1
|
Zhao Z, Yang Y, Liu P, Yan T, Li R, Pan C, Li Y, Lan X. A Critical Functional Missense Mutation (T117M) in Sheep MC4R Gene Significantly Leads to Gain-of-Function. Animals (Basel) 2024; 14:2207. [PMID: 39123733 PMCID: PMC11311007 DOI: 10.3390/ani14152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The melanocortin 4 receptor (MC4R) gene plays a central role in regulating energy homeostasis and food intake in livestock, thereby affecting their economic worth and growth. In a previous study, the p.T117M mutation in the sheep MC4R gene, which leads to the transition of threonine to methionine, was found to affect the body weight at six months and the average daily gain in Hu sheep. However, there are still limited studies on the frequency of the sheep p.T117M missense mutation globally, and the underlying cellular mechanism remains elusive. Therefore, this study first used WGS to investigate the distribution of the MC4R gene p.T117M mutation in 652 individuals across 22 breeds worldwide. The results showed that the mutation frequency was higher in European breeds compared with Chinese sheep breeds, particularly in Poll Dorset sheep (mutation frequency > 0.5). The p.T117M mutation occurs in the first extracellular loop of MC4R. Mechanistically, the basal activity of the mutated receptor is significantly increased. Specifically, upon treatment with α-MSH and ACTH ligands, the cAMP and MAPK/ERK signaling activation of M117 MC4R is enhanced. These results indicate that the T117M mutation may change the function of the gene by increasing the constitutive activity and signaling activation of cAMP and MAPK/ERK, and, thus, may regulate the growth traits of sheep. In conclusion, this study delved into the global distribution and underlying cellular mechanisms of the T117M mutation of the MC4R gene, establishing a scientific foundation for breeding sheep with superior growth, thereby contributing to the advancement of the sheep industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Z.Z.); (Y.Y.); (P.L.); (T.Y.); (R.L.); (C.P.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Z.Z.); (Y.Y.); (P.L.); (T.Y.); (R.L.); (C.P.)
| |
Collapse
|
2
|
Li T, Sun M, Xia S, Huang T, Li RT, Li C, Dai Z, Chen JX, Chen J, Jia N. A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. Talanta 2024; 269:125465. [PMID: 38008022 DOI: 10.1016/j.talanta.2023.125465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Developing simple, rapid and specific mRNA imaging strategy plays an important role in the early diagnosis of cancer and the new drugs development. Herein, we have established a novel binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This developed system consisted of tetrahedron probe A (TPA) and tetrahedron probe B (TPB). TK1 mRNA was chosen as the study model. After TPA and TPB enter into the live cells, the TK1 mRNA induces TPA and TPB to approach and activate the fluorescent aptamer, resulting in enhanced fluorescent signal in the presence of small molecules of DFHBI-1T. By this design, the high specificity label-free detection of nucleic acids was achieved with a detection limit of 1.34 nM. Confocal fluorescence imaging experiments had proved that this strategy could effectively distinguish the TK1 mRNA expression level between normal cell and cancer cell. The developed method is expected to provide a new tool for early diagnosis of diseases and new drug development.
Collapse
Affiliation(s)
- Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Suping Xia
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rong-Tian Li
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Wang D, Teng J, Ning C, Wang W, Liu S, Zhang Q, Tang H. Mitogenome-wide association study on body measurement traits of Wenshang Barred chickens. Anim Biotechnol 2023; 34:3154-3161. [PMID: 36282276 DOI: 10.1080/10495398.2022.2137035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Mitochondria are best known for synthesizing ATP through the tricarboxylic acid cycle and oxidative phosphorylation. The cytoplasmic mitochondrial DNA (mtDNA) is important for maintaining the function. This study was designed to reveal the effect of mtDNA on chicken body measurement traits (BMTs). A population of 605 Wenshang Barred chickens were recorded BMTs, including body slope length, keel length, chest width, etc. The single-nucleotide polymorphisms (SNPs) of their mitogenomes were detected by PCR amplification and DNA sequencing. Totally 69 mutations in mitogenome were discovered, including 18 in noncoding region and 51 in coding region. By multi-sequence alignment and haplotype construction, the chickens were clustered into eight haplotypes and further three haplogroups. The association between BMTs and mtDNA SNPs, haplotypes and haplogroups were analyzed in the linear model by ASReml, respectively. Among them, the SNP mt11086 T/C in ND3 was found to significantly affect chest dept (p < .05) and was highly conservative by phylogenetic conservation analyses, which reflected the genetic effect on body size and growth of chickens. No significant association between the mitochondrial haplotypes or haplogroups and BMTs was found. The polymorphic site reflecting body size could be put into chicken breeding programs as the genetic marker.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jun Teng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Wenwen Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuai Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hui Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Yuan Z, Ge L, Su P, Gu Y, Chen W, Cao X, Wang S, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. NCAPG Regulates Myogenesis in Sheep, and SNPs Located in Its Putative Promoter Region Are Associated with Growth and Development Traits. Animals (Basel) 2023; 13:3173. [PMID: 37893897 PMCID: PMC10603679 DOI: 10.3390/ani13203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ling Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengwei Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
5
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
6
|
Chong Y, Liu G, Girmay S, Jiang X. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome 2021; 32:38-49. [PMID: 33492461 DOI: 10.1007/s00335-020-09850-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
The signal transducer and activator of transcription 3 (STAT3) gene plays a crucial role in leptin-mediated energy metabolism, upon which the growth and development of animals depend. Nevertheless, no studies have reported the effects of STAT3 gene polymorphisms on body weight and fatness modulation in sheep. This study aimed to illustrate STAT3 mRNA expression across tissues and various developmental stages of sheep and to highlight the association of STAT3 gene polymorphisms with body weight and fat-related traits in sheep, in order to identify a genetic marker that may conceivably be of value for marker-assisted selection (MAS). This study revealed that STAT3 was differentially expressed across age and sex (p < 0.05), with higher expression in the ram liver. The abundant expression of STAT3 in the liver of male sheep and increased expression in the hypothalamus and longissimus dorsi muscle from birth to six months of age may indicate the vital role of the STAT3 gene in animal growth and development. Moreover, SNP association analysis also revealed that the novel SNPs of the STAT3 gene detected in this study showed a significant association with body weight and fatness traits (p < 0.05). In conclusion, the significant genetic effects of the STAT3 gene polymorphisms on sheep growth and development revealed that STAT3 could be a marker gene for the selection of growth-related traits in sheep.
Collapse
Affiliation(s)
- Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shishay Girmay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F, Dawud HH. Two co-inherited novel SNPs in the MC4R gene related to live body weight and hormonal assays in Awassi and Arabi sheep breeds of Iraq. Vet Med Sci 2020; 7:897-907. [PMID: 33369226 PMCID: PMC8136946 DOI: 10.1002/vms3.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Melanocortin‐4 receptor (MC4R) gene plays a key role in the regulation of body weight and energy homeostasis. This study aims to evaluate the association of single nucleotide polymorphisms (SNPs) of the MC4R gene with live body weight and hormonal assays in two breeds of sheep that differ in productive performance, Awassi and Arabi. All known coding sequences of the MC4R gene were covered in this study. DNA samples from 150 animals (Awassi and Arabi breed) were genotyped by PCR‐single‐strand conformation polymorphism (PCR‐SSCP) to assess their pattern of genetic variation. Concerning exon 1, clear heterogeneity was detected with three different SSCP‐banding patterns. The sequencing reactions confirmed these variations by detecting the presence of the two novel SNPs, 107G/C and 138A/C, and three genotypes, GC, AC and AA. The 107G/C SNP was detected in GC genotype, while the 138A/C was detected on both GC and AC genotypes. The other SSCP‐banding pattern (AA genotype) did not show any detectable unique variation. Both SNPs were closely and strongly linked in both breeds (D' and r2 values were 1.00), which signifies that both loci were co‐inherited as one unit. Association analysis indicated that both breeds with GC/AC haplotype showed higher live body weight (37.250 ± 0.790) relative to the GG/AA (30.244 ± 0.968) and CC/CC (47.231 ± 1.230) haplotypes (p < .05). Concerning the genotyping of exon 2, only 362 bp showed heterogeneity with a missense mutation, with no significant association (p > .05) with the measured traits. In conclusion, the two novel SNPs (107G/C and 138 A/C) were highly associated with live body weight in both breeds. Haplotype analysis confirmed that these two novel SNPs were in strong linkage disequilibrium (LD) and could be used as genetic markers for sheep phenotypic trait improvement.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| | | | - Frederic Lepretre
- University of Lille, Plateau de Genomique Fonctionnelle et Structurale, Lille, France
| | - Halla Hassan Dawud
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|