1
|
Lin AL, Zou MM, Cao LJ, Hayashi F, Yang D, Liu XY. Synergistic effects of Pleistocene geological and climatic events on complex phylogeographic history of widespread sympatric species of Megaloptera in East Asia. Zool Res 2024; 45:1131-1146. [PMID: 39257376 PMCID: PMC11491776 DOI: 10.24272/j.issn.2095-8137.2024.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024] Open
Abstract
Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia. In this study, we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species ( Neochauliodes formosanus, Protohermes costalis, and Neoneuromus orientalis) belonging to the holometabolan order Megaloptera. These species, which share a broad and largely overlapping distribution, were analyzed using comprehensive mitogenomic data. Our findings revealed a consistent influence of vicariance on the population isolation of Neoc. formosanus and P. costalis between Hainan, Taiwan, and the East Asian mainland during the early Pleistocene, potentially hindering subsequent colonization of the later diverged Neon. orientalis to these islands. Additionally, we unveiled the dual function of the major mountain ranges in East Asia, serving both as barriers and conduits, in shaping the population structure of all three species. Notably, we demonstrated that these co-distributed species originated from Southwest, Southern, and eastern Central China, respectively, then subsequently migrated along multi-directional routes, leading to their sympatric distribution on the East Asian mainland. Furthermore, our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability. Overall, this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.
Collapse
Affiliation(s)
- Ai-Li Lin
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ming-Ming Zou
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xing-Yue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
2
|
Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: Inferred from multiple genomic markers. Mol Phylogenet Evol 2024; 194:108042. [PMID: 38401812 DOI: 10.1016/j.ympev.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jundong Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiqi Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Chen S, Du Z, Zhao P, Wang X, Wu Y, Li H, Cai W. Phylogeographic Pattern of the Assassin Bug Sycanus bifidus Inferred from Mitochondrial Genomes and Nuclear Genes. BIOLOGY 2024; 13:305. [PMID: 38785787 PMCID: PMC11118239 DOI: 10.3390/biology13050305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The assassin bug Sycanus bifidus has a wide distribution across southern China. This study explored its distribution and evolution by analyzing mitochondrial and nuclear ribosomal RNA genes, revealing how Pleistocene climate and geological changes shaped its phylogeography. We identified two main clades, A and B, that diverged in the Middle Pleistocene. Hainan Island's populations form a unique group within Clade A, suggesting that the Qiongzhou Strait served as a dispersal corridor during glaciation. Rising sea levels likely separated the Hainan population afterward. Ecological niche modeling showed that both populations have been viable since the last interglacial period, with demographic analyses indicating possible expansions during the Middle and Late Pleistocene, driven by favorable climates. This study highlights the significant effects of Pleistocene sea-level and climatic changes on the distribution and evolution of S. bifidus in China.
Collapse
Affiliation(s)
- Suyi Chen
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhenyong Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ping Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education) and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China;
- Department of Plant Protection, Kaili University, Kaili 556000, China
| | - Xuan Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yunfei Wu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China;
| | - Hu Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wanzhi Cai
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
4
|
Du Z, Zhao Q, Wang X, Sota T, Tian L, Song F, Cai W, Zhao P, Li H. Climatic oscillation promoted diversification of spinous assassin bugs during Pleistocene glaciation. Evol Appl 2023; 16:880-894. [PMID: 37124089 PMCID: PMC10130555 DOI: 10.1111/eva.13543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
Insect speciation is among the most fascinating topics in evolutionary biology; however, its underlying mechanisms remain unclear. Allopatric speciation represents one of the major types of speciation and is believed to have frequently occurred during glaciation periods, when climatic oscillation may have caused suitable habitats to be fragmented repeatedly, creating geographical isolation among populations. However, supporting evidence for allopatric speciation of insects in East Asia during the Pleistocene glaciation remains lacking. We aim to investigate the effect of climatic oscillation during the Pleistocene glaciation on the diversification pattern and evolutionary history of hemipteran insects and to test the hypothesis of Pleistocene species stability using spinous assassin bugs Sclomina (Hemiptera: Reduviidae), a small genus widely distributed in southern China but was later found to have cryptic species diversity. Here, using the whole mitochondrial genome (mitogenome) and nuclear ribosomal RNA genes, we investigated both interspecific and intraspecific diversification patterns of spinous assassin bugs. Approximate Bayesian computation, ecological niche modeling, and demographic history analyses were also applied to understand the diversification process and driven factors. Our data suggest that the five species of Sclomina are highly diverged, despite three of them currently being cryptic. Speciation occurred during the Pleistocene when suitable distribution areas were possibly fragmented. Six phylogeographic groups in the type species S. erinacea were identified, among which two groups underwent expansion during the early Last Glacial Period and after Last Glacier Maximum. Our analyses suggest that this genus may have experienced climate-driven habitat fragmentation and postglacial expansion in the Pleistocene, promoting allopatric speciation and intraspecific diversification. Our results reveal underestimated species diversity in a small insect group and illustrate a remarkable example of allopatric speciation of insects in East Asia promoted by Pleistocene climatic oscillations. These findings provide important insights into the speciation processes and aid the conservation of insect species diversity.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Qian Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Xuan Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Teiji Sota
- Department of Zoology, Graduate School of ScienceKyoto University, SakyoKyotoJapan
| | - Li Tian
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Fan Song
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Wanzhi Cai
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Ping Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education) and Guangxi Key Laboratory of Earth Surface Processes and Intelligent SimulationNanning Normal UniversityNanningChina
| | - Hu Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| |
Collapse
|
5
|
Liu X, He J, Du Z, Zhang R, Cai W, Li H. Weak genetic structure of flower thrips Frankliniella intonsa in China revealed by mitochondrial genomes. Int J Biol Macromol 2023; 231:123301. [PMID: 36657550 DOI: 10.1016/j.ijbiomac.2023.123301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Human activities facilitate long-distance dispersal of insects beyond their native range. In particular, the transportation of live plants offers diffusion opportunities for some insects with weak flight abilities. The increase in urban afforestation also help insect reside in urban habitats. The flower thrips, Frankliniella intonsa, is a widespread pest that causes serious damage to many economically important plants. Human activities are likely to facilitate the dispersal of this pest, however, the population genetic structure of this pest remains unclear. Herein, high-throughput sequencing was used to obtain 149 whole mitochondrial genomes of flower thrips from 28 geographic populations in China. Population genetic analyses, phylogenetic reconstruction, and inference of demographic history were then performed. A weak genetic structure was found among all populations across large geographic distance in China, in which five mitochondrial haplotype lineages were resolved. One of the lineages was identified to be shared among most samples collected from central city areas, which may be derived from the surrounding areas. Demographic history analyses suggested a recent population expansion of F. intonsa. Overall, the present population genetic structure of flower thrips in China may be promoted by human-mediated urban afforestation across the country.
Collapse
Affiliation(s)
- Xinzhi Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jia He
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China; Ningxia Key Lab of Plant Disease and Pest Control, Yinchuan 750002, China
| | - Zhenyong Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Rong Zhang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China; Ningxia Key Lab of Plant Disease and Pest Control, Yinchuan 750002, China
| | - Wanzhi Cai
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hu Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
6
|
Wei Y, He S, Wang J, Fan P, He Y, Hu K, Chen Y, Zhou G, Zhong D, Zheng X. Genome-wide SNPs reveal novel patterns of spatial genetic structure in Aedes albopictus (Diptera Culicidae) population in China. Front Public Health 2022; 10:1028026. [PMID: 36438226 PMCID: PMC9685676 DOI: 10.3389/fpubh.2022.1028026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Since the second half of the 20th century, Aedes albopictus, a vector for more than 20 arboviruses, has spread worldwide. Aedes albopictus is the main vector of infectious diseases transmitted by Aedes mosquitoes in China, and it has caused concerns regarding public health. A comprehensive understanding of the spatial genetic structure of this vector species at a genomic level is essential for effective vector control and the prevention of vector-borne diseases. Methods During 2016-2018, adult female Ae. albopictus mosquitoes were collected from eight different geographical locations across China. Restriction site-associated DNA sequencing (RAD-seq) was used for high-throughput identification of single nucleotide polymorphisms (SNPs) and genotyping of the Ae. albopictus population. The spatial genetic structure was analyzed and compared to those exhibited by mitochondrial cytochrome c oxidase subunit 1 (cox1) and microsatellites in the Ae. albopictus population. Results A total of 9,103 genome-wide SNP loci in 101 specimens and 32 haplotypes of cox1 in 231 specimens were identified in the samples from eight locations in China. Principal component analysis revealed that samples from Lingshui and Zhanjiang were more genetically different than those from the other locations. The SNPs provided a better resolution and stronger signals for novel spatial population genetic structures than those from the cox1 data and a set of previously genotyped microsatellites. The fixation indexes from the SNP dataset showed shallow but significant genetic differentiation in the population. The Mantel test indicated a positive correlation between genetic distance and geographical distance. However, the asymmetric gene flow was detected among the populations, and it was higher from south to north and west to east than in the opposite directions. Conclusions The genome-wide SNPs revealed seven gene pools and fine spatial genetic structure of the Ae. albopictus population in China. The RAD-seq approach has great potential to increase our understanding of the spatial dynamics of population spread and establishment, which will help us to design new strategies for controlling vectors and mosquito-borne diseases.
Collapse
Affiliation(s)
- Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Song He
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,*Correspondence: Xueli Zheng
| |
Collapse
|
7
|
Zhu X, Zheng C, Dong X, Zhang H, Ye Z, Xue H, Bu W. Species boundary and phylogeographical pattern provide new insights into the management efforts of Megacopta cribraria (Hemiptera: Plataspidae), a bean bug invading North America. PEST MANAGEMENT SCIENCE 2022; 78:4871-4881. [PMID: 36181419 DOI: 10.1002/ps.7108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Correct identification together with information on distribution range, geographical origin and evolutionary history are the necessary basis for the management and control of invasive species. The bean bug Megacopta cribraria is a crucial agricultural pest of soybean. Recently, M. cribraria has invaded the United States and spread rapidly, causing severe reductions in soybean yields. However, the species boundary and phylogeographical pattern of this invasive bean bug are still unclear. RESULTS The results of different species delimitation methods (Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Bayesian Poisson Tree Processes and Bayesian Phylogenetics and Phylogeography) strongly demonstrated that M. cribraria and Megacopta punctatissima represent the same species. M. punctatissima should not be considered a distinct species but rather a variety of M. cribraria. Phylogenetic analyses revealed three well-supported clades (Southeast Asia [SEA], East Asia continent [EAC] and Japan [JA]) with distinct geographical structures in the M. cribraria-M. punctatissima complex. The SEA clade was at the base of the phylogenetic tree, and the sister relationship between the EAC clade and JA clade was strongly supported. The split between the EAC clade and JA clade occurred at approximately 0.71 Ma, corresponding to the submergence period of the East China Sea land bridge. CONCLUSION This study clarified the species boundary between M. cribraria and its closely related species and revealed the phylogeographical pattern and evolutionary history of M. cribraria. The species delimitation and phylogeography results achieved in this study could provide new insights into the monitoring and management of this agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | | | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Cui M, Wu Y, Javal M, Giguère I, Roux G, Andres JA, Keena M, Shi J, Wang B, Braswell E, Pfister SE, Hamelin R, Roe A, Porth I. Genome-scale phylogeography resolves the native population structure of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Evol Appl 2022; 15:934-953. [PMID: 35782014 PMCID: PMC9234632 DOI: 10.1111/eva.13381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Human-assisted movement has allowed the Asian longhorned beetle (ALB, Anoplophora glabripennis (Motschulsky)) to spread beyond its native range and become a globally regulated invasive pest. Within its native range of China and the Korean peninsula, human-mediated dispersal has also caused cryptic translocation of insects, resulting in population structure complexity. Previous studies used genetic methods to detangle this complexity but were unable to clearly delimit native populations which is needed to develop downstream biosurveillance tools. We used genome-wide markers to define historical population structure in native ALB populations and contemporary movement between regions. We used genotyping-by-sequencing to generate 6102 single-nucleotide polymorphisms (SNPs) and amplicon sequencing to genotype 53 microsatellites. In total, we genotyped 712 individuals from ALB's native distribution. We observed six distinct population clusters among native ALB populations, with a clear delineation between northern and southern groups. Most of the individuals from South Korea were distinct from populations in China. Our results also indicate historical divergence among populations and suggest limited large-scale admixture, but we did identify a restricted number of cases of contemporary movement between regions. We identified SNPs under selection and describe a clinal allele frequency pattern in a missense variant associated with glycerol kinase, an important enzyme in the utilization of an insect cryoprotectant. We further demonstrate that small numbers of SNPs can assign individuals to geographic regions with high probability, paving the way for novel ALB biosurveillance tools.
Collapse
Affiliation(s)
- Mingming Cui
- Institut de Biologie Intégrative et des SystèmesUniversité LavalQuébecQuébecCanada
- Département des sciences du bois et de la forêtUniversité LavalQuébecQuébecCanada
| | - Yunke Wu
- Forest Pest Methods LaboratoryPlant Protection and Quarantine Science and TechnologyAnimal and Plant Health Inspection ServiceUnited States Department of AgricultureBuzzards BayMassachusettsUSA
| | - Marion Javal
- Centre d'Écologie Fonctionnelle et ÉvolutiveUniversité MontpellierMontpellierFrance
| | - Isabelle Giguère
- Institut de Biologie Intégrative et des SystèmesUniversité LavalQuébecQuébecCanada
- Département des sciences du bois et de la forêtUniversité LavalQuébecQuébecCanada
| | - Géraldine Roux
- Institut National de la Recherche AgronomiqueUR633 Zoologie ForestièreOrléansFrance
- COSTUniversité d’OrléansOrléansFrance
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Melody Keena
- United States Department of AgricultureForest ServiceNorthern Research StationHamdenConnecticutUSA
| | - Juan Shi
- Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
| | - Baode Wang
- Forest Pest Methods LaboratoryPlant Protection and Quarantine Science and TechnologyAnimal and Plant Health Inspection ServiceUnited States Department of AgricultureBuzzards BayMassachusettsUSA
| | - Evan Braswell
- Insect Management and Molecular Diagnostics LaboratoryPlant Protection and Quarantine Science and Technology, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureEdinburgTexasUSA
| | - Scott E. Pfister
- Forest Pest Methods LaboratoryPlant Protection and Quarantine Science and TechnologyAnimal and Plant Health Inspection ServiceUnited States Department of AgricultureBuzzards BayMassachusettsUSA
| | - Richard Hamelin
- Institut de Biologie Intégrative et des SystèmesUniversité LavalQuébecQuébecCanada
- Département des sciences du bois et de la forêtUniversité LavalQuébecQuébecCanada
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Amanda Roe
- Canadian Forest ServiceGreat Lakes Forestry CentreNatural Resources CanadaSault Ste. MarieOntarioCanada
| | - Ilga Porth
- Institut de Biologie Intégrative et des SystèmesUniversité LavalQuébecQuébecCanada
- Département des sciences du bois et de la forêtUniversité LavalQuébecQuébecCanada
| |
Collapse
|
9
|
Lee C, Fong JJ, Jiang JP, Li PP, Waldman B, Chong JR, Lee H, Min MS. Phylogeographic study of the Bufo gargarizans species complex, with emphasis on Northeast Asia. Anim Cells Syst (Seoul) 2021; 25:434-444. [PMID: 35059143 PMCID: PMC8765247 DOI: 10.1080/19768354.2021.2015438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We conduct a phylogeographic and population genetic study of the Asiatic toad (Bufo gargarizans) to understand its evolutionary history, and the influence of geology and climate. A total of 292 individuals from 94 locations were genotyped for two mitochondrial loci (cytb, ND2) and five nuclear introns (Sox9-2, Rho-3, CCNB2-3, UCH-2, and DBI-2), and we performed a suite of phylogenetic, population genetic, and divergence dating analyses. The phylogenetic trees constructed using mitochondrial loci inferred B. gargarizans being divided into two major groups: China mainland and Northeast Asia (Northeast China, Russia, and Korean Peninsula). As with previous studies of this species, we recover population genetic structure not tied to geographic region. Additionally, we discover a new genetic clade restricted to Northeast Asia that points towards the Korean Peninsula being a glacial refugium during the Pleistocene. The weak phylogeographic pattern of B. gargarizans is likely the result of multiple biological, anthropogenic, and historical factors – robust dispersal abilities as a consequence of physiological adaptations, human translocation, geologic activity, and glacial cycles of the Pleistocene. We highlight the complex geologic and climatic history of Northeast Asia and encourage further research to understand its impact on the biodiversity in the region.
Collapse
Affiliation(s)
- Changhoon Lee
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Team of Climate Change Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Jonathan J. Fong
- Science Unit, Lingnan University, Tuen Mun, Hong Kong, People’s Republic of China
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
| | - Pi-Peng Li
- Center for Chinese Endemic Herp-Breeding and Conservation Research and Liaoning Key Laboratory of Evolution and Biodiversity, Shenyang Normal University, Shenyang, People’s Republic of China
| | - Bruce Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | | | - Hang Lee
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|