1
|
Liu X, Chen R, Cui G, Feng R, Liu K. Exosomes derived from platelet-rich plasma present a novel potential in repairing knee articular cartilage defect combined with cyclic peptide-modified β-TCP scaffold. J Orthop Surg Res 2024; 19:718. [PMID: 39497084 PMCID: PMC11533314 DOI: 10.1186/s13018-024-05202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic effects and mechanisms of PRP-exos combined with cyclic peptide-modified β-TCP scaffold in the treatment of rabbit knee cartilage defect. METHODS PRP-exos were extracted and characterized by TEM, NTA and WB. The therapeutic effects were evaluated by ICRS score, HE staining, Immunohistochemistry, qRT-PCR and ELISA. The repair mechanism of PRP-exos was estimated and predicted by miRNA sequencing analysis and protein-protein interaction network analysis. RESULTS The results showed that PRP-exos had a reasonable size distribution and exhibited typical exosome morphology. The combination of PRP-exos and cyclic peptide-modified β-TCP scaffold improved ICRS score and the expression level of COL-2, RUNX2, and SOX9. Moreover, this combination therapy reduced the level of MMP-3, TNF-α, IL-1β, and IL-6, while increasing the level of TIMP-1. In PRP-exos miRNA sequencing analysis, the total number of known miRNAs aligned across all samples was 252, and a total of 91 differentially expressed miRNAs were detected. The results of KEGG enrichment analysis and the protein-protein interaction network analysis indicated that the PI3K/AKT signaling pathway could impact the function of chondrocytes by regulating key transcription factors to repair cartilage defect. CONCLUSION PRP-exos combined with cyclic peptide-modified β-TCP scaffold effectively promoted cartilage repair and improved chondrocyte function in rabbit knee cartilage defect. Based on the analysis and prediction of PRP-exos miRNAs sequencing, PI3K/AKT signaling pathway may contribute to the therapeutic effect. These findings provide experimental evidence for the application of PRP-exos in the treatment of cartilage defect.
Collapse
Affiliation(s)
- Xuchang Liu
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China
| | - Rudong Chen
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Guanzheng Cui
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Rongjie Feng
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
| |
Collapse
|
2
|
Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int Endod J 2023; 56:447-464. [PMID: 36546662 DOI: 10.1111/iej.13882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIM The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.,Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Lu GM, Jiang LY, Huang DL, Rong YX, Li YH, Wei LX, Ning Y, Huang SF, Mo S, Meng FH, Li HM. Advanced Platelet-Rich Fibrin Extract Treatment Promotes the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells through Activation of Tryptophan Metabolism. Curr Stem Cell Res Ther 2023; 18:127-142. [PMID: 34872484 DOI: 10.2174/1574888x16666211206150934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advanced platelet-rich fibrin extract (APRFE) contains a high concentration of various cytokines that are helpful for improving stem cells repair function. OBJECTIVE However, the underlying mechanism of APRFE improving stem cell repairing is not clear. METHODS We produced APRFE by centrifuging fresh peripheral blood samples and isolated and identified human adipose-derived mesenchymal stem cells (ADMSCs). The abundance of cytokines contained in APRFE was detected by the Enzyme-linked immunosorbent assay (ELISA). The ADMSCs treated with or without APRFE were collected for transcriptome sequencing. RESULTS Based on the sequencing data, the expression profiles were contracted. The differentially expressed genes and lncRNA (DEGs and DElncRNAs) were obtained using for the differential expression analysis. The lncRNA-miRNA-mRNA network was constructed based on the miRNet database. The further enrichment analysis results showed that the biological functions were mainly related to proliferation, differentiation, and cell-cell function. To explore the role of APRFE, the protein-protein interaction network was constructed among the cytokines included in APRFE and DEGs. Furthermore, we constructed the global regulatory network based on the RNAInter and TRRUST database. The pathways in the global regulatory network were considered as the core pathways. We found that the DEGs in the core pathways were associated with stemness scores. CONCLUSION In summary, we predicted that APRFE activated three pathways (tryptophan metabolism, mTOR signaling pathway, and adipocytokine signaling) to promote the proliferation and differentiation of ADMSCs. The finding may be helpful for guiding the application of ADMSCs in the clinic.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Li-Yuan Jiang
- Department of Orthopaedics, Guiping People's Hospital, Guigping, Guangxi, 537200, China
| | - Dong-Lin Huang
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping, Guangxi, 537200, China
| | - Yang-Hong Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liu-Xing Wei
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yan Ning
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Shan-Fu Huang
- Department of Dermatology, The People's Hospital of Binyang County, Binyang, Guangxi, 530405, China
| | - Steven Mo
- Yuan Dong International Academy of Life Sciences, Nanning, China
| | - Fu-Han Meng
- Department of Rehabilitation Medicine, The People's Hospital of Binyang County, Binyang, Guangxi, 530405, China
| | - Hong-Mian Li
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| |
Collapse
|
4
|
Prospects and Applications of Natural Blood-Derived Products in Regenerative Medicine. Int J Mol Sci 2021; 23:ijms23010472. [PMID: 35008900 PMCID: PMC8745602 DOI: 10.3390/ijms23010472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Currently, there are a number of therapeutic schemes used for the treatment of various types of musculoskeletal disorders. However, despite the use of new treatment options, therapeutic failure remains common due to impaired and delayed healing, or implant rejection. Faced with this challenge, in recent years regenerative medicine started looking for alternative solutions that could additionally support tissue regeneration. This review aims to outline the functions and possible clinical applications of, and future hopes associated with, using autologous or heterologous products such as antimicrobial peptides (AMPs), microvesicles (MVs), and neutrophil degranulation products (DGP) obtained from circulating neutrophils. Moreover, different interactions between neutrophils and platelets are described. Certain products released from neutrophils are critical for interactions between different immune cells to ensure adequate tissue repair. By acting directly and indirectly on host cells, these neutrophil-derived products can modulate the body’s inflammatory responses in various ways. The development of new formulations based on these products and their clinically proven success would give hope for significant progress in regenerative therapy in human and veterinary medicine.
Collapse
|
5
|
Uematsu K, Ushiki T, Ishiguro H, Ohashi R, Tamura S, Watanabe M, Fujimoto Y, Nagata M, Ajioka Y, Kawase T. Osteoclastogenic Potential of Tissue-Engineered Periosteal Sheet: Effects of Culture Media on the Ability to Recruit Osteoclast Precursors. Int J Mol Sci 2021; 22:2169. [PMID: 33671612 PMCID: PMC7926432 DOI: 10.3390/ijms22042169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell culture media influence the characteristics of human osteogenic periosteal sheets. We have previously found that a stem cell medium facilitates growth and collagen matrix formation in vitro and osteogenesis in vivo. However, it has not yet been demonstrated which culture medium is superior for osteoclastogenesis, a prerequisite for reconstruction of normal bone metabolic basis. To address this question, we compared chemotaxis and osteoclastogenesis in tissue-engineered periosteal sheets (TPSs) prepared with two types of culture media. Periosteal tissues obtained from adult volunteers were expanded with the conventional Medium 199 or with the stem cell medium, MesenPRO. Hematopoietic enhanced-green-fluorescent-protein (EGFP)-nude mice were prepared by γ-irradiation of Balb/c nu/nu mice and subsequent transplantation of bone marrow cells from CAG-EGFP C57BL/6 mice. TPSs were implanted subcutaneously into the chimeric mice and retrieved after intervals for immunohistopathological examination. EGFP+ cells were similarly recruited to the implantation site in both the TPSs prepared, whereas the distribution of CD11b+ cells was significantly lower in the TPS prepared with the stem cell medium. Instead, osteoclastogenesis was higher in the TPS prepared with the stem cell medium than in the one prepared with the conventional medium. These findings suggest that the stem cell medium is preferable for the preparation of more functional TPSs.
Collapse
Affiliation(s)
- Kohya Uematsu
- Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan;
| | - Takashi Ushiki
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (T.U.); (M.W.); (Y.F.)
| | - Hajime Ishiguro
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (H.I.); (S.T.)
| | - Riuko Ohashi
- Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (R.O.); (Y.A.)
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Suguru Tamura
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (H.I.); (S.T.)
| | - Mari Watanabe
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (T.U.); (M.W.); (Y.F.)
| | - Yoko Fujimoto
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (T.U.); (M.W.); (Y.F.)
| | - Masaki Nagata
- Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Yoichi Ajioka
- Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (R.O.); (Y.A.)
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
6
|
Nakamura M, Aizawa H, Kawabata H, Sato A, Watanabe T, Isobe K, Kitamura Y, Tanaka T, Kawase T. Platelet adhesion on commercially pure titanium plates in vitro III: effects of calcium phosphate-blasting on titanium plate biocompatibility. Int J Implant Dent 2020; 6:74. [PMID: 33215329 PMCID: PMC7677422 DOI: 10.1186/s40729-020-00270-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) is often used to improve surface biocompatibility. We previously found that platelets rapidly adhere to plain commercially pure titanium (cp-Ti) plates in the absence, but not in the presence, of plasma proteins. To further expand on these findings, in the present study, we switched titanium plates from a plain surface to a rough surface that is blasted with calcium phosphate (CaP) powder and then examined platelet adhesion and activation. METHODS Elemental distribution in CaP-blasted cp-Ti plates was analyzed using energy-dispersive X-ray spectroscopy. PRP samples prepared from anticoagulated blood samples of six healthy, non-smoking adult male donors were loaded on CaP-blasted cp-Ti plates for 1 h and fixed for examination of platelet morphology and visualization of PDGF-B and platelet surface markers (CD62P, CD63) using scanning electron microscopy and fluorescence microscopy. Plain SUS316L stainless steel plates used in injection needles were also examined for comparison. RESULTS Significant amounts of calcium and phosphate were detected on the CaP-blasted cp-Ti surface. Platelets rapidly adhered to this surface, leading to higher activation. Platelets also adhered to the plain stainless surface; however, the levels of adhesion and activation were much lower than those observed on the CaP-blasted cp-Ti plate. CONCLUSIONS The CaP-blasted cp-Ti surface efficiently entraps and activates platelets. Biomolecules released from the activated platelets could be retained by the fibrin matrix on the surface to facilitate regeneration of the surrounding tissues. Thus, PRP immersion could not only eliminate surface air bubbles but also improve the biocompatibility of the implant surface.
Collapse
Affiliation(s)
| | | | | | - Atsushi Sato
- Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
| | | | | | | | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
7
|
Acute cytotoxic effects of silica microparticles used for coating of plastic blood-collection tubes on human periosteal cells. Odontology 2020; 108:545-552. [PMID: 31997225 PMCID: PMC7438384 DOI: 10.1007/s10266-020-00486-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Because of its simple operation, platelet-rich fibrin (PRF) is becoming more popular than the original form, platelet-rich plasma (PRP), in regenerative dentistry. PRF preparation requires plain glass blood-collection tubes, but not either anticoagulants or coagulation factors. However, such glass tubes designed for laboratory testing are no longer commercially available. Although several glass tubes specifically designed for PRF preparation are available, many clinicians prefer to obtain stably supplied substitutes, such as silica-coated plastic tubes produced by major medical device companies. The quality of PRF prepared by silica-coated tubes has not been assessed and we previously reported significant contamination of silica microparticles in the resulting PRF matrix and alerted clinicians against the use for PRF preparation. To further assess the biosafety of the silica microparticles, we presently examined their effects on human normal periosteal cells derived from alveolar bone. The periosteal cells were obtained from explant cultures of small periosteal tissues obtained from healthy donors. Silica microparticles were obtained from silica-coated tubes and added to cell cultures. Cellular responses were monitored using a tetrazolium assay, phase-contract inverted microscopy, an immunofluorescence method, and scanning electron microscopy. Silica microparticles adsorbed onto the cell surface with seemingly high affinity and induced apoptosis, resulting in significant reduction of cell proliferation and viability. These findings suggest that silica microparticles contained in plastic tubes for the purpose of blood coagulation are hazardous for various cell types around sites where silica-contaminated PRF matrices are implanted.
Collapse
|
8
|
Platelet-Rich Fibrin as a Bone Graft Material in Oral and Maxillofacial Bone Regeneration: Classification and Summary for Better Application. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3295756. [PMID: 31886202 PMCID: PMC6925910 DOI: 10.1155/2019/3295756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Platelet-rich fibrin (PRF) is an autologous platelet concentrate that consists of cytokines, platelets, leukocytes, and circulating stem cells. It has been considered to be effective in bone regeneration and is mainly used for oral and maxillofacial bone. Although currently the use of PRF is thought to support alveolar ridge preservation, there is a lack of evidence regarding the application of PRF in osteogenesis. In this paper, we will provide examples of PRF application, and we will also summarize different measures to improve the properties of PRF for achieving better osteogenesis. The effect of PRF as a bone graft material on osteogenesis based on laboratory investigations, animal tests, and clinical evaluations is first reviewed here. In vitro, PRF was able to stimulate cell proliferation, differentiation, migration, mineralization, and osteogenesis-related gene expression. Preclinical and clinical trials suggested that PRF alone may have a limited effect. To enlighten researchers, modified PRF graft materials are further reviewed, including PRF combined with other bone graft materials, PRF combined with drugs, and a new-type PRF. Finally, we will summarize the common shortcomings in the application of PRF that probably lead to application failure. Future scientists should avoid or solve these problems to achieve better regeneration.
Collapse
|
9
|
Blood-Derived Products for Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20184581. [PMID: 31533202 PMCID: PMC6770158 DOI: 10.3390/ijms20184581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
|
10
|
Takahashi A, Tsujino T, Yamaguchi S, Isobe K, Watanabe T, Kitamura Y, Okuda K, Nakata K, Kawase T. Distribution of platelets, transforming growth factor‐β1, platelet‐derived growth factor‐BB, vascular endothelial growth factor and matrix metalloprotease‐9 in advanced platelet‐rich fibrin and concentrated growth factor matrices. ACTA ACUST UNITED AC 2019; 10:e12458. [DOI: 10.1111/jicd.12458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Taisuke Watanabe
- Division of Anatomy and Cell Biology of the Hard Tissue, Institute of Medicine and Dentistry Niigata University Niigata Japan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery Matsumoto Dental University Shiojiri Japan
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry Niigata University Niigata Japan
| | - Koh Nakata
- Bioscience Medical Research Center Niigata University Medical and Dental Hospital Niigata Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry Niigata University Niigata Japan
| |
Collapse
|