1
|
Zhao Y, Huang Z, Zhou X, Teng W, Liu Z, Wang W, Tang S, Liu Y, Liu J, Wang W, Chai L, Zhang N, Guo W, Liu J, Ni Z, Sun Q, Wang Y, Zong Y. Precise deletion, replacement and inversion of large DNA fragments in plants using dual prime editing. NATURE PLANTS 2025; 11:191-205. [PMID: 39805934 DOI: 10.1038/s41477-024-01898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Precise manipulation of genome structural variations holds great potential for plant trait improvement and biological research. Here we present a genome-editing approach, dual prime editing (DualPE), that efficiently facilitates precise deletion, replacement and inversion of large DNA fragments in plants. In our experiments, DualPE enabled the production of specific genomic deletions ranging from ~500 bp to 2 Mb in wheat protoplasts and plants. DualPE was effective in directly replacing wheat genomic fragments of up to 258 kb with desired sequences in the absence of donor DNA. Additionally, DualPE allowed precise DNA inversions of up to 205.4 kb in wheat plants with efficiencies of up to 51.5%. DualPE also successfully edited large DNA fragments in the dicots Nicotiana benthamiana and tomato, with editing efficiencies of up to 72.7%. DualPE thus provides a precise and efficient approach for large DNA sequence and chromosomal engineering, expanding the availability of precision genome-editing tools for crop improvement.
Collapse
Affiliation(s)
- Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhengwei Huang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wan Teng
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zehua Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wenping Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Shengjia Tang
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yanpeng Wang
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Meena SS, Kosgei BK, Soko GF, Tingjun C, Chambuso R, Mwaiselage J, Han RPS. Developing anti-TDE vaccine for sensitizing cancer cells to treatment and metastasis control. NPJ Vaccines 2025; 10:18. [PMID: 39870669 PMCID: PMC11772600 DOI: 10.1038/s41541-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis. Current strategies to inhibit TDE-mediated oncogenic communication including drug-based and genetic modification-based inhibition of TDE release and/or uptake, have proved to be inefficient. In this work, we propose TDE surface engineering to express foreign antigens that will trigger life-long anti-TDE immune responses. The possibility of combining the anti-TDE vaccines with other treatments such as chemotherapy, radiotherapy, targeted therapy, and surgery is also explored.
Collapse
Affiliation(s)
- Stephene S Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania.
| | - Benson K Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Geofrey F Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Cheng Tingjun
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ramadhani Chambuso
- Department of Global Health and Population, Harvard Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Ray P S Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Li Q, Yu H, Li Q. Dual sgRNA-directed tyrosinases knockout using CRISPR/Cas9 technology in Pacific oyster (Crassostrea gigas) reveals their roles in early shell calcification. Gene 2024; 927:148748. [PMID: 38969245 DOI: 10.1016/j.gene.2024.148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Vargas-Almendra A, Ruiz-Medrano R, Núñez-Muñoz LA, Ramírez-Pool JA, Calderón-Pérez B, Xoconostle-Cázares B. Advances in Soybean Genetic Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3073. [PMID: 39519991 PMCID: PMC11548167 DOI: 10.3390/plants13213073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic improvement by conducting an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses, improving nutritional profiles, and optimizing yield. We also describe the progress in breeding techniques, including traditional approaches, marker-assisted selection, and biotechnological innovations such as genetic engineering and genome editing. The development of transgenic soybean cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration, and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy contribute to expanding genetic diversity as well as the influence of epigenetic processes and microbiome on stress tolerance. These genetic innovations are crucial for addressing the increasing global demand for soybeans, while mitigating the effects of climate change and environmental stressors. The integration of molecular breeding strategies with sustainable agricultural practices offers a pathway for developing more resilient and productive soybean varieties, thereby contributing to global food security and agricultural sustainability.
Collapse
Affiliation(s)
- Adriana Vargas-Almendra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| |
Collapse
|
6
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
7
|
Gallego Villarejo L, Gerding WM, Bachmann L, Hardt LHI, Bormann S, Nguyen HP, Müller T. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells 2024; 13:507. [PMID: 38534351 PMCID: PMC10969360 DOI: 10.3390/cells13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Genome editing, notably CRISPR (cluster regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), has revolutionized genetic engineering allowing for precise targeted modifications. This technique's combination with human induced pluripotent stem cells (hiPSCs) is a particularly valuable tool in cerebral organoid (CO) research. In this study, CRISPR/Cas9-generated fluorescently labeled hiPSCs exhibited no significant morphological or growth rate differences compared with unedited controls. However, genomic aberrations during gene editing necessitate efficient genome integrity assessment methods. Optical genome mapping, a high-resolution genome-wide technique, revealed genomic alterations, including chromosomal copy number gain and losses affecting numerous genes. Despite these genomic alterations, hiPSCs retain their pluripotency and capacity to generate COs without major phenotypic changes but one edited cell line showed potential neuroectodermal differentiation impairment. Thus, this study highlights optical genome mapping in assessing genome integrity in CRISPR/Cas9-edited hiPSCs emphasizing the need for comprehensive integration of genomic and morphological analysis to ensure the robustness of hiPSC-based models in cerebral organoid research.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (W.M.G.); (H.P.N.)
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Luzie H. I. Hardt
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Stefan Bormann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (W.M.G.); (H.P.N.)
| | - Thorsten Müller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany;
| |
Collapse
|
8
|
Zhu G, Zhang L, Ma L, Liu Q, Wang K, Li J, Qu G, Zhu B, Fu D, Luo Y, Zhu H. Efficient large fragment deletion in plants: double pairs of sgRNAs are better than dual sgRNAs. HORTICULTURE RESEARCH 2023; 10:uhad168. [PMID: 37841500 PMCID: PMC10569238 DOI: 10.1093/hr/uhad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Guoning Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lingling Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jinyan Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
9
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
10
|
Nizan S, Amitzur A, Dahan-Meir T, Benichou JIC, Bar-Ziv A, Perl-Treves R. Mutagenesis of the melon Prv gene by CRISPR/Cas9 breaks papaya ringspot virus resistance and generates an autoimmune allele with constitutive defense responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4579-4596. [PMID: 37137337 PMCID: PMC10433930 DOI: 10.1093/jxb/erad156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp. melonis races 0 and 2, and to papaya ringspot virus (PRSV), respectively. In this study, we validated the function of Prv and showed that it is essential for providing resistance against PRSV infection. We generated CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] mutants using Agrobacterium-mediated transformation of a PRSV-resistant melon genotype, and the T1 progeny proved susceptible to PRSV, showing strong disease symptoms and viral spread upon infection. Three alleles having 144, 154, and ~3 kb deletions, respectively, were obtained, all of which caused loss of resistance. Interestingly, one of the Prv mutant alleles, prvΔ154, encoding a truncated product, caused an extreme dwarf phenotype, accompanied by leaf lesions, high salicylic acid levels, and defense gene expression. The autoimmune phenotype observed at 25 °C proved to be temperature dependent, being suppressed at 32 °C. This is a first report on the successful application of CRISPR/Cas9 to confirm R gene function in melon. Such validation opens up new opportunities for molecular breeding of disease resistance in this important vegetable crop.
Collapse
Affiliation(s)
- Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Tal Dahan-Meir
- Plant and Environmental Sciences, Weizmann Institute of Science, Israel
| | | | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| |
Collapse
|
11
|
Wu T, Lu S, Cai Y, Xu X, Zhang L, Chen F, Jiang B, Zhang H, Sun S, Zhai H, Zhao L, Xia Z, Hou W, Kong F, Han T. Molecular breeding for improvement of photothermal adaptability in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:60. [PMID: 37496825 PMCID: PMC10366068 DOI: 10.1007/s11032-023-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01406-z.
Collapse
Affiliation(s)
- Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yupeng Cai
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Xu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honglei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education of China, Northeast Agricultural University, Harbin, 150030 China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
12
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Liang D, Liu Y, Li C, Wen Q, Xu J, Geng L, Liu C, Jin H, Gao Y, Zhong H, Dawson J, Tian B, Barco B, Su X, Dong S, Li C, Elumalai S, Que Q, Jepson I, Shi L. CRISPR/LbCas12a-Mediated Genome Editing in Soybean. Methods Mol Biol 2023; 2653:39-52. [PMID: 36995618 DOI: 10.1007/978-1-0716-3131-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Currently methods for generating soybean edited lines are time-consuming, inefficient, and limited to certain genotypes. Here we describe a fast and highly efficient genome editing method based on CRISPR-Cas12a nuclease system in soybean. The method uses Agrobacterium-mediated transformation to deliver editing constructs and uses aadA or ALS genes as selectable marker. It only takes about 45 days to obtain greenhouse-ready edited plants at higher than 30% transformation efficiency and 50% editing rate. The method is applicable to other selectable markers including EPSPS and has low transgene chimera rate. The method is also genotype-flexible and has been applied to genome editing of several elite soybean varieties.
Collapse
Affiliation(s)
- Dawei Liang
- Syngenta Biotechnology China Co., Ltd., Beijing, China.
| | - Yubo Liu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Chao Li
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Qin Wen
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Jianping Xu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Lizhao Geng
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Chunxia Liu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Huaibing Jin
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Yang Gao
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Heng Zhong
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - John Dawson
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Bin Tian
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Brenden Barco
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Xiujuan Su
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Shujie Dong
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Changbao Li
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Sivamani Elumalai
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Ian Jepson
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Liang Shi
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
15
|
Using Staphylococcus aureus Cas9 to Expand the Scope of Potential Gene Targets for Genome Editing in Soybean. Int J Mol Sci 2022; 23:ijms232112789. [DOI: 10.3390/ijms232112789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a revolutionary genome editing technology that has been used to achieve site-specific gene knock-out, large fragment deletion, or base editing in many plant species including soybean (Glycinemax). The Streptococcuspyogenes Cas9 (SpCas9) is widely used in plants at present, although there are some reports describing the application of CRISPR/Cpf1 in soybean. Therefore, the selection range of PAM (protospacer adjacent motif) sequences for soybean is currently limited to 5′-NGG-3′ (SpCas9) or 5′-TTTN-3′ (Cpf1), which in turn limits the number of genes that can be mutated. Another Cas9 enzyme from Staphylococcus aureus (SaCas9) recognizes the PAM sequence 5′-NNGRRT-3′ (where R represents A or G), which can provide a wider range of potential target sequences. In this study, we developed a CRISPR/SaCas9 system and used this tool to specifically induce targeted mutations at five target sites in the GmFT2a (Glyma.16G150700) and GmFT5a (Glyma.16G044100) genes in soybean hairy roots. We demonstrated that this tool can recognize the PAM sequences 5′-AAGGGT-3′, 5′-GGGGAT-3′, 5′-TTGAAT-3′, and 5′-TAGGGT-3′ in soybean, and it achieved mutation rates ranging from 34.5% to 73.3%. Our results show that we have established a highly efficient CRISPR/SaCas9 tool that is as suitable as SpCas9 for genome editing in soybean, and it will be useful for expanding the range of target sequences for genome editing.
Collapse
|
16
|
Yang Y, Ke J, Han X, Wuddineh WA, Song GQ, Zhong GY. Removal of a 10-kb Gret1 transposon from VvMybA1 of Vitis vinifera cv. Chardonnay. HORTICULTURE RESEARCH 2022; 9:uhac201. [PMID: 36406285 PMCID: PMC9669667 DOI: 10.1093/hr/uhac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 06/10/2023]
Abstract
Many white grape cultivars have a nonfunctional VvMybA1 gene due to the presence of a 10-kb Gret1 transposon in its promoter. In this study, we successfully demonstrated removal of the 10-kb Gret1 transposon and functional restoration of a VvMybA1 allele in Vitis vinifera cv. Chardonnay through transgenic expression of Cas9 and two gRNAs simultaneously targeting two junction sequences between Gret1 LTRs and VvMybA1. We generated 67 and 24 Cas9-positive vines via Agrobacterium-mediated and biolistic bombardment transformation, respectively. While the editing efficiencies were as high as 17% for the 5' target site and 65% for the 3' target site, simultaneous editing of both 5' and 3' target sites resulting in the removal of Gret1 transposon from the VvMybA1 promoter was 0.5% or less in most transgenic calli, suggesting that these calli had very limited numbers of cells with the Gret1 removed. Nevertheless, two bombardment-transformed vines, which shared the same unique editing features and were likely derived from a singly edited event, were found to have the Gret1 successfully edited out from one of their two VvMybA1 alleles. The edited allele was functionally restored based on the detection of its expression and a positive coloring assay result in leaves. Precise removal of more than a 10-kb DNA fragment from a gene locus in grape broadens the possibilities of using gene editing technologies to modify various trait genes in grapes and other plants.
Collapse
Affiliation(s)
- Yingzhen Yang
- USDA-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - John Ke
- USDA-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - Xiaoyan Han
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Wegi A Wuddineh
- USDA-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - Guo-qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Gan-Yuan Zhong
- USDA-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456, USA
| |
Collapse
|
17
|
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects. Front Genet 2022; 13:859437. [PMID: 35836569 PMCID: PMC9275826 DOI: 10.3389/fgene.2022.859437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Legumes are rich in protein and phytochemicals and have provided a healthy diet for human beings for thousands of years. In recognition of the important role they play in human nutrition and agricultural production, the researchers have made great efforts to gain new genetic traits in legumes such as yield, stress tolerance, and nutritional quality. In recent years, the significant increase in genomic resources for legume plants has prepared the groundwork for applying cutting-edge breeding technologies, such as transgenic technologies, genome editing, and genomic selection for crop improvement. In addition to the different genome editing technologies including the CRISPR/Cas9-based genome editing system, this review article discusses the recent advances in plant-specific gene-editing methods, as well as problems and potential benefits associated with the improvement of legume crops with important agronomic properties. The genome editing technologies have been effectively used in different legume plants including model legumes like alfalfa and lotus, as well as crops like soybean, cowpea, and chickpea. We also discussed gene-editing methods used in legumes and the improvements of agronomic traits in model and recalcitrant legumes. Despite the immense opportunities genome editing can offer to the breeding of legumes, governmental regulatory restrictions present a major concern. In this context, the comparison of the regulatory framework of genome editing strategies in the European Union and the United States of America was also discussed. Gene-editing technologies have opened up new possibilities for the improvement of significant agronomic traits in legume breeding.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Pinar Baloglu
- Research and Application Center, Kastamonu University, Kastamonu, Turkey
| | - Ali Burak Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nil Türkölmez
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Smart Agriculture Research and Application Center, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
18
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
19
|
Rasheed A, Barqawi AA, Mahmood A, Nawaz M, Shah AN, Bay DH, Alahdal MA, Hassan MU, Qari SH. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mol Biol Rep 2022; 49:5595-5609. [PMID: 35585381 DOI: 10.1007/s11033-022-07529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Aminah A Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Daniyah H Bay
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A Alahdal
- Biology Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
| |
Collapse
|
20
|
Zhu G, Zhu H. Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:847169. [PMID: 35371136 PMCID: PMC8969578 DOI: 10.3389/fpls.2022.847169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Gene-editing systems have emerged as bioengineering tools in recent years. Classical gene-editing systems include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9), and these tools allow specific sequences to be targeted and edited. Various modified gene-editing systems have been established based on classical gene-editing systems. Base editors (BEs) can accurately carry out base substitution on target sequences, while prime editors (PEs) can replace or insert sequences. CRISPR systems targeting mitochondrial genomes and RNA have also been explored and established. Multiple gene-editing techniques based on CRISPR/Cas9 have been established and applied to genome engineering. Modified gene-editing systems also make transgene-free plants more readily available. In this review, we discuss the modifications made to gene-editing systems in recent years and summarize the capabilities, deficiencies, and applications of these modified gene-editing systems. Finally, we discuss the future developmental direction and challenges of modified gene-editing systems.
Collapse
Affiliation(s)
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Jobson E, Roberts R. Genomic structural variation in tomato and its role in plant immunity. MOLECULAR HORTICULTURE 2022; 2:7. [PMID: 37789472 PMCID: PMC10515242 DOI: 10.1186/s43897-022-00029-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 10/05/2023]
Abstract
It is well known that large genomic variations can greatly impact the phenotype of an organism. Structural Variants (SVs) encompass any genomic variation larger than 30 base pairs, and include changes caused by deletions, inversions, duplications, transversions, and other genome modifications. Due to their size and complex nature, until recently, it has been difficult to truly capture these variations. Recent advances in sequencing technology and computational analyses now permit more extensive studies of SVs in plant genomes. In tomato, advances in sequencing technology have allowed researchers to sequence hundreds of genomes from tomatoes, and tomato relatives. These studies have identified SVs related to fruit size and flavor, as well as plant disease response, resistance/susceptibility, and the ability of plants to detect pathogens (immunity). In this review, we discuss the implications for genomic structural variation in plants with a focus on its role in tomato immunity. We also discuss how advances in sequencing technology have led to new discoveries of SVs in more complex genomes, the current evidence for the role of SVs in biotic and abiotic stress responses, and the outlook for genetic modification of SVs to advance plant breeding objectives.
Collapse
Affiliation(s)
- Emma Jobson
- Montana State University Extension, Montana State University, Bozeman, MT, 59717, United States
| | - Robyn Roberts
- Agricultural Biology Department, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
22
|
Su Q, Chen L, Cai Y, Chen Y, Yuan S, Li M, Zhang J, Sun S, Han T, Hou W. Functional Redundancy of FLOWERING LOCUS T 3b in Soybean Flowering Time Regulation. Int J Mol Sci 2022; 23:2497. [PMID: 35269637 PMCID: PMC8910378 DOI: 10.3390/ijms23052497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.
Collapse
Affiliation(s)
- Qiang Su
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Yingying Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Shan Yuan
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Min Li
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Jialing Zhang
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| |
Collapse
|
23
|
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031114. [PMID: 35164379 PMCID: PMC8839139 DOI: 10.3390/molecules27031114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system is best known for its role in genomic editing. It has also demonstrated great potential in nucleic acid biosensing. However, the specificity limitation in CRISPR/Cas has created a hurdle for its advancement. More recently, nucleic acid aptamers known for their high affinity and specificity properties for their targets have been integrated into CRISPR/Cas systems. This review article gives a brief overview of the aptamer and CRISPR/Cas technology and provides an updated summary and discussion on how the two distinctive nucleic acid technologies are being integrated into modern diagnostic and therapeutic applications
Collapse
Affiliation(s)
- Mina Roueinfar
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Hayley N. Templeton
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Julietta A. Sheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, Baltimore, MD 21210, USA
- Correspondence: ; Tel.: +1-410-532-5044
| |
Collapse
|
24
|
Deb S, Choudhury A, Kharbyngar B, Satyawada RR. Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica 2022; 150:1-12. [PMID: 35018532 DOI: 10.1007/s10709-021-00146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) system was discovered in bacteria and archea as an acquired immune response to protect the cells from infection. This technology has now evolved to become an efficient genome editing tool, and is replacing older gene editing technologies. This technique uses programmable sgRNAs to guide the Cas9 endonuclease to the target DNA location. sgRNA is a vital component of the CRISPR technology, since without it the Cas nuclease cannot reach to its target location. Over the years, many tools have been developed for designing sgRNAs, the details of which have been extensively reviewed here. It has proven to be a promising tool in the field of genetic engineering and has successfully generated many plant varieties with better and desirable qualities. In the present review, we attempted to collect,collate and summarize information related to the development of CRISPR/Cas9 system as a tool and subsequently into a technique having a wide array of applications in the field of plant genome editing in attaining desirable traits like resistance to various diseases, nutritional enhancement etc. In addition, the probable future prospects and the various bio-safety concerns associated with CRISPR gene editing technology have been discussed in detail.
Collapse
Affiliation(s)
- Sohini Deb
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Amrita Choudhury
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Banridor Kharbyngar
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Rama Rao Satyawada
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
25
|
Olivares F, Loyola R, Olmedo B, Miccono MDLÁ, Aguirre C, Vergara R, Riquelme D, Madrid G, Plantat P, Mora R, Espinoza D, Prieto H. CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons. FRONTIERS IN PLANT SCIENCE 2021; 12:791030. [PMID: 35003180 PMCID: PMC8733719 DOI: 10.3389/fpls.2021.791030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
The woody nature of grapevine (Vitis vinifera L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used Bean yellow dwarf virus (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system in vivo and evaluate their editing capability in individuals derived from Agrobacterium-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for green fluorescent protein reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including AUXIN INDUCED IN ROOT CULTURE 12 (VviAIR12), SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 4 (VviSWEET4), LESION INITIATION 2 (VviLIN2), and DIMERIZATION PARTNER-E2F-LIKE 1 (VviDEL1). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to Erysiphe necator and Botrytis cinerea. Assays have shown that a transgene-free VviDEL1 double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.
Collapse
Affiliation(s)
- Felipe Olivares
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Rodrigo Loyola
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Blanca Olmedo
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - María de los Ángeles Miccono
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Ricardo Vergara
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Danae Riquelme
- Phytopathology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Gabriela Madrid
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Philippe Plantat
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Roxana Mora
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Daniel Espinoza
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| |
Collapse
|
26
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Trogu S, Ermert AL, Stahl F, Nogué F, Gans T, Hughes J. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens. PLANT MOLECULAR BIOLOGY 2021; 107:327-336. [PMID: 33346897 PMCID: PMC8648701 DOI: 10.1007/s11103-020-01103-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We mutated all seven Physcomitrium (Physcomitrella) patens phytochrome genes using highly-efficient CRISPR-Cas9 procedures. We thereby identified phy5a as the phytochrome primarily responsible for inhibiting gravitropism, proving the utility of the mutant library. The CRISPR-Cas9 system is a powerful tool for genome editing. Here we report highly-efficient multiplex CRISPR-Cas9 editing of the seven-member phytochrome gene family in the model bryophyte Physcomitrium (Physcomitrella) patens. Based on the co-delivery of an improved Cas9 plasmid with multiple sgRNA plasmids and an efficient screening procedure to identify high-order multiple mutants prior to sequencing, we demonstrate successful targeting of all seven PHY genes in a single transfection. We investigated further aspects of the CRISPR methodology in Physcomitrella, including the significance of spacing between paired sgRNA targets and the efficacy of NHEJ and HDR in repairing the chromosome when excising a complete locus. As proof-of-principle, we show that the septuple phy- mutant remains gravitropic in light, in line with expectations, and on the basis of data from lower order multiplex knockouts conclude that phy5a is the principal phytochrome responsible for inhibiting gravitropism in light. We expect, therefore, that this mutant collection will be valuable for further studies of phytochrome function and that the methods we describe will allow similar approaches to revealing specific functions in other gene families.
Collapse
Affiliation(s)
- Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Anna Lena Ermert
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Fabian Stahl
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
28
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
29
|
Niu F, Jiang Q, Sun X, Hu Z, Wang L, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1139-1147. [PMID: 34585661 DOI: 10.1071/fp20400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) affect gene expressions via a wide range of mechanisms and are considered important regulators of numerous essential biological processes, including abiotic stress responses. However, the biological functions of most lncRNAs are yet to be determined. Moreover, to date, no effective methods have been developed to study the function of plant lncRNAs. We previously discovered a salt stress-related lncRNA, lncRNA77580 in soybean (Glycine max L.). In this study, we cloned the full-length lncRNA77580 and found that it shows nuclear-specific localisation. Furthermore, we employed CRISPR/Cas9 technology to induce large DNA fragment deletions in lncRNA77580 in soybean using a dual-single guide RNA/Cas9 design. As a result, we obtained deletion mutant soybean roots with targeted genomic fragment deletion in lncRNA77580. Deletion and overexpression of lncRNA77580 were found to alter the expression of several neighboring protein-coding genes associated with the response to salt stress. The longer the deleted DNA fragment in lncRNA77580, the greater the influence on the expression of lncRNA77580 itself and neighboring genes. Collectively, the findings of this study revealed that large DNA fragment deletion in lncRNAs using the CRISPR/Cas9 system is a powerful method to obtain functional mutations of soybean lncRNAs that could benefit future research on lncRNA function in soybean.
Collapse
Affiliation(s)
- Fengjuan Niu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | | | - Xianjun Sun
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zheng Hu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lixia Wang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | | |
Collapse
|
30
|
Duan K, Cheng Y, Ji J, Wang C, Wei Y, Wang Y. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1620-1631. [PMID: 34331750 DOI: 10.1111/jipb.13158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
The creation of new soybean varieties has been limited by genomic duplication and redundancy. Efficient multiplex gene editing and large chromosomal segment deletion through clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are promising strategies for overcoming these obstacles. CRISPR/Cpf1 is a robust tool for multiplex gene editing. However, large chromosomal excision mediated by CRISPR/Cpf1 has been reported in only a few non-plant species. Here, we report on CRISPR/LbCpf1-induced large chromosomal segment deletions in soybean using multiplex gene targeting. The CRISPR/LbCpf1 system was optimized for direct repeat and guide RNA lengths in crispr RNA (crRNA) array. The editing efficiency was evaluated using LbCpf1 driven by the CaMV35S and soybean ubiquitin promoter. The optimized system exhibited editing efficiencies of up to 91.7%. Our results showed eight gene targets could be edited simultaneously in one step when a single eight-gRNA-target crRNA array was employed, with an efficiency of up to 17.1%. We successfully employed CRISPR/LbCpf1 to produce small fragments (<1 Kb) and large chromosomal segment deletions (10 Kb-1 Mb) involving four different gene clusters in soybean. Together, these data demonstrate the power of the CRISPR/LbCpf1 platform for multiplex gene editing and chromosomal segment deletion in soybean, supporting the use of this technology in both basic research and agricultural applications.
Collapse
Affiliation(s)
- Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Cheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenchen Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongshu Wei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
31
|
da Silva ÉDB, Xavier A, Faria MV. Impact of Genomic Prediction Model, Selection Intensity, and Breeding Strategy on the Long-Term Genetic Gain and Genetic Erosion in Soybean Breeding. Front Genet 2021; 12:637133. [PMID: 34539725 PMCID: PMC8440908 DOI: 10.3389/fgene.2021.637133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Genomic-assisted breeding has become an important tool in soybean breeding. However, the impact of different genomic selection (GS) approaches on short- and long-term gains is not well understood. Such gains are conditional on the breeding design and may vary with a combination of the prediction model, family size, selection strategies, and selection intensity. To address these open questions, we evaluated various scenarios through a simulated closed soybean breeding program over 200 breeding cycles. Genomic prediction was performed using genomic best linear unbiased prediction (GBLUP), Bayesian methods, and random forest, benchmarked against selection on phenotypic values, true breeding values (TBV), and random selection. Breeding strategies included selections within family (WF), across family (AF), and within pre-selected families (WPSF), with selection intensities of 2.5, 5.0, 7.5, and 10.0%. Selections were performed at the F4 generation, where individuals were phenotyped and genotyped with a 6K single nucleotide polymorphism (SNP) array. Initial genetic parameters for the simulation were estimated from the SoyNAM population. WF selections provided the most significant long-term genetic gains. GBLUP and Bayesian methods outperformed random forest and provided most of the genetic gains within the first 100 generations, being outperformed by phenotypic selection after generation 100. All methods provided similar performances under WPSF selections. A faster decay in genetic variance was observed when individuals were selected AF and WPSF, as 80% of the genetic variance was depleted within 28-58 cycles, whereas WF selections preserved the variance up to cycle 184. Surprisingly, the selection intensity had less impact on long-term gains than did the breeding strategies. The study supports that genetic gains can be optimized in the long term with specific combinations of prediction models, family size, selection strategies, and selection intensity. A combination of strategies may be necessary for balancing the short-, medium-, and long-term genetic gains in breeding programs while preserving the genetic variance.
Collapse
Affiliation(s)
| | - Alencar Xavier
- Department of Biostatistics, Corteva Agriscience, Johnston, IA, United States
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Marcos Ventura Faria
- Department of Agronomy, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| |
Collapse
|
32
|
Yue Y, Jiang Z, Sapey E, Wu T, Sun S, Cao M, Han T, Li T, Nian H, Jiang B. Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars. BMC Genomics 2021; 22:529. [PMID: 34246232 PMCID: PMC8272290 DOI: 10.1186/s12864-021-07869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ze Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Enoch Sapey
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tingting Wu
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Mengxue Cao
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
33
|
Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, Siddiquee S. Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops. PLANTS (BASEL, SWITZERLAND) 2021; 10:1264. [PMID: 34206201 PMCID: PMC8309070 DOI: 10.3390/plants10071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.
Collapse
Affiliation(s)
- Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - M. Nazrul Islam
- Laboratory of Plant Pathology and Microbiology, Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Charles Ng Wai Chun
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Md. Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Jasim Uddain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
34
|
Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJL, Parrott W, Vianna GR. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Res 2021; 30:239-249. [PMID: 33797713 DOI: 10.1007/s11248-021-00246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.
Collapse
Affiliation(s)
- Jéssica Carrijo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Peter LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nathalia Torres
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Giovanni R Vianna
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil.
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
35
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
36
|
Abstract
Energy security and climate change have cascading effects on the world's burgeoning population in terms of food security, environment, and sustainability. Due to depletion of fossil fuels and undesirable changes of climatic conditions, increase in air and water pollution, mankind started exploring alternate and sustainable means of meeting growing energy needs. One of the options is to use renewable sources of fuel-biofuel. In this chapter the authors have reviewed and presented sustainability impact on production of biofuels. Authors further reviewed state-of-the-art gene editing technologies toward improvement of biofuel crops. The authors recommend a phased transition from first-generation biofuel, and an acceleration toward use of technology to drive adoption of second-generation biofuels. Key aspects of technology and application of resource management models will enable these crops to bridge the global energy demand before we can completely transition to a more sustainable biofuel economy.
Collapse
|
37
|
Tiwari M, Trivedi P, Pandey A. Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 2020. [DOI: 10.1002/fes3.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research New Delhi India
| | - Prabodh Trivedi
- CSIR‐Central Institute of Medicinal and Aromatic Plants Lucknow India
| | | |
Collapse
|
38
|
Zaidi SSEA, Mahas A, Vanderschuren H, Mahfouz MM. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 2020; 21:289. [PMID: 33256828 PMCID: PMC7702697 DOI: 10.1186/s13059-020-02204-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
To meet increasing global food demand, breeders and scientists aim to improve the yield and quality of major food crops. Plant diseases threaten food security and are expected to increase because of climate change. CRISPR genome-editing technology opens new opportunities to engineer disease resistance traits. With precise genome engineering and transgene-free applications, CRISPR is expected to resolve the major challenges to crop improvement. Here, we discuss the latest developments in CRISPR technologies for engineering resistance to viruses, bacteria, fungi, and pests. We conclude by highlighting current concerns and gaps in technology, as well as outstanding questions for future research.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hervé Vanderschuren
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
39
|
Sheva M, Hanania U, Ariel T, Turbovski A, Rathod VKR, Oz D, Tekoah Y, Shaaltiel Y. Sequential Genome Editing and Induced Excision of the Transgene in N. tabacum BY2 Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:607174. [PMID: 33324440 PMCID: PMC7723889 DOI: 10.3389/fpls.2020.607174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
While plant cells in suspension are becoming a popular platform for expressing biotherapeutic proteins, the need to pre-engineer these cells to better comply with their role as host cell lines is emerging. Heterologous DNA and selectable markers are used for transformation and genome editing designated to produce improved host cell lines for overexpression of recombinant proteins. The removal of these heterologous DNA and selectable markers, no longer needed, can be beneficial since they limit additional gene stacking in subsequent transformations and may pose excessive metabolic burden on the cell machinery. In this study we developed an innovative stepwise methodology in which the CRISPR-Cas9 is used sequentially to target genome editing, followed by its own excision. The first step included a stable insertion of a CRISPR-Cas9 cassette, targeted to knockout the β(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. The second step included the excision of the inserted cassette of 14.3 kbp by induction of specific sgRNA designed to target the T-DNA boundaries. The genome editing step and the transgene removal step are achieved in one transformation run. This mechanism enables CRISPR genome editing and subsequently eliminating the introduced transgenes thus freeing the cells from foreign DNA no longer needed.
Collapse
|
40
|
Sheva M, Hanania U, Ariel T, Turbovski A, Rathod VKR, Oz D, Tekoah Y, Shaaltiel Y. Sequential Genome Editing and Induced Excision of the Transgene in N. tabacum BY2 Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:607174. [PMID: 33324440 DOI: 10.3389/fpls.2020.60714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 05/23/2023]
Abstract
While plant cells in suspension are becoming a popular platform for expressing biotherapeutic proteins, the need to pre-engineer these cells to better comply with their role as host cell lines is emerging. Heterologous DNA and selectable markers are used for transformation and genome editing designated to produce improved host cell lines for overexpression of recombinant proteins. The removal of these heterologous DNA and selectable markers, no longer needed, can be beneficial since they limit additional gene stacking in subsequent transformations and may pose excessive metabolic burden on the cell machinery. In this study we developed an innovative stepwise methodology in which the CRISPR-Cas9 is used sequentially to target genome editing, followed by its own excision. The first step included a stable insertion of a CRISPR-Cas9 cassette, targeted to knockout the β(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. The second step included the excision of the inserted cassette of 14.3 kbp by induction of specific sgRNA designed to target the T-DNA boundaries. The genome editing step and the transgene removal step are achieved in one transformation run. This mechanism enables CRISPR genome editing and subsequently eliminating the introduced transgenes thus freeing the cells from foreign DNA no longer needed.
Collapse
Affiliation(s)
- Maor Sheva
- Protalix Biotherapeutics, Carmiel, Israel
| | | | - Tami Ariel
- Protalix Biotherapeutics, Carmiel, Israel
| | | | | | - Dina Oz
- Protalix Biotherapeutics, Carmiel, Israel
| | | | | |
Collapse
|
41
|
Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A, Moffa L, Vittani L, Moser C, Malnoy M. Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Sci Rep 2020; 10:20155. [PMID: 33214661 PMCID: PMC7678832 DOI: 10.1038/s41598-020-77110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Genome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind. The first is based on the Flp/FRT system and the second on Cas9 and synthetic cleavage target sites (CTS) close to T-DNA borders, which are recognized by the sgRNA. Several grapevine and apple lines, transformed with a panel of CRISPR/SpCas9 binary vectors, were regenerated and characterized for T-DNA copy number and for the rate of targeted editing. As detected by an optimized NGS-based sequencing method, trimming at T-DNA borders occurred in 100% of the lines, impairing in most cases the excision. Another observation was the leakage activity of Cas9 which produced pierced and therefore non-functional CTS. Deletions of genomic DNA and presence of filler DNA were also noticed at the junctions between T-DNA and genomic DNA. This study proved that many factors must be considered for designing efficient binary vectors capable of minimizing the presence of exogenous DNA in CRISPRed fruit trees.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy.
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Loredana Moffa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Lorenzo Vittani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| |
Collapse
|
42
|
Jin Y, Marquardt S. Dual sgRNA-based Targeted Deletion of Large Genomic Regions and Isolation of Heritable Cas9-free Mutants in Arabidopsis. Bio Protoc 2020; 10:e3796. [PMID: 33659450 PMCID: PMC7842341 DOI: 10.21769/bioprotoc.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/02/2022] Open
Abstract
CRISPR/Cas9 system directed by a gene-specific single guide RNA (sgRNA) is an effective tool for genome editing such as deletions of few bases in coding genes. However, targeted deletion of larger regions generate loss-of-function alleles that offer a straightforward starting point for functional dissections of genomic loci. We present an easy-to-use strategy including a fast cloning dual-sgRNA vector linked to efficient isolation of heritable Cas9-free genomic deletions to rapidly and cost-effectively generate a targeted heritable genome deletion. This step-by-step protocol includes gRNA design, cloning strategy and mutation detection for Arabidopsis and may be adapted for other plant species.
Collapse
Affiliation(s)
- Yu Jin
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21, 1870 Frederiksberg C, Denmark
| |
Collapse
|
43
|
CRISPR/Cas9: A Robust Genome-Editing Tool with Versatile Functions and Endless Application. Int J Mol Sci 2020; 21:ijms21145111. [PMID: 32698333 PMCID: PMC7404002 DOI: 10.3390/ijms21145111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
|
44
|
Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020; 9:E1608. [PMID: 32630835 PMCID: PMC7407193 DOI: 10.3390/cells9071608] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022] Open
Abstract
Gene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system. Numerous types of approaches have been developed to reduce off-target effects. Here, we review several latest approaches to reduce the off-target effects, including biased or unbiased off-target detection, cytosine or adenine base editors, prime editing, dCas9, Cas9 paired nickase, ribonucleoprotein (RNP) delivery and truncated gRNAs. This review article provides extensive information to cautiously interpret off-target effects to assist the basic and clinical applications in biomedicine.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mubasher Zahir Hoque
- Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| |
Collapse
|
45
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
46
|
Bánfalvi Z, Csákvári E, Villányi V, Kondrák M. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation. BMC Biotechnol 2020; 20:25. [PMID: 32398038 PMCID: PMC7216596 DOI: 10.1186/s12896-020-00621-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
Background Gene editing using the CRISPR/Cas9 system has become a routinely applied method in several plant species. The most convenient gene delivery system is Agrobacterium-mediated gene transfer with antibiotic selection and stable genomic integration of transgenes, including Cas9. For elimination of transgenes in the segregating progeny, selfing is applied in many plant species. This approach, however, cannot be widely employed in potato because most of the commercial potato cultivars are self-incompatible. Results In this study, the efficiency of a transient Cas9 expression system with positive/negative selection based on codA-nptII fusion was tested. The PHYTOENE DESATURASE (PDS) gene involved in carotenoid biosynthesis was targeted. A new vector designated PROGED::gPDS carrying only the right border of T-DNA was constructed. Using only the positive selection function of PROGED::gPDS and the restriction enzyme site loss method in PCR of genomic DNA after digestion with the appropriate restriction enzyme, it was demonstrated that the new vector is as efficient in gene editing as a traditional binary vector with right- and left-border sequences. Nevertheless, 2 weeks of positive selection followed by negative selection did not result in the isolation of PDS mutants. In contrast, we found that with 3-day positive selection, PDS mutants appear in the regenerating population with a minimum frequency of 2–10%. Interestingly, while large deletions (> 100 bp) were generated by continuous positive selection, the 3-day selection resulted in deletions and substitutions of only a few bp. Two albinos and three chimaeras with white and green leaf areas were found among the PDS mutants, while all the other PDS mutant plants were green. Based on DNA sequence analysis some of the green plants were also chimaeras. Upon vegetative propagation from stem segments in vitro, the phenotype of the plants obtained even by positive selection did not change, suggesting that the expression of Cas9 and gPDS is silenced or that the DNA repair system is highly active during the vegetative growth phase in potato. Conclusions Gene-edited plants can be obtained from potatoes by Agrobacterium-mediated transformation with 3-day antibiotic selection with a frequency high enough to identify the mutants in the regenerating plant population using PCR.
Collapse
Affiliation(s)
- Zsófia Bánfalvi
- NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.
| | - Edina Csákvári
- NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary
| | - Vanda Villányi
- NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary
| | - Mihály Kondrák
- NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary
| |
Collapse
|
47
|
Li MW, Wang Z, Jiang B, Kaga A, Wong FL, Zhang G, Han T, Chung G, Nguyen H, Lam HM. Impacts of genomic research on soybean improvement in East Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1655-1678. [PMID: 31646364 PMCID: PMC7214498 DOI: 10.1007/s00122-019-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 05/10/2023]
Abstract
It has been commonly accepted that soybean domestication originated in East Asia. Although East Asia has the historical merit in soybean production, the USA has become the top soybean producer in the world since 1950s. Following that, Brazil and Argentina have been the major soybean producers since 1970s and 1990s, respectively. China has once been the exporter of soybean to Japan before 1990s, yet she became a net soybean importer as Japan and the Republic of Korea do. Furthermore, the soybean yield per unit area in East Asia has stagnated during the past decade. To improve soybean production and enhance food security in these East Asian countries, much investment has been made, especially in the breeding of better performing soybean germplasms. As a result, China, Japan, and the Republic of Korea have become three important centers for soybean genomic research. With new technologies, the rate and precision of the identification of important genomic loci associated with desired traits from germplasm collections or mutants have increased significantly. Genome editing on soybean is also becoming more established. The year 2019 marked a new era for crop genome editing in the commercialization of the first genome-edited plant product, which is a high-oleic-acid soybean oil. In this review, we have summarized the latest developments in soybean breeding technologies and the remarkable progress in soybean breeding-related research in China, Japan, and the Republic of Korea.
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Guohong Zhang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Key Laboratory of Northwest Drought Crop Cultivation of Chinese Ministry of Agriculture, Lanzhou, 730070 China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626 Korea
| | - Henry Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| |
Collapse
|
48
|
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:721-731. [PMID: 31452351 PMCID: PMC7004907 DOI: 10.1111/pbi.13239] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 05/08/2023]
Abstract
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR-Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR-Cas9 as a mutant screening tool. Here, we report a pooled CRISPR-Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR-Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1-1/1-2/1-3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.
Collapse
Affiliation(s)
- Mengyan Bai
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juehui Yuan
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huaqin Kuang
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Gong
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Suning Li
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhihui Zhang
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Bo Liu
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiafeng Sun
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Maoxiang Yang
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Shikui Song
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuefeng Guan
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
49
|
Wang Y, Yuan L, Su T, Wang Q, Gao Y, Zhang S, Jia Q, Yu G, Fu Y, Cheng Q, Liu B, Kong F, Zhang X, Song CP, Xu X, Xie Q. Light- and temperature-entrainable circadian clock in soybean development. PLANT, CELL & ENVIRONMENT 2020; 43:637-648. [PMID: 31724182 DOI: 10.1111/pce.13678] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/13/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
In plants, the spatiotemporal expression of circadian oscillators provides adaptive advantages in diverse species. However, the molecular basis of circadian clock in soybean is not known. In this study, we used soybean hairy roots expression system to monitor endogenous circadian rhythms and the sensitivity of circadian clock to environmental stimuli. We discovered in experiments with constant light and temperature conditions that the promoters of clock genes GmLCLb2 and GmPRR9b1 drive a self-sustained, robust oscillation of about 24-h in soybean hairy roots. Moreover, we demonstrate that circadian clock is entrainable by ambient light/dark or temperature cycles. Specifically, we show that light and cold temperature pulses can induce phase shifts of circadian rhythm, and we found that the magnitude and direction of phase responses depends on the specific time of these two zeitgeber stimuli. We obtained a quadruple mutant lacking the soybean gene GmLCLa1, LCLa2, LCLb1, and LCLb2 using CRISPR, and found that loss-of-function of these four GmLCL orthologs leads to an extreme short-period circadian rhythm and late-flowering phenotype in transgenic soybean. Our study establishes that the morning-phased GmLCLs genes act constitutively to maintain circadian rhythmicity and demonstrates that their absence delays the transition from vegetative growth to reproductive development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Tong Su
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya Gao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyuan Zhang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian Jia
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guolong Yu
- MOA Key Lab of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfu Fu
- MOA Key Lab of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qun Cheng
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaodong Xu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
50
|
Liu K, Sun B, You H, Tu JL, Yu X, Zhao P, Xu JW. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system. Microb Biotechnol 2020; 13:386-396. [PMID: 31958883 PMCID: PMC7017817 DOI: 10.1111/1751-7915.13534] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum is an important medicinal mushroom in traditional Chinese medicine. However, the lack of adequate genetic tools has hindered molecular genetic research in and the genetic modification of this species. Here, we report that the presence of an intron is necessary for the efficient expression of the heterologous phosphinothricin-resistance and green fluorescent protein genes in G. lucidum. Moreover, we improved the CRISPR/Cas9-mediated gene disruption frequency in G. lucidum by adding an intron upstream of the Cas9 gene. Our results showed that the disruption frequency of the orotidine 5'-monophosphate decarboxylase gene (ura3) in transformants containing the glyceraldehyde-3-phosphate dehydrogenase gene intron in the Cas9 plasmid is 14-18 in 107 protoplasts, which is 10.6 times higher than that in transformants without any intron sequence. Furthermore, genomic fragment deletions in the ura3 and GL17624 genes were achieved via a dual sgRNA-directed CRISPR/Cas9 system in G. lucidum. We achieved a ura3 deletion frequency of 36.7% in G. lucidum. The developed method provides a powerful platform to generate gene deletion mutants and will facilitate functional genomic studies in G. lucidum.
Collapse
Affiliation(s)
- Ke Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao You
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Liang Tu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|