1
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
2
|
Yang J, Friedman R. Combination strategies to overcome drug resistance in FLT + acute myeloid leukaemia. Cancer Cell Int 2023; 23:161. [PMID: 37568211 PMCID: PMC10416533 DOI: 10.1186/s12935-023-03000-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) remains difficult to treat despite the development of novel formulations and targeted therapies. Activating mutations in the FLT3 gene are common among patients and make the tumour susceptible to FLT3 inhibitors, but resistance to such inhibitors develops quickly. METHODS We examined combination therapies aimed at FLT3+-AML, and studied the development of resistance using a newly developed protocol. Combinations of FLT3, CDK4/6 and PI3K inhibitors were tested for synergism. RESULTS We show that AML cells express CDK4 and that the CDK4/6 inhibitors palbociclib and abemaciclib inhibit cellular growth. PI3K inhibitors were also effective in inhibiting the growth of AML cell lines that express FLT3-ITD. Whereas resistance to quizartinib develops quickly, the combinations overcome such resistance. CONCLUSIONS This study suggests that a multi-targeted intervention involving a CDK4/6 inhibitor with a FLT3 inhibitor or a pan-PI3K inhibitor might be a valuable therapeutic strategy for AML to overcome drug resistance. Moreover, many patients cannot tolerate high doses of the drugs that were studied (quizartinib, palbociclib and PI3K inhibitors) for longer periods, and it is therefore of high significance that the drugs act synergistically and lower doses can be used.
Collapse
Affiliation(s)
- Jingmei Yang
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, 391 82, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, 391 82, Kalmar, Sweden.
| |
Collapse
|
3
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
4
|
Qi K, Hu X, Yu X, Cheng H, Wang C, Wang S, Wang Y, Li Y, Cao J, Pan B, Wu Q, Qiao J, Zeng L, Li Z, Xu K, Fu C. Targeting cyclin-dependent kinases 4/6 inhibits survival of megakaryoblasts in acute megakaryoblastic leukaemia. Leuk Res 2022; 120:106920. [PMID: 35872339 DOI: 10.1016/j.leukres.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.
Collapse
Affiliation(s)
- Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chunqing Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yanjie Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
5
|
Klein K, Witalisz-Siepracka A, Gotthardt D, Agerer B, Locker F, Grausenburger R, Knab VM, Bergthaler A, Sexl V. T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Front Immunol 2021; 12:650977. [PMID: 34248938 PMCID: PMC8264666 DOI: 10.3389/fimmu.2021.650977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.
Collapse
Affiliation(s)
- Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Locker
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
6
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
7
|
Ernst P, Heidel FH. Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Cancers (Basel) 2021; 13:612. [PMID: 33557090 PMCID: PMC7913823 DOI: 10.3390/cancers13040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Senescence is a cellular state that is involved in aging-associated diseases but may also prohibit the development of pre-cancerous lesions and tumor growth. Senescent cells are actively secreting chemo- and cytokines, and this senescence-associated secretory phenotype (SASP) can contribute to both early anti-tumorigenic and long-term pro-tumorigenic effects. Recently, complex mechanisms of cellular senescence and their influence on cellular processes have been defined in more detail and, therefore, facilitate translational development of targeted therapies. In this review, we aim to discuss major molecular pathways involved in cellular senescence and potential therapeutic strategies, with a specific focus on myeloid malignancies.
Collapse
Affiliation(s)
- Philipp Ernst
- Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany;
- Research Program “Else Kröner-Forschungskolleg AntiAge“, Jena University Hospital, 07747 Jena, Germany
| | - Florian H. Heidel
- Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
8
|
Jeon JY, Buelow DR, Garrison DA, Niu M, Eisenmann ED, Huang KM, Zavorka Thomas ME, Weber RH, Whatcott CJ, Warner SL, Orwick SJ, Carmichael B, Stahl E, Brinton LT, Lapalombella R, Blachly JS, Hertlein E, Byrd JC, Bhatnagar B, Baker SD. TP-0903 is active in models of drug-resistant acute myeloid leukemia. JCI Insight 2020; 5:140169. [PMID: 33268594 PMCID: PMC7714403 DOI: 10.1172/jci.insight.140169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment–mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML. TP-0903, a multikinase inhibitor, demonstrates preclinical activity in models of drug-resistant AML, including those involving FLT3 mutations, bone marrow microenvironment-mediated factors and recurrent mutations.
Collapse
Affiliation(s)
- Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | - Mingshan Niu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Robert H Weber
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | | | | | - Emily Stahl
- Division of Hematology, Department of Internal Medicine, and
| | | | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
9
|
Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer. Int J Cancer 2020; 147:2988-2995. [PMID: 32406095 PMCID: PMC7586846 DOI: 10.1002/ijc.33054] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The regulation and function of cyclin‐dependent kinase 6 (CDK6)‐ and cyclin‐dependent kinase 4 (CDK4)‐cyclin complexes are commonly altered with enhanced kinase activity found in hematopoietic malignancies, breast cancer and melanoma making CDK4 and CDK6 attractive targets for therapeutic interference. Although dual CDK4/6 inhibitors have revolutionized treatment of breast cancer patients and reveal promising results in several solid tumors and hematological malignancies, there is a need for novel compounds targeting the versatile kinase‐independent functions of CDK6 to improve cancer treatment. The following review summarizes the latest findings on CDK6 in cancer development and discusses novel therapeutic approaches to selectively inhibit CDK6s function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
11
|
Zhang L, Bu Z, Shen J, Shang L, Chen Y, Wang Y. A novel circular RNA (hsa_circ_0000370) increases cell viability and inhibits apoptosis of FLT3-ITD-positive acute myeloid leukemia cells by regulating miR-1299 and S100A7A. Biomed Pharmacother 2019; 122:109619. [PMID: 31919040 DOI: 10.1016/j.biopha.2019.109619] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 01/16/2023] Open
Abstract
FLT3-ITD+ acute myeloid leukemia (AML) is an important subtype of AML, accounting for approximately 25 % of all AML cases in the world. Recently, increasing evidence has shown that circular RNAs (circRNAs) can act as effective biomarkers of various human cancers. However, the roles of circRNAs in AML remain largely unclear. In the present study, circ_0000370 was found to be significantly increased in FLT3-ITD+ AML and was demonstrated to act as an oncogenic circRNA of AML in vitro. TargetScan results showed that miR-1299, miR-370-3p, miR-502-5p, miR-1281 and miR-640 were potential targets of circ_0000370, and miR-1299 had the broadest range of interactome compared with other microRNAs of interest. Moreover, we demonstrated that S100A7A was a target gene of miR-1299, and circ_0000370 could regulate S100A7A expression by sponging miR-1299 in AML cell lines. Therefore, we suggest that the promoting effects of circ_0000370 on the progression of FLT3-ITD+ AML might be relevant to the inhibition of miR-1299 and the upregulation of S100A7A.
Collapse
Affiliation(s)
- Lingyan Zhang
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| | - Zibin Bu
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Juan Shen
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Liping Shang
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yuanyuan Chen
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yan Wang
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| |
Collapse
|