1
|
Matei E, Ionescu AC, Enciu M, Popovici V, Mitroi AF, Aschie M, Deacu M, Băltățescu GI, Nicolau AA, Roșu MC, Cristian M, Dobrin N, Ștefanov C, Pundiche Butcaru M, Cozaru GC. Cell death and DNA damage via ROS mechanisms after applied antibiotics and antioxidants doses in prostate hyperplasia primary cell cultures. Medicine (Baltimore) 2024; 103:e39450. [PMID: 39287312 PMCID: PMC11404886 DOI: 10.1097/md.0000000000039450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Tumor heterogeneity results in aggressive cancer phenotypes with acquired resistance. However, combining chemical treatment with adjuvant therapies that cause cellular structure and function perturbations may diminish the ability of cancer cells to resist at chemical treatment and lead to a less aggressive cancer phenotype. Applied treatments on prostate hyperplasia primary cell cultures exerted their antitumor activities through mechanisms including cell cycle blockage, oxidative stress, and cell death induction by flow cytometry methods. A 5.37 mM Chloramphenicol dose acts on prostate hyperplasia cells by increasing the pro-oxidant status, inducing apoptosis, autophagy, and DNA damage, but without ROS changes. Adding 6.30 mM vitamin C or 622 µM vitamin E as a supplement to 859.33 µM Chloramphenicol dose in prostate hyperplasia cells determines a significant increase of ROS level for a part of cells. However, other cells remain refractory to initial ROS, with significant changes in apoptosis, autophagy, and cell cycle arrest in G0/G1 or G2/M. When the dose of Chloramphenicol was increased to 5.37 mM for 6.30 mM of vitamin C, prostate hyperplasia cells reacted by ROS level drastically decreased, cell cycle arrest in G2/M, active apoptosis, and autophagy. The pro-oxidant action of 1.51 mM Erythromycin dose in prostate hyperplasia cell cultures induces changes in the apoptosis mechanisms and cell cycle arrest in G0/G1. Addition of 6.30 mM vitamin C to 1.51 mM Erythromycin dose in hyperplasia cell cultures, the pro-oxidant status determines diminished caspase 3/7 mechanism activation, but ROS level presents similar changes as Chloramphenicol dose and cell cycle arrest in G2/M. Flow cytometric analysis of cell death, oxidative stress, and cell cycle are recommended as laboratory techniques in therapeutic and diagnostic fields.
Collapse
Affiliation(s)
- Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Anita Cristina Ionescu
- Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, Romania
- Medicine Faculty, "Ovidius" University of Constanta, Constanta, Romania
| | - Manuela Enciu
- Medicine Faculty, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| | - Violeta Popovici
- Laboratory of Bacteriology, Microbiology and Pharmacology, Center for Mountain Economics (INCE-CE-MONT), National Institute of Economic Research "Costin C. Kiritescu", Suceava County, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | - Mariana Deacu
- Medicine Faculty, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| | - Gabriela Isabela Băltățescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| | - Antonela-Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| | - Mihai Cătălin Roșu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Miruna Cristian
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Nicolae Dobrin
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Constanța Ștefanov
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | | | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, Constanta, Romania
| |
Collapse
|
2
|
Fu J, Lin J, Dai Z, Lin B, Zhang J. Hypoxia-associated autophagy flux dysregulation in human cancers. Cancer Lett 2024; 590:216823. [PMID: 38521197 DOI: 10.1016/j.canlet.2024.216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A general feature of cancer is hypoxia, determined as low oxygen levels. Low oxygen levels may cause cells to alter in ways that contribute to tumor growth and resistance to treatment. Hypoxia leads to variations in cancer cell metabolism, angiogenesis and metastasis. Furthermore, a hypoxic tumor microenvironment might induce immunosuppression. Moreover, hypoxia has the potential to impact cellular processes, such as autophagy. Autophagy refers to the catabolic process by which damaged organelles and toxic macromolecules are broken down. The abnormal activation of autophagy has been extensively recorded in human tumors and it serves as a regulator of cell growth, spread to other parts of the body, and resistance to treatment. There is a correlation between hypoxia and autophagy in human malignancies. Hypoxia can regulate the activity of AMPK, mTOR, Beclin-1, and ATGs to govern autophagy in human malignancies. Furthermore, HIF-1α, serving as an indicator of low oxygen levels, controls the process of autophagy. Hypoxia-induced autophagy has a crucial role in regulating the growth, spread, and resistance to treatment in human malignancies. Hypoxia-induced regulation of autophagy can impact other mechanisms of cell death, such as apoptosis. Chemoresistance and radioresistance have become significant challenges in recent years. Hypoxia-mediated autophagy plays a crucial role in determining the response to these therapeutic treatments.
Collapse
Affiliation(s)
- Jiding Fu
- Department of Intensive Care Unit, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Baisheng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
3
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
4
|
Li X, Fu X, Li H, Gao Y, Wang W, Liu Z, Shen Y. Leptin accelerates BMSC transformation into vertebral epiphyseal plate chondrocytes by activating SENP1-mediated deSUMOylation of SIRT3. FEBS Open Bio 2023; 13:293-306. [PMID: 36537765 PMCID: PMC9900084 DOI: 10.1002/2211-5463.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are capable of multidirectional differentiation, and engrafted BMSCs can be used to replace damaged chondrocytes for treatment of intervertebral disc disease. However, chondroblast differentiation of implanted BMSCs is inhibited by the anoxic environment of the articular cavity. Here, we found that leptin enhanced the transformation of BMSCs into chondrocytes under hypoxic conditions. BMSCs isolated from mice were cultured in medium supplemented with leptin under hypoxia. The expression of MFN1/2 and OPA1 were increased only in BMSCs cultured in an anoxic environment. In addition, in hypoxic environments cell energy metabolism relies on glycolysis regulated by leptin, rather than by mitochondrial oxidation. The expression of the de-SUMOylation protease SENP1 was elevated, leading to SIRT3-mediated activation of PGC-1α; these processes were regulated by CREB phosphorylation, and promoted mitochondrial fusion and cell differentiation. The chondrogenic activity of BMSCs isolated from SIRT3-knockout mice was lower than that of BMSCs isolated from wildtype mice. Implantation of SIRT3-knockout murine-derived BMSCs did not significantly improve the articular cartilage layer of the disc. In conclusion, the hypoxic microenvironment promoted BMSC differentiation into chondrocytes, whereas osteoblast differentiation was inhibited. SENP1 activated SIRT3 through the deSUMOylation of mitochondria and eliminated the antagonistic effect of SIRT3 acetylation on phosphorylation. When phosphorylation activity of CREB was increased, phosphorylated CREB is then transferred to the nucleus, affecting PGC-1α. This promotes mitochondrial fusion and differentiation of BMSCs. Leptin not only maintains chondrogenic differentiation homeostasis of BMSCs, but also provides energy for differentiation of BMSCs under hypoxic conditions through glycolysis.
Collapse
Affiliation(s)
- Xiaomiao Li
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Xiaodong Fu
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Hao Li
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Yingjian Gao
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Weili Wang
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Zude Liu
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| | - Yi Shen
- Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityChina
| |
Collapse
|
5
|
Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021; 11:708263. [PMID: 34277453 PMCID: PMC8283805 DOI: 10.3389/fonc.2021.708263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.
Collapse
Affiliation(s)
- Zilan Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ziyi Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
6
|
Wang L, Wu J, Song S, Chen H, Hu Y, Xu B, Liu J. Plasma Exosome-Derived Sentrin SUMO-Specific Protease 1: A Prognostic Biomarker in Patients With Osteosarcoma. Front Oncol 2021; 11:625109. [PMID: 33791211 PMCID: PMC8006461 DOI: 10.3389/fonc.2021.625109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The exosomes contain many important proteins that can be used for early tumor diagnosis or patient prognosis analysis. In this study, we investigated plasma exosome-derived sentrin SUMO-specific protease 1 (SENP1) levels as a prognostic biomarker in patients with osteosarcoma. METHODS The expression of SENP1 protein in osteosarcoma tissues and adjacent tissues was detected by immunohistochemistry (IHC). The exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ELISA was used to detect plasma exosome-derived SENP1 levels to assess prognosis in patients with osteosarcoma. RESULTS IHC showed that the positive expression rate of SENP1 in osteosarcoma tissues was 88.33%, whereas that in adjacent tissues was 46.67% (P < 0.05). Plasma exosome-derived SENP1 levels were related to tumor size, tumor location, necrosis rate, pulmonary metastasis, and surgical stage. Both disease-free survival (DFS) and overall survival (OS) were worse in patients who had higher plasma exosome-derived SENP1 levels compared with those in patients with lower plasma exosome-derived SENP1 levels (P < 0.001). The area under the receiver operating characteristic curve (AUROC) of plasma exosome-derived SENP1, as 1-year DFS and 3-year DFS prognostic biomarkers, was 0.90 (95% CI: 0.83-0.98) and 0.96 (95% CI: 0.94-0.99), respectively. As to OS, the AUROC of plasma exosome-derived SENP1 for 1-year and 3-year prediction was 0.90 (95% CI: 0.82-0.99) and 0.96 (0.93-0.98), respectively. The plasma exosome-derived SENP1 was better than plasma SENP1 as a prognostic biomarker both in DFS and OS. CONCLUSIONS Our findings show that the plasma exosome-derived SENP1 may serve as a novel and independent prognostic predictor in clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haining Chen
- Department of Orthopedics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Hu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Buwei Xu
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Chen Y, Wu J, Yan H, Cheng Y, Wang Y, Yang Y, Deng M, Che X, Hou K, Qu X, Zou D, Liu Y, Zhang Y, Hu X. Lymecycline reverses acquired EGFR-TKI resistance in non-small-cell lung cancer by targeting GRB2. Pharmacol Res 2020; 159:105007. [PMID: 32561477 DOI: 10.1016/j.phrs.2020.105007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) were first-line treatments for NSCLC patients with EGFR-mutations. However, about 30 % of responders relapsed within six months because of acquired resistance. In this study, we used Connectivity Map (CMap) to discover a drug capable of reversing acquired EGFR-TKIs resistance. To investigate Lymecycline's ability to reverse acquired EGFR-TKIs resistance, two Icotinib resistant cell lines were constructed. Lymecycline's ability to suppress the proliferation of Icotinib resistant cells in vitro and in vivo was then evaluated. Molecular targets were predicted using network pharmacology and used to identify the molecular mechanism. Growth factor receptor-bound protein 2 (GRB2) is an EGFR-binding adaptor protein essential for EGFR phosphorylation and regulation of AKT/ERK/STAT3 signaling pathways. Lymecycline targeted GRB2 and inhibited the resistance of the cell cycle to EGFR-TKI, arresting disease progression and inducing apoptosis in cancer cells. Combined Lymecycline and Icotinib treatment produced a synergistic effect and induced apoptosis in HCC827R5 and PC9R10 cells. Cell proliferation in resistant cancer cells was significantly inhibited by the combined Lymecycline and Icotinib treatment in mouse models. Lymecycline inhibited the resistance of the cell cycle to EGFR-TKI and induced apoptosis in NSCLC by inhibiting EGFR phosphorylation and GRB2-mediated AKT/ERK/STAT3 signaling pathways. This provided strong support that Lymecycline when combined with EGFR targeting drugs, enhanced the efficacy of treatments for drug-resistant NSCLC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jie Wu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China; Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongfei Yan
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China; Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, 110001, Liaoning, China
| | - Mingming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China; Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China; Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Chen CY, Liao PL, Tsai CH, Chan YJ, Cheng YW, Hwang LL, Lin KH, Yen TL, Li CH. Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity. Part Fibre Toxicol 2019; 16:37. [PMID: 31619255 PMCID: PMC6796418 DOI: 10.1186/s12989-019-0324-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Gold nanoparticles (Au-NPs) have extensive applications in electronics and biomedicine, resulting in increased exposure and prompting safety concerns for human health. After absorption, nanoparticles enter circulation and effect endothelial cells. We previously showed that exposure to Au-NPs (40–50 nm) collapsed endothelial tight junctions and increased their paracellular permeability. Inhaled nanoparticles have gained significant attention due to their biodistribution in the brain; however, little is known regarding their role in cerebral edema. The present study investigated the expression of aquaporin 1 (AQP1) in the cerebral endothelial cell line, bEnd.3, stimulated by Au-NPs. Results We found that treatment with Au-NPs induced AQP1 expression and increased endothelial permeability to water. Au-NP exposure rapidly boosted the phosphorylation levels of focal adhesion kinase (FAK) and AKT, increased the accumulation of caveolin 1 (Cav1), and reduced the activity of extracellular regulated protein kinases (ERK). The inhibition of AKT (GDC-0068) or FAK (PF-573228) not only rescued ERK activity but also prevented AQP1 induction, whereas Au-NP-mediated Cav1 accumulation remained unaltered. Neither these signaling molecules nor AQP1 expression responded to Au-NPs while Cav1 was silenced. Inhibition of ERK activity (U0126) remarkably enhanced Cav1 and AQP1 expression in bEnd.3 cells. These data demonstrate that Au-NP-mediated AQP1 induction is Cav1 dependent, but requires the repression on ERK activity. Mice receiving intranasally administered Au-NPs displayed cerebral edema, significantly augmented AQP1 protein levels; furthermore, mild focal lesions were observed in the cerebral parenchyma. Conclusions These data suggest that the subacute exposure of nanoparticles might induce cerebral edema, involving the Cav1 dependent accumulation on endothelial AQP1.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Liao
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei city, Taiwan
| | - Ting-Ling Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Autophagy Induction by a Small Molecule Inhibits Salmonella Survival in Macrophages and Mice. Antimicrob Agents Chemother 2019:AAC.01536-19. [PMID: 31591121 PMCID: PMC6879225 DOI: 10.1128/aac.01536-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica is a natural bacterial pathogen of humans and animals that causes systemic infection or gastroenteritis. During systemic infection, Salmonella generally resides within professional phagocytes, typically macrophages, whereas gastroenteritis is caused by infection of epithelial cells. We are only beginning to understand which host pathways contribute to Salmonella survival in particular cell types. Salmonella enterica is a natural bacterial pathogen of humans and animals that causes systemic infection or gastroenteritis. During systemic infection, Salmonella generally resides within professional phagocytes, typically macrophages, whereas gastroenteritis is caused by infection of epithelial cells. We are only beginning to understand which host pathways contribute to Salmonella survival in particular cell types. We therefore sought to identify compounds that perturb Salmonella-host interactions using a chemical genetics approach. We found one small molecule, D61, that reduces Salmonella load in cell line and primary macrophages but has no effect on Salmonella growth in epithelial cells or rich medium. We determined that in macrophages, D61 induces LC3II, a marker of the autophagy pathway, and promotes aggregation of LC3II near Salmonella. We found that D61 antibacterial activity depends on the VPS34 complex and on ATG5. D61 also reduced Salmonella load in the spleens and livers of infected mice. Lastly, we demonstrate that D61 antibacterial activity in macrophages is synergistic with the antibiotic chloramphenicol but that this synergy is largely independent of the known autophagy-stimulating activity of chloramphenicol. Thus, a small molecule has antibacterial activity specifically in macrophages and mice based on the promotion of bacterial degradation by autophagy. These observations demonstrate the potential therapeutic utility of stimulating autophagy in cells and animals to curb infection.
Collapse
|
10
|
Qi H, Wang S, Wu J, Yang S, Gray S, Ng CSH, Du J, Underwood MJ, Li MY, Chen GG. EGFR-AS1/HIF2A regulates the expression of FOXP3 to impact the cancer stemness of smoking-related non-small cell lung cancer. Ther Adv Med Oncol 2019; 11:1758835919855228. [PMID: 31275431 PMCID: PMC6598324 DOI: 10.1177/1758835919855228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Early data showed that FOXP3 could induce epithelial-mesenchymal transition by stimulating the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, how the expression of FOXP3 is regulated in NSCLC remains unknown. We thus explored the impacts of the long noncoding RNA EGFR antisense RNA 1 (EGFR-AS1) and hypoxia-inducible factor-2A (HIF2A) on FOXP3 expression and the cancer stemness of NSCLC. Methods: Lung tissues samples from 87 patients with NSCLC and two NSCLC cell lines were used in this study. The regulation of FOXP3 and lung cancer cell stemness by EGFR-AS1 and HIF2A was determined at molecular levels in NSCLC tissue samples and cultured cells in the presence/absence of the smoking carcinogen, 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (also known as nicotine-derived nitrosamine ketone). The results were confirmed in tumor xenograft models. Results: We found that NNK decreased the expression of EGFR-AS1 in the long term, but increased the expression of HIF2A and FOXP3 to stimulate lung cancer cell stemness. EGFR-AS1 significantly inhibited FOXP3 expression and NSCLC cell stemness, whereas HIF2A obviously promoted both. The enhancement of lung cancer stemness by FOXP3 was, at least partially, via stimulating Notch1, as the inhibition of Notch1 could markedly diminish the effect of FOXP3. Conclusions: FOXP3, the expression of which is under the fine control of EGFR-AS1, is a critical molecule that promotes NSCLC cancer cell stemness through stimulating the Notch1 pathway.
Collapse
Affiliation(s)
- Haolong Qi
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Juekun Wu
- Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, China
| | - Steven Gray
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Calvin S H Ng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Malcolm J Underwood
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - George G Chen
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| |
Collapse
|