1
|
Sanjai C, Hakkimane SS, Guru BR, Gaonkar SL. A comprehensive review on anticancer evaluation techniques. Bioorg Chem 2024; 142:106973. [PMID: 37984104 DOI: 10.1016/j.bioorg.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The development of effective anticancer strategies and the improvement of our understanding of cancer need analytical tools. Utilizing a variety of analytical approaches while investigating anti-cancer medicines gives us a thorough understanding of the traits and mechanisms concerned to cancer cells, which enables us to develop potent treatments to combat them. The importance of anticancer research may be attributed to various analytical techniques that contributes to the identification of therapeutic targets and the assessment of medication efficacy, which are crucial things in expanding our understanding of cancer biology. The study looks at methods that are often used in cancer research, including cell viability assays, clonogenic assay, flow cytometry, 2D electrophoresis, microarray, immunofluorescence, western blot caspase activation assay, bioinformatics, etc. The fundamentals, applications, and how each technique analytical advances our understanding of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushruta S Hakkimane
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
3
|
Mo J, Tong Y, Ma J, Wang K, Feng Y, Wang L, Jiang H, Jin C, Li J. The mechanism of flavonoids from Cyclocarya paliurus on inhibiting liver cancer based on in vitro experiments and network pharmacology. Front Pharmacol 2023; 14:1049953. [PMID: 36817123 PMCID: PMC9936097 DOI: 10.3389/fphar.2023.1049953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Cyclocarya paliurus (Batal.) Iljinsk., a subtropical tree belonging to the family Juglandaceae, is rich in polysaccharides, flavonoids, and terpenoids. It has important pharmacological effects such as lowering blood lipids, blood sugar, and blood pressure. However, little has been discerned regarding anti tumor effects and their potential mechanisms. Method: In vitro cell culture experiments were used to test the effect of C. paliurus total flavonoids (CTFs) extract on apoptosis mechanisms in HepG2 cells. Network pharmacology was applied to further explore the effects of CTFs on liver cancer as well as the mechanisms through which these effects might be achieved. Both 3 hydroxyflavone and luteolin were randomly selected to verify the effect on inducing apoptosis and inhibiting the proliferation of HepG2 cells. Results and Discussion: Network pharmacological analysis was applied to these 62 compounds and their targets, and 13 flavonoids were further screened for their potential anti liver cancer activity. These 13 flavonoids included: tangeretin, baicalein, 7,3'-dihydroxyflavone, velutin, 3-hydroxyflavone, chrysin, kumatakenin, tricin, luteolin, chrysoeriol, apigenin, pinocembrin, and butin. Together, these flavonoids were predicted to interact with AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC, IGF1R, IKBKB, MET, and MAPK14. It was predicted that the inhibitory effect on hepatocellular carcinoma would be accomplished by regulation of core proteins relating to such KEGG pathways as cancer, PI3K-Akt, proteoglycans in cancer, microRNAs in cancer, and endocrine resistance via core target proteins. Both 3-hydroxyflavone and luteolin were demonstrated to induce apoptosis and inhibit the proliferation of HepG2 cells. Our study provides scientific evidence supporting the use of CTFs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yingpeng Tong
- School of Advanced Study, Taizhou University, Taizhou, China
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yifu Feng
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China,*Correspondence: Chong Jin, ; Junmin Li,
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou, China,Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China,*Correspondence: Chong Jin, ; Junmin Li,
| |
Collapse
|
4
|
She YY, Lin JJ, Su JH, Chang TS, Wu YJ. 4-Carbomethoxyl-10-Epigyrosanoldie E Extracted from Cultured Soft Coral Sinularia sandensis Induced Apoptosis and Autophagy via ROS and Mitochondrial Dysfunction and ER Stress in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3017807. [PMID: 36275891 PMCID: PMC9584738 DOI: 10.1155/2022/3017807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
Oral cancer is a malignant neoplasia that is more common in Asian than other regions, and men are at higher risk than women. Currently, clinical treatment for oral cancer consists of radiation therapy combined with chemotherapy. Therefore, it is important to find a drug that can inhibit the growth of cancer cells more effectively and safely. In this study, we examined the cytotoxicity of 4-carbomethoxyl-10-epigyrosanoldie E extracted from cultured soft coral Sinularia sandensis towards oral cancer cells. MTT cell proliferation and colony formation assays were used to evaluate cell survival, and immunofluorescence staining and Western blotting were employed to analyze the effects of 4-carbomethoxyl-10-epigyrosanoldie E on apoptosis and autophagy. 4-Carbomethoxyl-10-epigyrosanoldie E treatment also induced the formation of reactive oxygen species (ROS), which are associated with 4-carbomethoxyl-10-epigyrosanoldie E-induced cell death. In addition, the 4-carbomethoxyl-10-epigyrosanoldie E-induced antiproliferation effects on Ca9-22 and Cal-27 cells were associated with the release of cytochrome c from mitochondria, activation of proapoptotic proteins (such as caspase-3/-9, Bax, and Bad), and inhibition of antiapoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1). 4-Carbomethoxyl-10-epigyrosanoldie E treatment also triggered endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/ATF4/CHOP apoptotic pathway. Moreover, increased expressions of Beclin-1, Atg3, Atg5, Atg7, Atg12, Atg 16, LC3-I, and LC3-II proteins indicated that 4-carbomethoxyl-10-epigyrosanoldie E triggered autophagy in oral cancer cells. In conclusion, our findings demonstrated that 4-carbomethoxyl-10-epigyrosanoldie E suppressed human oral cancer cell proliferation and should be further investigated with regard to its potential use as a chemotherapy drug for the treatment of human oral cancer.
Collapse
Affiliation(s)
- Yun-Ying She
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Taiwan
| | - Jen-Jie Lin
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Ting-Shou Chang
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Jen Wu
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| |
Collapse
|
5
|
Tao Y, Yu Q, Huang Y, Liu R, Zhang X, Wu T, Pan S, Xu X. Identification of Crucial Polymethoxyflavones Tangeretin and 3,5,6,7,8,3',4'-Heptamethoxyflavone and Evaluation of Their Contribution to Anticancer Effects of Pericarpium Citri Reticulatae 'Chachi' during Storage. Antioxidants (Basel) 2022; 11:1922. [PMID: 36290646 PMCID: PMC9598651 DOI: 10.3390/antiox11101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Pericarpium Citri Reticulatae 'Chachi' (PCR-C), rich in polymethoxyflavones (PMFs), has potential anticancer bioactivity and its quality will be improved during storage. However, the main factors influencing the PCR-C quality during its storage remain unclear. In this study, multivariate analysis was performed to investigate free and bound PMFs of PCR-C during storage. The anticancer effects of purified PCR-C flavonoid extracts (PCR-CF) and the important PMFs were evaluated using A549 cells. The results showed that PCR-C samples exhibited remarkable differences in free PMFs during storage, which fell into three clusters: Cluster 1 included fresh (fresh peel) and PCR-C01 (year 1); Cluster 2 consisted of PCR-C03 (year 3) and PCR-C05 (year 5); and PCR-C10 (year 10) was Cluster 3. 3,5,6,7,8,3',4'-heptamethoxyflavone, tangeretin, and isosinensetin were identified as the most important PMFs distinguishing the various types of PCR-C according to its storage periods. Moreover, PCR-CF inhibited A549 cell proliferation and induced cell cycle arrest at G2/M phase, cell apoptosis, and ROS accumulation, and all anticancer indices had an upward tendency during storage. Additionally, tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone exhibited anticancer effects on A549 cells, whereas isosinensetin displayed no anticancer effect, indicating that tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone jointly contributed to anticancer activity of PCR-C during storage. PCR-CF and the most important PMFs killed cancer cells (A549 cells) but had no cytotoxicity to normal lung fibroblast cells (MRC-5 cells). Overall, the high quality of long-term stored PCR-C might be due to the anticancer effects of tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone.
Collapse
Affiliation(s)
- Yexing Tao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiting Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiwen Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Song L, Xiong P, Zhang W, Hu H, Tang S, Jia B, Huang W. Mechanism of Citri Reticulatae Pericarpium as an Anticancer Agent from the Perspective of Flavonoids: A Review. Molecules 2022; 27:molecules27175622. [PMID: 36080397 PMCID: PMC9458152 DOI: 10.3390/molecules27175622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP), also known as “chenpi”, is the most common qi-regulating drug in traditional Chinese medicine. It is often used to treat cough and indigestion, but in recent years, it has been found to have multi-faceted anti-cancer effects. This article reviews the pharmacology of CRP and the mechanism of the action of flavonoids, the key components of CRP, against cancers including breast cancer, lung cancer, prostate cancer, hepatic carcinoma, gastric cancer, colorectal cancer, esophageal cancer, cervical cancer, bladder cancer and other cancers with a high diagnosis rate. Finally, the specific roles of CRP in important phenotypes such as cell proliferation, apoptosis, autophagy and migration–invasion in cancer were analyzed, and the possible prospects and deficiencies of CRP as an anticancer agent were evaluated.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hengchang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Songqi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- Correspondence:
| |
Collapse
|
7
|
Yu Z, Wu Y, Ma Y, Cheng Y, Song G, Zhang F. Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
8
|
李 国, 常 秀, 罗 小, 赵 映, 王 为, 康 新. [Fucoxanthin induces prostate cancer PC-3 cell apoptosis by causing mitochondria dysfunction and oxidative stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:953-959. [PMID: 34238751 PMCID: PMC8267986 DOI: 10.12122/j.issn.1673-4254.2021.06.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the apoptosis- inducing effect of fucoxanthin in human prostate cancer PC-3 cells and the underlying mechanism. OBJECTIVE The viability and apoptosis of PC-3 cells treated with fucoxanthin were analyzed using commercial kits, and the mitochondrial membrane potential, mitochondrial morphology and mitochondrial superoxide were detected using fluorescence probe staining. The contents of ATP, H2O2, malondialdehyde (MDA), superoxide and the total antioxidant capacity of PC-3 cells were determined. The protein expressions of Bcl-2, Bax and cytochrome c were detected with Western blotting, and the activity of caspase-9 and caspase- 3/7 was detected using corresponding kits. OBJECTIVE Fucoxanthin significantly inhibited the viability of PC-3 cells in a time- and dose-dependent manner, and dose-dependently induced apoptosis of the cells (P < 0.05). Fucoxanthin-treated PC-3 cells showed significantly decreased mitochondrial membrane potential, mitochondrial fragmentation and increased superoxide level in the mitochondria (P < 0.05), and these effects of fucoxanthin were dose- dependent. Fucoxanthin dose-dependently decreased ATP level and the total antioxidant capacity of PC-3 cells, increased the contents of H2O2, MDA and superoxide (all P < 0.05), enhanced the protein expressions of Bax and cytochrome c in the cytoplasm, and lowered the protein expressions of Bcl-2 and cytochromes in the mitochondria (P < 0.05). OBJECTIVE Fucoxanthin induces apoptosis of PC-3 cells by triggering mitochondrial dysfunction to cause oxidative stress and by activating mitochondria-mediated apoptotic signaling pathways, suggesting its potential in prostate cancer treatment.
Collapse
Affiliation(s)
- 国平 李
- 海南省人民医院//海南医学院附属海南医院泌尿外科,海南 海口 570311Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - 秀亭 常
- 海南省食品检验检测中心//海南省实验动物中心,海南 海口 570314Hainan Institute for Food Control(Hainan Experimental Animal Center), Haikou 570314, China
| | - 小菊 罗
- 海南省食品检验检测中心//海南省实验动物中心,海南 海口 570314Hainan Institute for Food Control(Hainan Experimental Animal Center), Haikou 570314, China
| | - 映淑 赵
- 海南省药品检验所//海南省药物研究重点实验室,海南 海口 570216Hainan Institute for Drug Control, Hainan Key Laboratory for Pharmaceutical Quality Research, Haikou, 570216, China
| | - 为服 王
- 海南省人民医院//海南医学院附属海南医院泌尿外科,海南 海口 570311Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - 新立 康
- 海南省人民医院//海南医学院附属海南医院泌尿外科,海南 海口 570311Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
9
|
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW, Jung YD. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front Oncol 2021; 11:652033. [PMID: 33996570 PMCID: PMC8120318 DOI: 10.3389/fonc.2021.652033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals are natural small-molecule compounds derived from plants that have attracted attention for their anticancer activities. Some phytochemicals have been developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition, several phytochemicals show good tumor suppression functions in various cancer types. Bladder cancer is a malignant tumor of the urinary system. To date, few specific phytochemicals have been used for bladder cancer therapy, although many have been studied in bladder cancer cells and mouse models. Therefore, it is important to collate and summarize the available information on the role of phytochemicals in the prevention and treatment of bladder cancer. In this review, we summarize the effects of several phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic substances with anticancer properties and classify the mechanism of action of phytochemicals in bladder cancer. This review will contribute to facilitating the development of new anticancer drugs and strategies for the treatment of bladder cancer using phytochemicals.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Guangzhen Lu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changlin Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Taek-Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
10
|
Rajendran G, Taylor JA, Woolbright BL. Natural products as a means of overcoming cisplatin chemoresistance in bladder cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:69-84. [PMID: 35582013 PMCID: PMC9019192 DOI: 10.20517/cdr.2020.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Cisplatin remains an integral part of the treatment for muscle invasive bladder cancer. A large number of patients do not respond to cisplatin-based chemotherapy and efficacious salvage regimens are limited. Immunotherapy has offered a second line of treatment; however, only approximately 20% of patients respond, and molecular subtyping of tumors indicates there may be significant overlap in those patients that respond to cisplatin and those patients that respond to immunotherapy. As such, restoring sensitivity to cisplatin remains a major hurdle to improving patient care. One potential source of compounds for enhancing cisplatin is naturally derived bioactive products such as phytochemicals, flavonoids and others. These compounds can activate a diverse array of different pathways, many of which can directly promote or inhibit cisplatin sensitivity. The purpose of this review is to understand current drug development in the area of natural products and to assess how these compounds may enhance cisplatin treatment in bladder cancer patients.
Collapse
Affiliation(s)
- Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L Woolbright
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Inhibitory Effects of Tangeretin, A Citrus Peel-Derived Flavonoid, on Breast Cancer Stem Cell Formation through Suppression of Stat3 Signaling. Molecules 2020; 25:molecules25112599. [PMID: 32503228 PMCID: PMC7321155 DOI: 10.3390/molecules25112599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are responsible for tumor chemoresistance and recurrence. Targeting CSCs using natural compounds is a novel approach for cancer therapy. A CSC-inhibiting compound was purified from citrus extracts using silica gel, gel filtration and high-pressure liquid chromatography. The purified compound was identified as tangeretin by using nuclear magnetic resonance (NMR). Tangeretin inhibited cell proliferation, CSC formation and tumor growth, and modestly induced apoptosis in CSCs. The frequency of a subpopulation with a CSC phenotype (CD44+/CD24-) was reduced by tangeretin. Tangeretin reduced the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3). Our results in this study show that tangeretin inhibits the Stat3 signaling pathway and induces CSC death, indicating that tangeretin may be a potential natural compound that targets breast cancer cells and CSCs.
Collapse
|
12
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Ghasemipour Afshar E. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0191/jbcpp-2019-0191.xml. [PMID: 32329752 DOI: 10.1515/jbcpp-2019-0191] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 06/11/2023]
Abstract
To date, a large number of synthetic drugs have been developed for the treatment and prevention of different disorders, such as neurodegenerative diseases, diabetes mellitus, and cancer. However, these drugs suffer from a variety of drawbacks including side effects and low efficacy. In response to this problem, researchers have focused on the plant-derived natural products due to their valuable biological activities and low side effects. Flavonoids consist of a wide range of naturally occurring compounds exclusively found in fruits and vegetables and demonstrate a number of pharmacological and therapeutic effects. Tangeretin (TGN) is a key member of flavonoids that is extensively found in citrus peels. It has different favorable biological activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, and neuroprotective effects. In the present review, we discuss the various pharmacological and therapeutic effects of TGN and then, demonstrate how this naturally occurring compound affects signaling pathways to exert its impacts.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran, Phone: +989032360639
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Wu Z, Zhang Y, Gong X, Cheng G, Pu S, Cai S. The preventive effect of phenolic-rich extracts from Chinese sumac fruits against nonalcoholic fatty liver disease in rats induced by a high-fat diet. Food Funct 2020; 11:799-812. [PMID: 31930271 DOI: 10.1039/c9fo02262g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this study is to investigate the preventive effect of phenolic-rich extracts from Chinese sumac (Rhus chinensis Mill.) fruits against NAFLD in rats induced by a high-fat diet and to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Zihuan Wu
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Yan Zhang
- The First People's Hospital of Yunnan Province and the Affiliated Kunhua Hospital of Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Xiarong Gong
- The First People's Hospital of Yunnan Province and the Affiliated Kunhua Hospital of Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Guiguang Cheng
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Shibiao Pu
- Chinese Materia Medica
- Yunnan University of Chinese Medicine
- Kunming
- People's Republic of China
| | - Shengbao Cai
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| |
Collapse
|
14
|
Fatima A, Siddique YH. Role of Flavonoids in Neurodegenerative Disorders with Special Emphasis on Tangeritin. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:581-597. [DOI: 10.2174/1871527318666190916141934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
Flavonoids are naturally occurring plant polyphenols found universally in all fruits, vegetables
and medicinal plants. They have emerged as a promising candidate in the formulation of treatment
strategies for various neurodegenerative disorders. The use of flavonoid rich plant extracts and
food in dietary supplementation have shown favourable outcomes. The present review describes the
types, properties and metabolism of flavonoids. Neuroprotective role of various flavonoids and the
possible mechanism of action in the brain against the neurodegeneration have been described in detail
with special emphasis on the tangeritin.
Collapse
Affiliation(s)
- Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|