Adamska-Fita E, Śliwka PW, Karbownik-Lewińska M, Lewiński A, Stasiak M. The Absence of Thyroid-Stimulating Hormone Receptor Expression on Natural Killer T Cells: Implications for the Immune-Endocrine Interaction.
Int J Mol Sci 2024;
25:11434. [PMID:
39518994 PMCID:
PMC11546653 DOI:
10.3390/ijms252111434]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of thyroid-stimulating hormone receptor (TSHR) has been documented on various immune cells, including B lymphocytes, T lymphocytes, Natural Killer (NK) cells, monocytes, and dendritic cells (DCs). Natural Killer T (NKT) cells serve as a crucial link between innate and adaptive immunity, playing significant roles in immunological interactions and autoimmune diseases. The aim of the present study was to evaluate the presence of TSHR on NKT cells. Our research involved patients with thyroid disease, as well as healthy controls. Peripheral blood mononuclear cells (PBMCs) and, thereafter, NKT cells were isolated from 86 patients with benign nodular thyroid disease with and without autoimmune thyroid disease (AITD) (28 and 56 cases, respectively), and TSHR expression was analyzed using fluorescence-activated cell sorting (FACS). In order to confirm the results, the reverse-transcription polymerase chain reaction (RT-PCR) method was used in cells obtained from healthy individuals. Our findings obtained with application of the FACS method revealed that TSHR is not expressed on NKT cells in either AITD or non-AITD patients, though TSHR was detected in the total PBMC population (TSHR+ cells 2.77%). The absence of TSHR on NKT cells was further confirmed with RT-PCR in healthy individuals (p < 0.0001). These results questioned the previously suggested direct influence of NKT cells on AITD development.
Collapse