 06591, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Korea
| |
Collapse
|
32
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
33
|
Sung PS, Choi MH, Yang H, Lee SK, Chun HJ, Jang JW, Choi JY, Yoon SK, Choi JI, Lee YJ, Bae SH. Diffusion-Weighted Magnetic Resonance Imaging in Hepatocellular Carcinoma as a Predictor of a Response to Cisplatin-Based Hepatic Arterial Infusion Chemotherapy. Front Oncol 2020; 10:600233. [PMID: 33330098 PMCID: PMC7711158 DOI: 10.3389/fonc.2020.600233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to identify the utility of diffusion-weighted magnetic resonance (MR) imaging with an apparent diffusion coefficient (ADC) map as a predictor of the response of hepatocellular carcinoma (HCC) to cisplatin-based hepatic arterial infusion chemotherapy (HAIC). We retrospectively evaluated 113 consecutive patients with Barcelona Clinical Liver Cancer (BCLC) stage B or C HCC, who underwent gadoxetic acid-enhanced and diffusion-weighted MR imaging. The appropriate cutoff for the pretreatment tumor-to-liver ADC ratio was determined to be 0.741. Of the 113 patients, 50 (44%) presented with a pretreatment tumor-to-liver ADC ratio < 0.741 (low group). Evaluation of the treatment response after 2-3 cycles of HAIC in these 50 patients revealed that 21 patients (42%) experienced an objective response to HAIC. On the other hand, only 11 of the 63 patients (17%) with a pretreatment tumor-to-liver ADC ratio ≥ 0.741 (high group) showed an objective response. Thus, the objective response rate was significantly higher in the low group than in the high group (P = 0.006). Multivariate logistic regression analysis using parameters including perfusion alteration, percentage of non-enhancing portions, and pretreatment tumor-to-liver ADC ratio revealed that a pretreatment tumor-to-liver ADC ratio < 0.741 (odds ratio 3.217; P = 0.014) was the sole predictor of an objective response to HAIC. Overall survival rates were significantly higher in patients with objective responses to HAIC than in those without objective responses (P = 0.001 by log-rank test). In conclusion, patients with BCLC stage C or C HCC with a pretreatment tumor-to-liver ADC ratio < 0.741 showed a favorable intrahepatic response to cisplatin-based HAIC. Therefore, diffusion-weighted MR imaging can play a critical role as a predictor of response to cisplatin-based HAIC in unresectable HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Moon Hyung Choi
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Soon Kyu Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ho Jong Chun
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Joon-Il Choi
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Young Joon Lee
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
34
|
Park DJ, Sung PS, Kim JH, Lee GW, Jang JW, Jung ES, Bae SH, Choi JY, Yoon SK. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer 2020; 8:jitc-2019-000301. [PMID: 32221015 PMCID: PMC7206970 DOI: 10.1136/jitc-2019-000301] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Natural killer (NK) cells can recognize and kill cancer cells directly, but their activity can be attenuated by various inhibitory molecules expressed on the surface. The expression of epithelial cell adhesion molecule (EpCAM), a potential marker for cancer stem cells (CSCs), is known to be strongly associated with poor clinical outcomes in hepatocellular carcinoma (HCC). NK cells targeting CSCs may be a promising strategy for anti-tumor therapy, but little is known about how they respond to EpCAMhigh CSCs in HCC. Methods EpCAM expression was assessed by immunohistochemistry in 280 human HCC tissues obtained from curative surgery. To investigate the functional activity of NK cells against liver CSCs, EpCAMhigh and EpCAMlow Huh-7 cells were sorted by flow cytometry. The functional role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is related to NK cells, was determined by in vitro co-culture of NK cells and hepatoma cells using Hepa1–6 mouse hepatoma cells, as well as in vivo experiments using C57/BL6 mice. Results The frequency of recurrence after curative surgery was higher in patients with positive EpCAM expression than in those with negative EpCAM expression. In subsequent analysis based on the anatomical location of EpCAM expression, patients with peritumoral EpCAM expression showed worse prognosis than those with pantumoral EpCAM expression. Co-culture experiments demonstrated that CEACAM1 was upregulated on the surface of EpCAMhigh HCC cells, resulting in resistance to NK cell-mediated cytotoxicity. Inversely, silencing CEACAM1 restored cytotoxicity of NK cells against EpCAMhigh Huh-7 cells. Moreover, neutralizing CEACAM1 on the NK cell surface enhanced killing of Huh-7 cells, suggesting that homophilic interaction of CEACAM1 is responsible for attenuated NK cell–mediated killing of CEACAM1high cells. In mouse experiments with Hepa1–6 cells, EpCAMhigh Hepa1–6 cells formed larger tumors and showed higher CEACAM1 expression after NK cell depletion. NK-mediated cytotoxicity was enhanced after blocking CEACAM1 expression using the anti-CEACAM1 antibody, thereby facilitating tumor regression. Moreover, CEACAM1 expression positively correlated with EpCAM expression in human HCC tissues, and serum CEACAM1 levels were also significantly higher in patients with EpCAM+ HCC. Conclusion Our data demonstrated that EpCAMhigh liver CSCs resist NK cell–mediated cytotoxicity by upregulation of CEACAM1 expression.
Collapse
Affiliation(s)
- Dong Jun Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
Wang L, Yang Z, Cao Y. Regulatory T cell and activated natural killer cell infiltration in hepatocellular carcinoma: immune cell profiling using the CIBERSORT. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1483. [PMID: 33313228 PMCID: PMC7729330 DOI: 10.21037/atm-20-5830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is understood to be an immunogenic tumor caused by chronic liver disease. Emerging research has indicated close interaction between various immune cells and tumor cells. Immunophenotyping, which has shown potential predictive value for the prognosis of various human malignancies, might allow responsive and non-responsive patients to be identified based on the extent and distribution of immune cell infiltration. Several novel immunotherapeutic approaches have been trialed and have shown promising efficacy. However, the efficacy of immunotherapies in HCC is limited by several factors. This study aimed to investigate tumor-infiltrating immune cells in HCC. METHODS Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) allows immune cell profiling analysis by deconvolution of gene expression microarray data. In this study, we analyzed the proportions of immune cells in 14 paired samples of HCC tissues obtained from GSE84402 in Gene Expression Omnibus (GEO) database. RESULTS In the 14 paired samples, HCC tissues showed significant infiltration by regulatory T cells (Tregs), activated natural killer (NK) cells, and M0 macrophages (P<0.001, P=0.007 and P=0.001, respectively), which were validated in CIBERSORT with the P value set at ≤0.05. In four paired samples identified from those selected by CIBERSORT, HCC tissues were found to have significant Treg and activated NK cell infiltration compared to non-tumor tissues (P=0.007 and P=0.015, respectively). Additionally, Pearson correlation analysis revealed Tregs to be positively correlated with activated NK cells (Correlation coefficient =0.41). CONCLUSIONS HCC tumor tissues were markedly infiltrated by Tregs and activated NK cells, which should be considered as candidate therapeutic targets in HCC multidisciplinary treatments.
Collapse
Affiliation(s)
- Lixin Wang
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
36
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
37
|
Sung PS, Cho SW, Lee J, Yang H, Jang JW, Bae SH, Choi JY, Yoon SK. Infiltration of T Cells and Programmed Cell Death Ligand 1-expressing Macrophages as a Potential Predictor of Lenvatinib Response in Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2020; 20:128-134. [PMID: 37384325 PMCID: PMC10035673 DOI: 10.17998/jlc.20.2.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 06/30/2023]
Abstract
Background/Aims Lenvatinib was recently proven to be non-inferior to sorafenib in treating unresectable hepatocellular carcinoma (HCC) in a phase-3 randomized controlled trial. In this study, we investigated whether the response to lenvatinib was affected by tumor immunogenicity. Methods Between May 2019 and April 2020, nine patients with intermediate-to-advanced HCC, who were treated with lenvatinib after liver biopsy, were enrolled. Immunohistochemical staining and multi-color flow cytometry were performed on specimens obtained from liver biopsy. Results Among the nine patients enrolled, four showed objective responses (complete responses+partial responses). Immunohistochemical staining for CD3, CD68, and programmed cell death ligand 1 (PD-L1) demonstrated that patients with objective responses showed marked infiltration of T cells and PD-L1-expressing macrophages in intra-tumoral and peri-tumoral tissues compared to those without objective responses. A significant difference in the numbers of infiltrated T cells, both in the intra-tumoral (P<0.01) and peri-tumoral regions (P<0.05), were identified between responders and non-responders. Regarding the number of infiltrated macrophages, no significant difference was found between the responders and non-responders, although the number of PD-L1-expressing tumor-associated macrophages was significantly higher in responders than that in non-responders (P<0.05). Conclusions Tumor immunogenicity, as indicated by T cell and PD-L1-positive macrophage infiltration, affects lenvatinib response in unresectable HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaejun Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
38
|
Hsiao YW, Chiu LT, Chen CH, Shih WL, Lu TP. Tumor-Infiltrating Leukocyte Composition and Prognostic Power in Hepatitis B- and Hepatitis C-Related Hepatocellular Carcinomas. Genes (Basel) 2019; 10:genes10080630. [PMID: 31434354 PMCID: PMC6722571 DOI: 10.3390/genes10080630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating leukocytes (TILs) are immune cells surrounding tumor cells, and several studies have shown that TILs are potential survival predictors in different cancers. However, few studies have dissected the differences between hepatitis B- and hepatitis C-related hepatocellular carcinoma (HBV−HCC and HCV−HCC). Therefore, we aimed to determine whether the abundance and composition of TILs are potential predictors for survival outcomes in HCC and which TILs are the most significant predictors. Methods: Two bioinformatics algorithms, ESTIMATE and CIBERSORT, were utilized to analyze the gene expression profiles from 6 datasets, from which the abundance of corresponding TILs was inferred. The ESTIMATE algorithm examined the overall abundance of TILs, whereas the CIBERSORT algorithm reported the relative abundance of 22 different TILs. Both HBV−HCC and HCV−HCC were analyzed. Results: The results indicated that the total abundance of TILs was higher in non-tumor tissue regardless of the HCC type. Alternatively, the specific TILs associated with overall survival (OS) and recurrence-free survival (RFS) varied between subtypes. For example, in HBV−HCC, plasma cells (hazard ratio [HR] = 1.05; 95% CI 1.00–1.10; p = 0.034) and activated dendritic cells (HR = 1.08; 95% CI 1.01–1.17; p = 0.03) were significantly associated with OS, whereas in HCV−HCC, monocytes (HR = 1.21) were significantly associated with OS. Furthermore, for RFS, CD8+ T cells (HR = 0.98) and M0 macrophages (HR = 1.02) were potential biomarkers in HBV−HCC, whereas neutrophils (HR = 1.01) were an independent predictor in HCV−HCC. Lastly, in both HBV−HCC and HCV−HCC, CD8+ T cells (HR = 0.97) and activated dendritic cells (HR = 1.09) had a significant association with OS, while γ delta T cells (HR = 1.04), monocytes (HR = 1.05), M0 macrophages (HR = 1.04), M1 macrophages (HR = 1.02), and activated dendritic cells (HR = 1.15) were highly associated with RFS. Conclusions: These findings demonstrated that TILs are potential survival predictors in HCC and different kinds of TILs are observed according to the virus type. Therefore, further investigations are warranted to elucidate the role of TILs in HCC, which may improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Yi-Wen Hsiao
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Lu-Ting Chiu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Ching-Hsuan Chen
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan.
| |
Collapse
|
39
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimuchametov ET, Nakisbekov NN, Shurin MR. Abnormal Expression of c-Myc Oncogene in NK Cells in Patients with Cancer. Int J Mol Sci 2019; 20:E756. [PMID: 30754645 PMCID: PMC6387292 DOI: 10.3390/ijms20030756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells have received a lot of attention in recent years for the roles they play in immunity and particularly in antitumor immune responses. Although defects in NK cell functions are recognized as important mechanisms for immune evasion of malignant cells, molecular pathways regulating NK cell dysfunction and exhaustion in cancer are largely unknown. Here we tested whether the c-myc proto-oncogene, known to promote cell proliferation, growth, differentiation, and apoptosis by regulating the expression of numerous target genes, may be involved in the mechanism of NK cell abnormalities in patients with lung and gastric cancer. Analysis of c-myc mRNA and protein expression in peripheral blood NK cells, mitogen-activated protein kinase (MAPK) activity, cell cycle, and cell longevity revealed a significantly decreased expression of c-myc mRNA and protein and mitotic arrest of NK cells in different phases of cell cycle. In addition, a significant decrease of NK cell death was also detected. These data allow the suggestion that defects of NK cell-mediated tumor surveillance may be associated with disturbed c-myc expression in NK cells in cancer patients. A better understanding of the mechanisms of NK cell dysfunction in cancer will help in the NK cell-mediated therapeutic eradication of primary and metastatic cancer cells and prolong patient survival.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty 050060, Kazakhstan.
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty 050060, Kazakhstan.
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|