1
|
Alizadeh M, Peighambardoust SJ, Foroutan R, Azimi H, Ramavandi B. Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni 2+ removal from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113242. [PMID: 35413302 DOI: 10.1016/j.envres.2022.113242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
A novel magnetic adsorbent based on hydrolyzed Luffa Cylindrica (HLC) was synthesized through the chemical co-precipitation technique, and its potential was evaluated in the adsorptive elimination of divalent nickel ions from water medium. Morphological assessment and properties of the adsorbent were performed using FTIR, SEM, EDX, XRD, BET, and TEM techniques. The effect of pH, temperature, time and nickel concentration on the removal efficiency was studied, and pH = 6, room temperature (25 °C), contact time of 60 min, and Ni2+ ion concentration of 10 mg.L-1 were introduced as the optimal values. At optimal conditions, the removal efficiency of Ni2+ ions using HLC and HLC/CoFe2O4 magnetic composite was calculated as 96.38 and 99.13%, respectively. The adsorption process kinetic followed a pseudo-first-order model. Langmuir isotherm was suitable for modelling the experimental data of the Ni2+ adsorption. The maximum elimination capacity of HLC and HLC/CoFe2O4 samples was calculated as 42.75 and 44.42 mg g-1, respectively. Furthermore, thermodynamic investigations proved the spontaneous and exothermic nature of the process. The adsorption efficiency was decreased with increasing the content of Ca2+ and Na + cations in aqueous media. During reusability of the synthesized adsorbents, it was found that after 8 cycles, no significant decrease has occurred in the adsorption efficiency. In addition, real wastewater treatment results proved that HLC/CoFe2O4 magnetic composite has an excellent performance in removal of heavy metals pollutant from shipbuilding effluent.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hamidreza Azimi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Chauhan PS, Agrawal R, Satlewal A, Kumar R, Gupta RP, Ramakumar SSV. Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. Int J Biol Macromol 2022; 197:179-200. [PMID: 34968542 DOI: 10.1016/j.ijbiomac.2021.12.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The pulp and biorefining industries produce their waste as lignin, which is one of the most abundant renewable resources. So far, lignin has been remained severely underutilized and generally burnt in a boiler as a low-value fuel. To demonstrate lignin's potential as a value-added product, we will review market opportunities for lignin related applications by utilizing the thermo-chemical/biological depolymerization strategies (with or without catalysts) and their comparative evaluation. The application of lignin and its derived aromatics in various sectors such as cement industry, bitumen modifier, energy materials, agriculture, nanocomposite, biomedical, H2 source, biosensor and bioimaging have been summarized. This comprehensive review article also highlights the technical, economic, environmental, and socio-economic variable that affect the market value of lignin-derived by-products. The review shows the importance of lignin, and its derived products are a platform for future bioeconomy and sustainability.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ruchi Agrawal
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India; TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gurugram, India.
| | - Alok Satlewal
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravindra Kumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravi P Gupta
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
4
|
Sugiarto S, Leow Y, Tan CL, Wang G, Kai D. How far is Lignin from being a biomedical material? Bioact Mater 2022; 8:71-94. [PMID: 34541388 PMCID: PMC8424518 DOI: 10.1016/j.bioactmat.2021.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Lignin is a versatile biomass that possesses many different desirable properties such as antioxidant, antibacterial, anti-UV, and good biocompatibility. Natural lignin can be processed through several chemical processes. The processed lignin can be modified into functionalized lignin through chemical modifications to develop and enhance biomaterials. Thus, lignin is one of the prime candidate for various biomaterial applications such as drug and gene delivery, biosensors, bioimaging, 3D printing, tissue engineering, and dietary supplement additive. This review presents the potential of developing and utilizing lignin in the outlook of new and sustainable biomaterials. Thereafter, we also discuss on the challenges and outlook of utilizing lignin as a biomaterial.
Collapse
Affiliation(s)
- Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Guan Wang
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| |
Collapse
|
5
|
Aldosari FMM. Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030892. [PMID: 35164155 PMCID: PMC8838896 DOI: 10.3390/molecules27030892] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Noble metal nanoparticles (NP) such as gold (AuNPs) and silver nanoparticles (AgNPs) can produce ultrasensitive surface-enhanced Raman scattering (SERS) signals owing to their plasmonic properties. AuNPs have been widely investigated for their biocompatibility and potential to be used in clinical diagnostics and therapeutics or combined for theranostics. In this work, labeled AuNPs in suspension were characterized in terms of size dependency of their localized surface plasmon resonance (LSPR), dynamic light scattering (DLS), and SERS activity. The study was conducted using a set of four Raman labels or reporters, i.e., small molecules with large scattering cross-section and a thiol moiety for chemisorption on the AuNP, namely 4-mercaptobenzoic acid (4-MBA), 2-naphthalenethiol (2-NT), 4-acetamidothiophenol (4-AATP), and biphenyl-4-thiol (BPT), to investigate their viability for SERS tagging of spherical AuNPs of different size in the range 5 nm to 100 nm. The results showed that, when using 785 nm laser excitation, the SERS signal increases with the increasing size of AuNP up to 60 or 80 nm. The signal is highest for BPT labelled 80 nm AuNPs followed by 4-AATP labeled 60 nm AuNPs, making BPT and 4-AATP the preferred candidates for Raman labelling of spherical gold within the range of 5 nm to 100 nm in diameter.
Collapse
Affiliation(s)
- Fahad M M Aldosari
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
6
|
Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. ELECTRONICS 2022. [DOI: 10.3390/electronics11030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Surface plasmon resonance (SPR) biosensors, with germanium sulfide (GeS) as a sensitive medium and Al/Ag/Au as the metal layers, are reported as we aim to improve the sensitivities of the biosensors. The sensitivities in conventional SPR biosensors, consisting of only metal Al, Ag, and Au layers, are 111°/RIU, 117°/RIU, 139°/RIU, respectively. Additionally, these sensitivities of the SPR biosensors based on the GeS-Al, GeS-Ag, and GeS-Au layers have an obvious improvement, resultant of 320°/RIU, 295°/RIU, and 260°/RIU, respectively. We also discuss the changing sensing medium GeS thickness using layer number to describe the scenario which brought about the diversification on the figure of merit (FOM) and optical absorption (OA) performance of the biosensors. These biosensors show obvious improvement of sensitivity and have strong SPR excitation to analytes; we believe that these kind biosensors could find potential applications in biological detection, chemical examination, and medical diagnosis.
Collapse
|
7
|
Zhu H, Lu Y, Xia J, Liu Y, Chen J, Lee J, Koh K, Chen H. Aptamer-Assisted Protein Orientation on Silver Magnetic Nanoparticles: Application to Sensitive Leukocyte Cell-Derived Chemotaxin 2 Surface Plasmon Resonance Sensors. Anal Chem 2022; 94:2109-2118. [PMID: 35045701 DOI: 10.1021/acs.analchem.1c04448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) has been proved to be a potential biomarker for the diagnosis of liver fibrosis. In this work, a sensitive surface plasmon resonance (SPR) assay for LECT2 analysis was developed. Tyrosine kinase with immune globulin-like and epidermal growth factor-like domains 1 (Tie1) is an orphan receptor of LECT2 with a C-terminal Fc tag, which is far away from the LECT2 binding sites. The Fc aptamer was intentionally used to capture the Tie1 through its Fc tag, connecting with Fe3O4-coated silver magnetic nanoparticles (Ag@MNPs) and ensuring the LECT2 binding site to be outward. Attributed to the orientation nature of the captured protein, Ag@MNPs were able to enhance the SPR signal. A sensitive LECT2 sensor was successfully fabricated with a detection limit of 10.93 pg/mL. The results showed that the immobilization method improved the binding efficiency of Tie1 protein. This strategy could be extended to attach antibodies or recombinant Fc label proteins to Fc aptamer-based nanoparticles.
Collapse
Affiliation(s)
- Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yongkai Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Junjie Xia
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China.,School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan 609-735, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
8
|
da Silveira Maranhão F, Gomes F, Thode S, Das DB, Pereira E, Lima N, Carvalho F, Aboelkheir M, Costa V, Pal K. Oil Spill Sorber Based on Extrinsically Magnetizable Porous Geopolymer. MATERIALS 2021; 14:ma14195641. [PMID: 34640038 PMCID: PMC8510211 DOI: 10.3390/ma14195641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Environmental impacts are increasingly due to the human polluting activities. Therefore, there is a need to develop technologies capable of removing contamination and driving the impacted environment as close as possible to its inherent characteristics. One of the major problems still faced is the spill of oil into water. Therefore, to solve the environmental problem, this work shows the use of magnetically modified geopolymer materials as an oil remover from water with a magnet’s aid. The results obtained were outstanding since the average intrinsic oil removal capability (IORC) was 150 g/g. The presented IORC is the largest found in the materials produced by our research group, constituting an extremely encouraging result, mainly because of the ease of preparing the magnetic geopolymer system. Furthermore, the low cost of production and the material’s capability to be reused as filler of polymer or even cementitious matrices allows us to project that this nanocomposite can be widely used, constituting an economically viable alternative for more efficient environmental recovery processes.
Collapse
Affiliation(s)
- Fabíola da Silveira Maranhão
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| | - Fernando Gomes
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco I. Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-594, RJ, Brazil
- Correspondence:
| | - Sérgio Thode
- Núcleo de Monitoramento Ambiental, Instituto Federal de Ciência e Tecnologia do Rio de Janeiro, Av. República do Paraguai, 120, Vila Sarapui, Duque de Caxias 25050-100, RJ, Brazil;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK;
| | - Emiliane Pereira
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| | - Nathali Lima
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| | - Fernanda Carvalho
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| | - Mostafa Aboelkheir
- Programa de Engenharia Civil, Universidade São Judas Tadeu, Rua Taquari, 546, Mooca, São Paulo 03166-000, SP, Brazil;
| | - Vitor Costa
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| | - Kaushik Pal
- Instituto de Macromoléculas, Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, Bloco J. Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil; (F.d.S.M.); (E.P.); (N.L.); (F.C.); (V.C.); (K.P.)
| |
Collapse
|
9
|
Petrie FA, Gorham JM, Busch RT, Leontsev SO, Ureña-Benavides EE, Vasquez ES. Facile fabrication and characterization of kraft lignin@Fe 3O 4 nanocomposites using pH driven precipitation: Effects on increasing lignin content. Int J Biol Macromol 2021; 181:313-321. [PMID: 33766601 PMCID: PMC8609404 DOI: 10.1016/j.ijbiomac.2021.03.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (Fe3O4) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@Fe3O4 multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based Fe3O4 nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial Fe3O4 mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and morphological characterization. Results showed that nanocomposites fabricated above 5:1 lignin:Fe3O4 had the highest lignin coverage and content (>20%), possessed superparamagnetic properties (Ms ≈ 45,000 A·m2/kg2); had a negative surface charge (-30 mV), and formed multicore nanostructures (DH ≈ 150 nm). The multicore lignin@Fe3O4 nanocomposites allowed rapid magnetically induced separations from suspension. After 5 min exposure to a rare-earth neodymium magnet (1.27 mm × 1.27 mm × 5.08 mm), lignin@Fe3O4 nanocomposites exhibited a maximum methylene blue removal efficiency of 74.1% ± 7.1%. These nanocomposites have potential in magnetically induced separations to remove organic dyes, heavy metals, or other lignin adsorbates.
Collapse
Affiliation(s)
- Frankie A Petrie
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0256, USA
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Robert T Busch
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0256, USA
| | | | - Esteban E Ureña-Benavides
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Erick S Vasquez
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0256, USA; Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
10
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
11
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
12
|
A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. BIOSENSORS-BASEL 2021; 11:bios11020043. [PMID: 33572259 PMCID: PMC7915018 DOI: 10.3390/bios11020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Chlorophene is an important antimicrobial agent present in disinfectant products which has been related to health and environmental effects, and its detection has been limited to chromatographic techniques. Thus, there is a lack of research that attempts to develop new analytical tools, such as biosensors, that address the detection of this emerging pollutant. Therefore, a new biosensor for the direct detection of chlorophene in real water is presented, based on surface plasmon resonance (SPR) and using a laccase enzyme as a recognition element. The biosensor chip was obtained by covalent immobilization of the laccase on a gold-coated surface through carbodiimide esters. The analytical parameters accomplished resulted in a limit of detection and quantification of 0.33 mg/L and 1.10 mg/L, respectively, fulfilling the concentrations that have already been detected in environmental samples. During the natural river's measurements, no significant matrix effects were observed, obtaining a recovery percentage of 109.21% ± 7.08, which suggested that the method was suitable for the fast and straightforward analysis of this contaminant. Finally, the SPR measurements were validated with an HPLC method, which demonstrated no significant difference in terms of precision and accuracy, leading to the conclusion that the biosensor reflects its potential as an alternative analytical tool for the monitoring of chlorophene in aquatic environments.
Collapse
|
13
|
Xiao G, Ou Z, Yang H, Xu Y, Chen J, Li H, Li Q, Zeng L, Den Y, Li J. An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor. SENSORS 2021; 21:s21030803. [PMID: 33530317 PMCID: PMC7865991 DOI: 10.3390/s21030803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/09/2023]
Abstract
In this paper, a multi-parameter integrated detection photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) is proposed for its application in detecting temperature, magnetic field, and refractive index. The air holes on both sides of the fiber core were coated with gold film and introduced to the temperature-sensitive medium (PDMS) and magnetic fluid (MF), detecting temperature and magnetic field, respectively. The graphene layer is also presented on the gold film of the D-type side polished surface to improve the sensor sensitivity. The sensor’s critical parameters’ influence on its performance is investigated using a mode solver based on the finite element method (FEM). Simulation results show when the samples refractive index (RI) detection is a range of 1.36~1.43, magnetic field detection is a range of 20~550 Oe, and the temperature detection is a range of 5~55 °C; the maximum sensor’s sensitivity obtains 76,000 nm/RIU, magnetic field intensity sensitivity produces 164.06 pm/Oe, and temperature sensitivity obtains −5001.31 pm/°C.
Collapse
Affiliation(s)
- Gongli Xiao
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Zetao Ou
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Hongyan Yang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence: ; Tel.: +86-137-0783-2801
| | - Yanping Xu
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Jianyun Chen
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Haiou Li
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Qi Li
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Lizhen Zeng
- Graduate School, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Yanron Den
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; (G.X.); (Z.O.); (Y.X.); (J.C.); (H.L.); (Q.L.); (Y.D.)
| | - Jianqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| |
Collapse
|
14
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
15
|
Chemiluminescent Optical Fiber Immunosensor Combining Surface Modification and Signal Amplification for Ultrasensitive Determination of Hepatitis B Antigen. SENSORS 2020; 20:s20174912. [PMID: 32878030 PMCID: PMC7506923 DOI: 10.3390/s20174912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Optical fiber based immunosensors are very attractive for biomarker detection. In order to improve the sensor response, we propose a promising strategy which combines porous-layer modification of the fiber surface and streptavidin-biotin-peroxidase nano-complex signal amplification in chemiluminescent detection. Two hepatitis B antigens, hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg), are used as the targets for analysis using the proposed sensor. Comparing to immunoassays using normal optical fiber sensors, the response of the present sensor is enhanced by a factor of 4.8 and 6.7 for detection of HBsAg and HBeAg, respectively. The limit-of-quantitation of the proposed method is as low as 0.3 fg/mL (0.01 fg/mL) with a wide linear response range of 3 fg/mL–150 ng/mL (0.1 fg/mL–160 ng/mL) for sensing HBsAg (HBeAg). Quantitative determination of HBsAg and HBeAg in human serum samples is performed, showing the applicability of the proposed method for biomarker detection.
Collapse
|
16
|
Pota G, Venezia V, Vitiello G, Di Donato P, Mollo V, Costantini A, Avossa J, Nuzzo A, Piccolo A, Silvestri B, Luciani G. Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles. Polymers (Basel) 2020; 12:E982. [PMID: 32340165 PMCID: PMC7240412 DOI: 10.3390/polym12040982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organic-inorganic SiO2/HA nanostructures were synthesized via an in-situ sol-gel route, exploiting both physical entrapment and chemical coupling. The latter was achieved through amide bond formation between carboxyl groups of HA and the amino group of 3-aminopropyltriethoxysilane (APTS), as confirmed by Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Monodisperse hybrid nanoparticles about 90 nm in diameter were obtained in both cases, yet Electron Paramagnetic Resonance (EPR) spectroscopy highlighted the different supramolecular organization of HA. The altered HA conformation was reflected in different antioxidant properties of the conjugated nanoparticles that, however, resulted in being higher than for pure HA. Our findings proved the key role of both components in defining the morphology of the final system, as well as the efficacy of the ceramic component in templating the HA supramolecular organization and consequently tuning their functional features, thus defining a green strategy for bio-waste valorization.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Virginia Venezia
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
- CSGI, Center for Colloids and Surface Science, via della Lastruccia 3, 50019 Florence, Italy
| | - Paola Di Donato
- Department of Science and Technology, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Naples, Italy;
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia@CABHC, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Joshua Avossa
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland;
| | - Assunta Nuzzo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (A.N.); (A.P.)
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (A.N.); (A.P.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| |
Collapse
|
17
|
Multiplexed Remote SPR Detection of Biological Interactions through Optical Fiber Bundles. SENSORS 2020; 20:s20020511. [PMID: 31963277 PMCID: PMC7014493 DOI: 10.3390/s20020511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/04/2023]
Abstract
The development of sensitive methods for in situ detection of biomarkers is a real challenge to bring medical diagnosis a step forward. The proof-of-concept of a remote multiplexed biomolecular interaction detection through a plasmonic optical fiber bundle is demonstrated here. The strategy relies on a fiber optic biosensor designed from a 300 µm diameter bundle composed of 6000 individual optical fibers. When appropriately etched and metallized, each optical fiber exhibits specific plasmonic properties. The surface plasmon resonance phenomenon occurring at the surface of each fiber enables to measure biomolecular interactions, through the changes of the retro-reflected light intensity due to light/plasmon coupling variations. The functionalization of the microstructured bundle by multiple protein probes was performed using new polymeric 3D-printed microcantilevers. Such soft cantilevers allow for immobilizing the probes in micro spots, without damaging the optical microstructures nor the gold layer. We show here the potential of this device to perform the multiplexed detection of two different antibodies with limits of detection down to a few tenths of nanomoles per liter. This tool, adapted for multiparametric, real-time, and label free monitoring is minimally invasive and could then provide a useful platform for in vivo targeted molecular analysis.
Collapse
|
18
|
Jia Y, Li Z, Wang H, Saeed M, Cai H. Sensitivity Enhancement of a Surface Plasmon Resonance Sensor with Platinum Diselenide. SENSORS (BASEL, SWITZERLAND) 2019; 20:E131. [PMID: 31878225 PMCID: PMC6982880 DOI: 10.3390/s20010131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
The extraordinary optoelectronic properties of platinum diselenide (PtSe2), whose structure is similar to graphene and phosphorene, has attracted great attention in new rapidly developed two-dimensional (2D) materials beyond the other 2D material family members. We have investigated the surface plasmon resonance (SPR) sensors through PtSe2 with the transfer matrix method. The simulation results show that the anticipated PtSe2 biochemical sensors have the ability to detect analytic. It is evident that only the sensitivities of Ag or Au film biochemical sensors were observed at 118°/RIU (refractive index unit) and 130°/RIU, whereas the sensitivities of the PtSe2-based biochemical sensors reached as high as 162°/RIU (Ag film) and 165°/RIU (Au film). The diverse biosensor sensitivities with PtSe2 suggest that this kind of 2D material can adapt SPR sensor properties.
Collapse
Affiliation(s)
- Yue Jia
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Zhongfu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Haiqi Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Muhammad Saeed
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Houzhi Cai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| |
Collapse
|
19
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
20
|
Zheng C, Yue Y, Gan L, Xu X, Mei C, Han J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E937. [PMID: 31261708 PMCID: PMC6669678 DOI: 10.3390/nano9070937] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Intrinsic self-healing and highly stretchable electro-conductive hydrogels demonstrate wide-ranging utilization in intelligent electronic skin. Herein, we propose a new class of strain sensors prepared by cellulose nanofibers (CNFs) and graphene (GN) co-incorporated poly (vinyl alcohol)-borax (GN-CNF@PVA) hydrogel. The borax can reversibly and dynamically associate with poly (vinyl alcohol) (PVA) and GN-CNF nanocomplexes as a cross-linking agent, providing a tough and flexible network with the hydrogels. CNFs act as a bio-template and dispersant to support GN to create homogeneous GN-CNF aqueous dispersion, endowing the GN-CNF@PVA gels with promoted mechanical flexibility, strength and good conductivity. The resulting composite gels have high stretchability (break-up elongation up to 1000%), excellent viscoelasticity (storage modulus up to 3.7 kPa), rapid self-healing ability (20 s) and high healing efficiency (97.7 ± 1.2%). Due to effective electric pathways provided by GN-CNF nanocomplexes, the strain sensors integrated by GN-CNF@PVA hydrogel with good responsiveness, stability and repeatability can efficiently identify and monitor the various human motions with the gauge factor (GF) of about 3.8, showing promising applications in the field of wearable sensing devices.
Collapse
Affiliation(s)
- Chunxiao Zheng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|