1
|
Kume M, Koguchi-Yoshioka H, Nakai S, Matsumura Y, Tanemura A, Yokoi K, Matsuda S, Nakamura Y, Otani N, Taminato M, Tomita K, Kubo T, Wataya-Kaneda M, Kumanogoh A, Fujimoto M, Watanabe R. Downregulation of semaphorin 4A in keratinocytes reflects the features of non-lesional psoriasis. eLife 2024; 13:RP97654. [PMID: 39737847 DOI: 10.7554/elife.97654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025] Open
Abstract
Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Miki Kume
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurocutaneous Medicine, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shuichi Nakai
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Research Department, Maruho Co, Ltd., Kyoto, Japan
| | - Yutaka Matsumura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoichi Matsuda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Research Department, Maruho Co, Ltd., Kyoto, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
| | - Naoya Otani
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mifue Taminato
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Plastic and Reconstructive Surgery, Kindai University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurocutaneous Medicine, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Course of Internal Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Medicine for Cutaneous Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Li H, Qiao L, Kong M, Fang H, Yan Z, Guo R, Guo W. Construction and validation of a prognostic signature based on microvascular invasion and immune-related genes in hepatocellular carcinoma. Sci Rep 2024; 14:26994. [PMID: 39506070 PMCID: PMC11541849 DOI: 10.1038/s41598-024-78467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is an independent risk factor of poor prognosis in hepatocellular carcinoma (HCC) and can be used to guide the diagnosis and treatment of HCC. The immune system serves as an integral role in the incidence and progression of HCC. However, the molecular biology correlation between MVI and tumor immunity and the value of combining the two parameters to predict patient prognosis and HCC response to treatment remain to be evaluated. RESULTS In this study, we used univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis to establish the MVI and immune-related gene index (MIRGPI) including eight genes. We demonstrated that the MIRGPI was an independent risk factor in predicting the prognosis of HCC. Subsequently, our research established a nomogram model combining pathologic characteristics and verified its good clinical application value. In addition, our study found that the TP53 gene had a higher mutation frequency and a lower degree of immune infiltration in the high-risk group. The low-risk group had higher sensitivity to immunotherapy, sorafenib, and TACE treatment, and the high-risk group had higher sensitivity to common chemotherapeutic agents. Finally, SEMA3C was found to facilitate the proliferation, migration and invasive ability of HCC by in vitro and in vivo experiments, and its mechanism may be associated with the activation of the NF-Κb/EMT signaling pathway. CONCLUSIONS In summary, the MIRGPI signature we developed is a reliable marker for the prediction of prognosis and treatment response, and is important for the prognostic assessment and individualized treatment of HCC.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lixue Qiao
- Thyroid Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Ran Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- National Organ Transplantation Physician Training Center, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Purpurowicz P, Kaminski TW, Kordan W, Korzekwa A, Purpurowicz Z, Jabłonowski Z. A Pilot Study of the Role of Semaphorin 4A (sema4A) and 3C (sema3C) in Non-Muscle-Invasive Bladder Cancer (NMIBC). Biomedicines 2024; 12:2407. [PMID: 39457718 PMCID: PMC11504222 DOI: 10.3390/biomedicines12102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Bladder cancer is a very important issue in contemporary urology. The aim of this pilot study was to assess for the first time the clinical utility of semaphorin 3C (sema3C) and 4A (sema4A) in patients with non-muscle-invasive bladder cancer (NMIBC). Methods: The experiment involved 15 patients with NMIBC and 5 patients without malignancies as the control group. Plasma and urinary concentrations of sema3C and sema4A were assessed by using an enzyme-linked immunosorbent assay (ELISA). Urinary sema4A concentration was below the detection level. Results: There was no statistically significant difference between patients and controls in terms of plasma sema4A and sema3C or urinary sema3C concentrations (p > 0.05). There was a significantly higher sema3C plasma concentration in patients with low-grade tumors (p = 0.0132) and an upward trend in sema4A plasma concentration for the subjects with Ta-stage tumors. Urinary sema3C concentration positively correlated with tumor size (R = 0.57, p = 0.03). Plasma sema3C concentration correlated negatively with tumor grade (R = -0.62, p = 0.01). Conclusions: Urinary sema4A concentration, which is below the detection threshold, is unlikely to be useful as a marker of NMIBC. Plasma sema4A concentration and sema3C concentration in plasma and urine cannot be used as stand-alone markers of NMIBC at this point. The plasma concentration of sema3C can potentially be considered in the future as a marker for tumors of lower grades. Plasma sema4A concentration could potentially be considered in the future as a marker for tumors of earlier stages. All of these observations are preliminary, so they have to be assessed in larger cohorts to make reliable recommendations. Nevertheless, our study lays the groundwork for further research to develop potential tests that could be used in daily practice to monitor and predict the course of cancer.
Collapse
Affiliation(s)
- Piotr Purpurowicz
- Department of Urology and Urological Oncology, Municipal Hospital in Olsztyn, 10-045 Olsztyn, Poland;
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, WI 53226, USA
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Anna Korzekwa
- Research Group of Biodiversity Protection, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Zbigniew Purpurowicz
- Department of Urology and Urological Oncology, Municipal Hospital in Olsztyn, 10-045 Olsztyn, Poland;
| | | |
Collapse
|
4
|
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, Zhao W, Li H, Xue J. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr) 2024; 47:1-17. [PMID: 37610689 PMCID: PMC10899381 DOI: 10.1007/s13402-023-00857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND In recent years, the significance of the nervous system in the tumor microenvironment has gained increasing attention. The bidirectional communication between nerves and cancer cells plays a critical role in tumor initiation and progression. Perineural invasion (PNI) occurs when tumor cells invade the nerve sheath and/or encircle more than 33% of the nerve circumference. PNI is a common feature in various malignancies and is associated with tumor invasion, metastasis, cancer-related pain, and unfavorable clinical outcomes. The colon and rectum are highly innervated organs, and accumulating studies support PNI as a histopathologic feature of colorectal cancer (CRC). Therefore, it is essential to investigate the role of nerves in CRC and comprehend the mechanisms of PNI to impede tumor progression and improve patient survival. CONCLUSION This review elucidates the clinical significance of PNI, summarizes the underlying cellular and molecular mechanisms, introduces various experimental models suitable for studying PNI, and discusses the therapeutic potential of targeting this phenomenon. By delving into the intricate interactions between nerves and tumor cells, we hope this review can provide valuable insights for the future development of CRC treatments.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, P.R. China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
5
|
Aiyappa-Maudsley R, McLoughlin LFV, Hughes TA. Semaphorins and Their Roles in Breast Cancer: Implications for Therapy Resistance. Int J Mol Sci 2023; 24:13093. [PMID: 37685898 PMCID: PMC10487980 DOI: 10.3390/ijms241713093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer is the most common cancer worldwide and a leading cause of cancer-related deaths in women. The clinical management of breast cancer is further complicated by the heterogeneous nature of the disease, which results in varying prognoses and treatment responses in patients. The semaphorins are a family of proteins with varied roles in development and homoeostasis. They are also expressed in a wide range of human cancers and are implicated as regulators of tumour growth, angiogenesis, metastasis and immune evasion. More recently, semaphorins have been implicated in drug resistance across a range of malignancies. In breast cancer, semaphorins are associated with resistance to endocrine therapy as well as breast cancer chemotherapeutic agents such as taxanes and anthracyclines. This review will focus on the semaphorins involved in breast cancer progression and their association with drug resistance.
Collapse
Affiliation(s)
| | | | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (R.A.-M.); (L.F.V.M.)
- School of Science, Technology and Health, York St John University, York YO31 7EX, UK
| |
Collapse
|
6
|
Bhasin S, Dusek C, Peacock JW, Cherkasov A, Wang Y, Gleave M, Ong CJ. Dependency of Tamoxifen Sensitive and Resistant ER + Breast Cancer Cells on Semaphorin 3C (SEMA3C) for Growth. Cells 2023; 12:1715. [PMID: 37443749 PMCID: PMC10341167 DOI: 10.3390/cells12131715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Estrogen receptor positive (ER+) breast cancer (BCa) accounts for the highest proportion of breast cancer-related deaths. While endocrine therapy is highly effective for this subpopulation, endocrine resistance remains a major challenge and the identification of novel targets is urgently needed. Previously, we have shown that Semaphorin 3C (SEMA3C) is an autocrine growth factor that drives the growth and treatment resistance of various cancers, but its role in breast cancer progression and endocrine resistance is poorly understood. Here, we report that SEMA3C plays a role in maintaining the growth of ER+ BCa cells and is a novel, tractable therapeutic target for the treatment of ER+ BCa patients. Analyses of publicly available clinical datasets indicate that ER+ BCa patients express significantly higher levels of SEMA3C mRNA than other subtypes. Furthermore, SEMA3C mRNA expression was positively correlated with ESR1 mRNA expression. ER+ BCa cell lines (MCF7 and T47D) expressed higher levels of SEMA3C mRNA and protein than a normal mammary epithelial MCF10A cell line. ER siRNA knockdown was suppressed, while dose-dependent beta-estradiol treatment induced SEMA3C expression in both MCF7 and T47D cells, suggesting that SEMA3C is an ER-regulated gene. The stimulation of ER+ BCa cells with recombinant SEMA3C activated MAPK and AKT signaling in a dose-dependent manner. Conversely, SEMA3C silencing inhibited Estrogen Receptor (ER) expression, MAPK and AKT signaling pathways while simultaneously inducing apoptosis, as monitored by flow cytometry and Western blot analyses. SEMA3C silencing significantly inhibited the growth of ER+ BCa cells, implicating a growth dependency of ER+ BCa cells on SEMA3C. Moreover, the analysis of tamoxifen resistant (TamR) cell models (TamC3 and TamR3) showed that SEMA3C levels remain high despite treatment with tamoxifen. Tamoxifen-resistant cells remained dependent on SEMA3C for growth and survival. Treatment with B1SP Fc fusion protein, a SEMA3C pathway inhibitor, attenuated SEMA3C-induced signaling and growth across a panel of tamoxifen sensitive and resistant ER+ breast cancer cells. Furthermore, SEMA3C silencing and B1SP treatment were associated with decreased EGFR signaling in TamR cells. Here, our study implicates SEMA3C in a functional role in ER+ breast cancer signaling and growth that suggests ER+ BCa patients may benefit from SEMA3C-targeted therapy.
Collapse
Affiliation(s)
- Satyam Bhasin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Christopher Dusek
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James W. Peacock
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Christopher J. Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
7
|
Dervovic D, Malik AA, Chen ELY, Narimatsu M, Adler N, Afiuni-Zadeh S, Krenbek D, Martinez S, Tsai R, Boucher J, Berman JM, Teng K, Ayyaz A, Lü Y, Mbamalu G, Loganathan SK, Lee J, Zhang L, Guidos C, Wrana J, Valipour A, Roux PP, Reimand J, Jackson HW, Schramek D. In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer. Nat Commun 2023; 14:3150. [PMID: 37258521 PMCID: PMC10232477 DOI: 10.1038/s41467-023-38841-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
How the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by KrasG12D and further elevated by immunotherapy. Using loss- and gain-of-function experiments, we show that ADAM2 functions as an oncogene by restraining interferon and TNF cytokine signaling causing reduced presentation of tumor-associated antigens. ADAM2 also restricts expression of the immune checkpoint inhibitors PDL1, LAG3, TIGIT and TIM3 in the tumor microenvironment, which might explain why ex vivo expanded and adoptively transferred cytotoxic T-cells show enhanced cytotoxic efficacy in ADAM2 overexpressing tumors. Together, direct in vivo CRISPR/Cas9 screens can uncover genetic alterations that control responses to immunotherapies.
Collapse
Affiliation(s)
- Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edward L Y Chen
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Masahiro Narimatsu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nina Adler
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Somaieh Afiuni-Zadeh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Dagmar Krenbek
- Department of Pathology and Bacteriology, Klinik Floridsdorf, Vienna, Austria
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jonathan Boucher
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Jacob M Berman
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arshad Ayyaz
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sampath K Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Jongbok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Laboratory Medicine and Pathobiology, Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia Guidos
- SickKids Research Institute, University Health Network, Toronto, ON, Canada
| | - Jeffrey Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arschang Valipour
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Hartland W Jackson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Wang C, Song D, Huang Q, Liu Q. Advances in SEMA3F regulation of clinically high-incidence cancers. Cancer Biomark 2023; 38:131-142. [PMID: 37599522 DOI: 10.3233/cbm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.
Collapse
Affiliation(s)
- Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Shi L, Guo R, Chen Z, Jiao R, Zhang S, Xiong X. Analysis of immune related gene expression profiles and immune cell components in patients with Barrett esophagus. Sci Rep 2022; 12:9209. [PMID: 35654816 PMCID: PMC9163054 DOI: 10.1038/s41598-022-13200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Barrett's esophagus (BE) is a well-known precancerous condition of esophageal adenocarcinoma. However, the immune cells and immune related genes involved in BE development and progression are not fully understood. Therefore, our study attempted to investigate the roles of immune cells and immune related genes in BE patients. The raw gene expression data were downloaded from the GEO database. The limma package in R was used to screen differentially expressed genes (DEGs). Then we performed the least absolute shrinkage and selection operator (LASSO) and random forest (RF) analyses to screen key genes. The proportion of infiltrated immune cells was evaluated using the CIBERSORT algorithm between BE and normal esophagus (NE) samples. The spearman index was used to show the correlations of immune genes and immune cells. Receiver operating characteristic (ROC) curves were used to assess the diagnostic value of key genes in BE. A total of 103 differentially expressed immune-related genes were identified between BE samples and normal samples. Then, 7 genes (CD1A, LTF, FABP4, PGC, TCF7L2, INSR,SEMA3C) were obtained after Lasso analysis and RF modeling. CIBERSORT analysis revealed that resting CD4 T memory cells and gamma delta T cells were present at significantly lower levels in BE samples. Moreover, plasma cell and regulatory T cells were present at significantly higher levels in BE samples than in NE samples. INSR had the highest AUC values in ROC analysis. We identified 7 immune related genes and 4 different immune cells in our study, that may play vital roles in the occurrence and development of BE. Our findings improve the understanding of the molecular mechanisms of BE.
Collapse
Affiliation(s)
- Lin Shi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Renwei Guo
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo Chen
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ruonan Jiao
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Shuangshuang Zhang
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xuanxuan Xiong
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Zhang G, Li T, Tan G, Song Y, Liu Q, Wang K, Ai J, Zhou Z, Li W. Identity of
MMP1
and its effects on tumor progression in head and neck squamous cell carcinoma. Cancer Med 2022; 11:2516-2530. [PMID: 35426219 PMCID: PMC9189457 DOI: 10.1002/cam4.4623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Gehou Zhang
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Tieqi Li
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Guolin Tan
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Yexun Song
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Qian Liu
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Kai Wang
- Department of Otolaryngology‐Head Neck Surgery The First Affiliated Hospital of Shaoyang University Shaoyang China
| | - Jingang Ai
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Zheng Zhou
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Wei Li
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| |
Collapse
|
11
|
A Novel Immune-Related Gene Signature Predicts Prognosis of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4995874. [PMID: 35437508 PMCID: PMC9013292 DOI: 10.1155/2022/4995874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/12/2021] [Accepted: 02/27/2022] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common form of lung cancer, accounting for 30% of all cases and 40% of all non-small-cell lung cancer cases. Immune-related genes play a significant role in predicting the overall survival and monitoring the status of the cancer immune microenvironment. The present study was aimed at finding an immune-related gene signature for predicting LUAD patient outcomes. Methods First, we chose the TCGA-LUAD project in the TCGA database as the training cohort for model training. For model validating, we found the datasets of GSE72094 and GSE68465 in the GEO database and took them as the candidate cohorts. We obtained 1793 immune-related genes from the ImmPort database and put them into a univariate Cox proportional hazard model to initially look for the genes with potential prognostic ability using the data of the training cohort. These identified genes then entered into a random survival forests-variable hunting algorithm for the best combination of genes for prognosis. In addition, the LASSO Cox regression model tested whether the gene combination can be further shrinkage, thereby constructing a gene signature. The Kaplan-Meier, Cox model, and ROC curve were deployed to examine the gene signature's prognosis in both cohorts. We conducted GSEA analysis to study further the mechanisms and pathways that involved the gene signature. Finally, we performed integrating analyses about the 22 TICs, fully interpreted the relationship between our signature and each TIC, and highlighted some TICs playing vital roles in the signature's prognostic ability. Results A nine-gene signature was produced from the data of the training cohort. The Kaplan-Meier estimator, Cox proportional hazard model, and ROC curve confirmed the independence and predictive ability of the signature, using the data from the validation cohort. The GSEA analysis results illustrated the gene signature's mechanism and emphasized the importance of immune-related pathways for the gene signature. 22 TICs immune infiltration analysis revealed resting mast cells' key roles in contributing to gene signature's prognostic ability. Conclusions This study discovered a novel immune-related nine-gene signature (BTK, CCR6, S100A10, SEMA3C, GPI, SCG2, TNFRSF11A, CCL20, and DKK1) that predicts LUAD prognosis precisely and associates with resting mast cells strongly.
Collapse
|
12
|
Rosenberger C. Semaphorin class 3C, vascular permeability, and the swollen injured kidney. Kidney Int 2022; 101:670-673. [DOI: 10.1016/j.kint.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 10/18/2022]
|
13
|
Velho RV, Taube E, Sehouli J, Mechsner S. Neurogenic Inflammation in the Context of Endometriosis-What Do We Know? Int J Mol Sci 2021; 22:ijms222313102. [PMID: 34884907 PMCID: PMC8658724 DOI: 10.3390/ijms222313102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
Endometriosis (EM) is an estrogen-dependent disease characterized by the presence of epithelial, stromal, and smooth muscle cells outside the uterine cavity. It is a chronic and debilitating condition affecting ~10% of women. EM is characterized by infertility and pain, such as dysmenorrhea, chronic pelvic pain, dyspareunia, dysuria, and dyschezia. Although EM was first described in 1860, its aetiology and pathogenesis remain uncertain. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with EM but also contribute to a growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. Here we review the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the role of this system, as well as its interactions with immune cells, will unearth novel disease-relevant pathways and targets, providing new therapeutics and better-tailored treatment options.
Collapse
Affiliation(s)
- Renata Voltolini Velho
- Department of Gynecology Charité with Center of Oncological Surgery, Endometriosis Research Center Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (R.V.V.); (J.S.)
| | - Eliane Taube
- Institute of Pathology, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany;
| | - Jalid Sehouli
- Department of Gynecology Charité with Center of Oncological Surgery, Endometriosis Research Center Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (R.V.V.); (J.S.)
| | - Sylvia Mechsner
- Department of Gynecology Charité with Center of Oncological Surgery, Endometriosis Research Center Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (R.V.V.); (J.S.)
- Correspondence: ; Tel.: +49-030-450664866
| |
Collapse
|
14
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
15
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
16
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
17
|
Sakthikumar S, Roy A, Haseeb L, Pettersson ME, Sundström E, Marinescu VD, Lindblad-Toh K, Forsberg-Nilsson K. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes. Genome Biol 2020; 21:127. [PMID: 32513296 PMCID: PMC7281935 DOI: 10.1186/s13059-020-02035-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) has one of the worst 5-year survival rates of all cancers. While genomic studies of the disease have been performed, alterations in the non-coding regulatory regions of GBM have largely remained unexplored. We apply whole-genome sequencing (WGS) to identify non-coding mutations, with regulatory potential in GBM, under the hypothesis that regions of evolutionary constraint are likely to be functional, and somatic mutations are likely more damaging than in unconstrained regions. RESULTS We validate our GBM cohort, finding similar copy number aberrations and mutated genes based on coding mutations as previous studies. Performing analysis on non-coding constraint mutations and their position relative to nearby genes, we find a significant enrichment of non-coding constraint mutations in the neighborhood of 78 genes that have previously been implicated in GBM. Among them, SEMA3C and DYNC1I1 show the highest frequencies of alterations, with multiple mutations overlapping transcription factor binding sites. We find that a non-coding constraint mutation in the SEMA3C promoter reduces the DNA binding capacity of the region. We also identify 1776 other genes enriched for non-coding constraint mutations with likely regulatory potential, providing additional candidate GBM genes. The mutations in the top four genes, DLX5, DLX6, FOXA1, and ISL1, are distributed over promoters, UTRs, and multiple transcription factor binding sites. CONCLUSIONS These results suggest that non-coding constraint mutations could play an essential role in GBM, underscoring the need to connect non-coding genomic variation to biological function and disease pathology.
Collapse
Affiliation(s)
- Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden
- Broad Institute, Cambridge, MA, 02142, USA
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Lulu Haseeb
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Elisabeth Sundström
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden
- Broad Institute, Cambridge, MA, 02142, USA
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
18
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
19
|
Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology 2020; 87:87-99. [PMID: 32045912 DOI: 10.1159/000505437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development and progression of neoplasms. TME consists of the extracellular matrix and numerous specialized cells interacting with cancer cells by paracrine and autocrine mechanisms. Tumor axonogenesis and neoneurogenesis constitute a developing area of investigation. Prostate cancer (PC) is one of the most common malignancies in men worldwide. During the past years, more and more studies have shown that mechanisms leading to the development of PC are not confined only to the epithelial cancer cell, but also involve the tumor stroma. Different nerve types and neurotransmitters present within the TME are thought to be important factors in PC biology. Moreover, perineural invasion, which is a common way of PC spreading, in parallel creates the neural niche for malignant cells. Cancer neurobiology seems to have become a new discipline to explore the contribution of neoplastic cell interactions with the nervous system and the neural TME component, also to search for potential therapeutic targets in malignant tumors such as PC.
Collapse
Affiliation(s)
- Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland,
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
20
|
The Anti-Tumorigenic Activity of Sema3C in the Chick Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2019; 20:ijms20225672. [PMID: 31726800 PMCID: PMC6888630 DOI: 10.3390/ijms20225672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Sema3C protein, a member of the class 3 family of secreted semaphorins, play an important role in tumor development by regulating cell proliferation, migration, invasion, and angiogenesis processes. Depending on the type and malignancy grade of the tumor, Sema3C function remains controversial. In this study, we constructed a stably overexpressing Sema3C glioblastoma cell line U87 MG and tested it on the chicken embryo chorioallantoic membrane (CAM) model with the aim to reveal Sema3C protein function on angiogenesis process in ovo. Our experiments showed that Sema3C not only affects angiogenesis of CAM by inhibiting neovascularization but also acts as an anti-tumorigenic molecule by hampering U87 MG cell invasion into mesenchyme. The effects of Sema3C on CAM were similar to the effects of anti-epileptic drug sodium valproate (NaVP). Both, anti-angiogenic and anti-tumorigenic activities of Sema3C were enhanced by the treatment of NaVP and, importantly, were not attributed to the cytotoxic effects. Our studies suggest that Sema3C could be a promising target for glioblastoma treatment.
Collapse
|
21
|
Liu R, Shuai Y, Luo J, Zhang Z. SEMA3C Promotes Cervical Cancer Growth and Is Associated With Poor Prognosis. Front Oncol 2019; 9:1035. [PMID: 31649890 PMCID: PMC6794562 DOI: 10.3389/fonc.2019.01035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Aberrant activation of Semaphorin3C(SEMA3C) is widespread in human cancers. We aimed to analyze SEMA3C expression in cervical cancer and investigate the role of SEMA3C in cervical cancer and its underlying mechanism, which is important for exploring new therapeutic targets and prognostic factors. Materials and Methods: The expression of SEMA3C was examined in paraffin-embedded cervical cancer specimens. In vivo and in vitro assays were performed to validate the effect of SEMA3C on cervical cancer cell proliferation and p-ERK pathway activation. Gene Set Enrichment Analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) data set. Results: SEMA3C expression was associated with poor survival in both the TCGA cohort and our cohort. Silencing of SEMA3C suppressed cervical cancer cell proliferation, colony formation ability, and the activation of the p-ERK signaling pathway in vitro. SEMA3C depletion inhibited tumor growth in vitro. GSEA also showed that the epithelial mesenchymal transition (EMT), TGFβ signaling pathway, angiogenesis, and extracellular matrix (ECM) receptor interactions are associated with a high SEMA3C expression phenotype. Conclusion: SEMA3C is correlated with poor prognosis of cervical cancer patients and promotes tumor growth via the activation of the p-ERK pathway.
Collapse
Affiliation(s)
- Ruoyan Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjie Shuai
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jingtao Luo
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|