1
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Montana A, Alfieri L, Marino R, Greco P, Taliento C, Fulcheri E, Tini A, Buffelli F, Neri M. Sudden Intrauterine Unexplained Death (SIUD) and Oxidative Stress: Placental Immunohistochemical Markers. Cells 2024; 13:1347. [PMID: 39195237 DOI: 10.3390/cells13161347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intrauterine fetal death and perinatal death represent one of the most relevant medical scientific problems since, in many cases, even after extensive investigation, the causes remain unknown. The considerable increase in medical legal litigation in the obstetrical field that has witnessed in recent years, especially in cases of stillborn births, has simultaneously involved the figure of the forensic pathologist in scientific research aimed at clarifying the pathophysiological processes underlying stillbirth. METHODS our study aims to analyze cases of sudden intrauterine unexplained death syndrome (SIUD) to evaluate the role of oxidative stress in the complex pathogenetic process of stillbirth. In particular, the immunohistochemical expression of specific oxidative stress markers (NOX2, NT, iNOS, 8-HODG, IL-6) was evaluated in tissue samples of placentas of SIUDs belonging to the extensive case series (20 cases), collected from autopsy cases of the University of Ferrara and Politecnica delle Marche between 2017 and 2023. RESULTS The study demonstrated the involvement of oxidative stress in intrauterine fetal deaths in the placenta of the cases examined. In SIUD, the most expressed oxidative stress markers were NOX2 and 8-HODG. CONCLUSIONS The study contributes to investigating the role of oxidative stress in modulating different pathways in unexplained intrauterine fetal death (SIUD) tissues.
Collapse
Affiliation(s)
- Angelo Montana
- Department of Biomedical Sciences and Public Health, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Raffaella Marino
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Pantaleo Greco
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Cristina Taliento
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Ezio Fulcheri
- Division of Anatomic Pathology, Department of Surgical and Diagnostic Sciences (DISC), University of Genova, 16148 Genoa, Italy
- Fetal-Perinatal Pathology Unit, IRCCS-Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Anastasio Tini
- Department of Biomedical Sciences and Public Health, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesca Buffelli
- Fetal-Perinatal Pathology Unit, IRCCS-Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Tarannum A, Arif Z, Mustafa M, Alam K, Moinuddin, Habib S. Albumin from sera of rheumatoid arthritis patients share multiple biochemical, biophysical and immunological properties with in vitro generated glyco-nitro-oxidized-albumin. J Biomol Struct Dyn 2023:1-17. [PMID: 37982266 DOI: 10.1080/07391102.2023.2283153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
The purpose of the present study is to explore the effects of endogenous stressors on structure and function of rheumatoid arthritis (RA) patients' albumin. In contrast to glycated-albumin or nitro-oxidized-albumin, high titre antibodies against glyco-nitro-oxidized-albumin were found in the sera of RA patients. Also, compared to the other two modified forms of albumin, glyco-nitro-oxidized-albumin showed highest percent inhibition. Albumin isolated from RA patients' sera displayed hyperchromicity and quenching of tyrosine and tryptophan fluorescence. Fluorescence spectroscopy studies also revealed the presence of dityrosine and advanced glycation end products in RA patient's albumin. RA patients' albumin showed weaker binding with 1-anilinonaphthalene-8-sulfonic acid dye. Secondary structure alterations were demonstrated by circular dichroism and Fourier transform infrared spectroscopy. Biochemical investigations revealed substantial decline in the availability of free side chains of amino acid residues; increased carbonyls and decreased sulfhydryls in RA patients' albumin. The functional impairment in RA patients' albumin was revealed by their low binding with bilirubin and cobalt. Liquid chromatography mass spectrometry analysis revealed the presence of Nε-(carboxymethyl) lysine and 3-nitrotyrosine in RA patients' albumin. The amyloidogenic aggregation of RA patients' albumin was confirmed by Congo red absorption and thioflavin-T fluorescence assays. The morphology of the aggregates was visualized under scanning and transmission electron microscope. From the above findings, we inferred that endogenous stress in RA patients have modified albumin and produce structural/functional abnormalities. Also, the presence of anti-glyco-nitro-oxidized-albumin antibodies along with other clinical features may be used as biomarker for the diagnosis and assessment of treatment responses in RA patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
6
|
Vo TTL, Shin D, Ha E, Seo JH. Dysfunction of the Neurovascular Unit by Psychostimulant Drugs. Int J Mol Sci 2023; 24:15154. [PMID: 37894832 PMCID: PMC10606839 DOI: 10.3390/ijms242015154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
'Drug abuse' has been recognized as one of the most pressing epidemics in contemporary society. Traditional research has primarily focused on understanding how drugs induce neurotoxicity or degeneration within the central nervous system (CNS) and influence systems related to reward, motivation, and cravings. However, recent investigations have increasingly shifted their attention toward the detrimental consequences of drug abuse on the blood-brain barrier (BBB). The BBB is a structural component situated in brain vessels, responsible for separating brain tissue from external substances to maintain brain homeostasis. The BBB's function is governed by cellular interactions involving various elements of the 'neurovascular unit (NVU),' such as neurons, endothelial cells, astrocytes, pericytes, and microglia. Disruption of the NVU is closely linked to serious neurodegeneration. This review provides a comprehensive overview of the harmful effects of psychostimulant drugs on the BBB, highlighting the mechanisms through which drugs can damage the NVU. Additionally, the review proposes novel therapeutic targets aimed at protecting the BBB. By understanding the intricate relationships between drug abuse, BBB integrity, and NVU function, researchers and clinicians may uncover new strategies to mitigate the damaging impact of drug abuse on brain health.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.T.L.V.); (E.H.)
| | - Dain Shin
- Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Eunyoung Ha
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.T.L.V.); (E.H.)
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.T.L.V.); (E.H.)
| |
Collapse
|
7
|
Bashkatova VG, Bogdanova NG, Nazarova GA, Sudakov SK. Influence of a Nitric Oxide Synthase Inhibitor on the Anxiolytic, Stimulating, and Analgesic Effects of Long-Term Perinatal Caffeine Exposure in Rats. Bull Exp Biol Med 2023; 175:774-776. [PMID: 37987947 DOI: 10.1007/s10517-023-05944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 11/22/2023]
Abstract
We studied the effect of inducible NO synthase (iNOS) inhibitor aminoguanidine on the behavioral effects of chronic perinatal caffeine exposure. Administration of caffeine in the prenatal and early postnatal periods led to the development of anxiolytic, stimulating, and analgesic effects. Administration of aminoguanidine attenuated the anxiolytic and stimulating effects and potentiated the analgesic effect of perinatal administration of caffeine. Chronic perinatal administration of caffeine leads to significant changes in the level of anxiety, motor activity, and pain sensitivity, and inhibition of iNOS has a pronounced multidirectional effect on these effects.
Collapse
Affiliation(s)
- V G Bashkatova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - N G Bogdanova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - G A Nazarova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S K Sudakov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
8
|
Baldari B, De Simone S, Cipolloni L, Frisoni P, Alfieri L, D’Errico S, Fineschi V, Turillazzi E, Greco P, Vitagliano A, Scutiero G, Neri M. Oxidative Stress Markers in Human Brain and Placenta May Reveal the Timing of Hypoxic-Ischemic Injury: Evidence from an Immunohistochemical Study. Int J Mol Sci 2023; 24:12221. [PMID: 37569597 PMCID: PMC10418753 DOI: 10.3390/ijms241512221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
During pregnancy, reactive oxygen species (ROS) serve as crucial signaling molecules for fetoplacental circulatory physiology. Oxidative stress is thought to sustain the pathogenesis and progression of hypoxic-ischemic encephalopathy (HIE). A retrospective study was performed on the brains and placentas of fetuses and newborns between 36-42 weeks of gestation (Group_1: Fetal intrauterine deaths, Group_2: Intrapartum deaths, Group_3: Post-partum deaths, Control group sudden neonatal death); all groups were further divided into two subgroups (Subgroup_B [brain] and Subgroup_P [placenta]), and the study was conducted through the immunohistochemical investigations of markers of oxidative stress (NOX2, 8-OHdG, NT, iNOS), IL-6, and only on the brain samples, AQP4. The results for the brain samples suggest that NOX2, 8-OHdG, NT, iNOS, and IL-6 were statistically significantly expressed above the controls. iNOS was more expressed in the fetal intrauterine death (Group_1) and less expressed in post-partum death (Group_3), while in intrapartum death (Group_2), the immunoreactivity was very low. IL-6 showed the highest expression in the brain cortex of the fetal intrauterine death (Group_1), while intrapartum death (Group_2) and post-partum death (Group_3) showed weak immunoreactivity. Post-partum death (Group_3) placentas showed the highest immunoreactivity to NOX2, which was almost double that of the fetal intrauterine death (Group_1) and intrapartum death (Group_2) placentas. Placental tissues of fetal intrauterine death (Group_1) and intrapartum death (Group_2) showed higher expression of iNOS than post-partum death (Group_3), while the IL-6 expression was higher in the fetal intrauterine death (Group_1) than the post-partum death (Group_3). The AQP4 was discarded as a possible marker because the immunohistochemical reaction in the three groups of cases and the control group was negative. The goal of this study, from the point of view of forensic pathology, is to provide scientific evidence in cases of medical liability in the Obstetric field to support the clinical data of the timing of HIE.
Collapse
Affiliation(s)
- Benedetta Baldari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (B.B.); (V.F.)
| | - Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Viale Europa 12, 71122 Foggia, Italy; (S.D.S.); (L.C.)
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Viale Europa 12, 71122 Foggia, Italy; (S.D.S.); (L.C.)
| | - Paolo Frisoni
- Unit of Legal Medicine, Azienda USL di Ferrara, Via Arturo Cassoli 30, 44121 Ferrara, Italy;
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Stefano D’Errico
- Department of Medicine, Surgery and Health, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (B.B.); (V.F.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Via Roma, 55/57, 56126 Pisa, Italy;
| | - Pantaleo Greco
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (P.G.); (G.S.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Biomedical and Human Oncological Science (DIMO), University of Bari, Policlinico, Piazza Giulio Cesare, 11, 70124 Bari, Italy;
| | - Gennaro Scutiero
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (P.G.); (G.S.)
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
9
|
Hosseini A, Shetab-Boushehri SMH, Shetab-Boushehri SV. Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1-1 (Neuronal) Cell Lines. Neurotox Res 2022; 40:1499-1515. [PMID: 35838908 DOI: 10.1007/s12640-022-00543-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) are empathogen (entactogen) psychoactive designer drugs which are mainly used for recreational purposes. Both MA and MDMA are central nervous system stimulants which are classified as monoamine neurotransmitter reuptake inhibitors. They have strong cytotoxic effects on dopaminergic and serotonergic neurons. Neurotoxicities of MA and MDMA by glial activation have been shown. The present work has investigated and measured cytotoxic, necrotic and apoptotic, and autophagic effects of MA and MDMA on U-87 MG (glial) and B104-1-1 (neuronal) cell lines by janus green, ethidium bromide/acridine orange, and monodansylcadaverine/propidium iodide staining to evaluate and compare their effects on glial and neuronal cells, respectively. The results of the present work showed that: (1) MDMA induced more potent mitochondrial toxicity, stronger necrotic and autophagic effects than MA in both B104-1-1 (neuronal) and U-87 MG (glial) cell lines; (2) although MDMA induced stronger apoptotic effect than MA on U-87 MG cell line, it had equal apoptotic effect on B104-1-1 cell line with MA; and (3) MDMA induced more potent mitochondrial toxicity, stronger necrotic, apoptotic, and autophagic effects than MA in B104-1-1 cell line than U-87 MG cell line.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Vahid Shetab-Boushehri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Ameretat Shimi Pharmaceutical Co, Tehran, Iran.
| |
Collapse
|
10
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
11
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
12
|
Tirri M, Frisoni P, Bilel S, Arfè R, Trapella C, Fantinati A, Corli G, Marchetti B, De-Giorgio F, Camuto C, Mazzarino M, Gaudio RM, Serpelloni G, Schifano F, Botrè F, Marti M. Worsening of the Toxic Effects of (±) Cis-4,4'-DMAR Following Its Co-Administration with (±) Trans-4,4'-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice. Int J Mol Sci 2021; 22:ijms22168771. [PMID: 34445476 PMCID: PMC8395767 DOI: 10.3390/ijms22168771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.
Collapse
Affiliation(s)
- Micaela Tirri
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Paolo Frisoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sabrine Bilel
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Raffaella Arfè
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Giorgia Corli
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Beatrice Marchetti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Rosa Maria Gaudio
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, 37138 Verona, Italy;
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL 32611, USA
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, 1015 Lausanne, Switzerland
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Costa G, Spulber S, Paci E, Casu MA, Ceccatelli S, Simola N, Morelli M. In utero exposure to dexamethasone causes a persistent and age-dependent exacerbation of the neurotoxic effects and glia activation induced by MDMA in dopaminergic brain regions of C57BL/6J mice. Neurotoxicology 2021; 83:1-13. [PMID: 33338551 DOI: 10.1016/j.neuro.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerbation of the central noxious effects induced by psychoactive drugs consumed later in life. To this end, pregnant C57BL6/J dams were treated with dexamethasone (DEX, 0.05 mg/kg per day) from gestational day 14 until delivery. Thereafter, the male offspring were evaluated to ascertain the magnitude of dopaminergic damage, astrogliosis and microgliosis elicited in the nigrostriatal tract by the amphetamine-related drug 3,4--methylenedioxymethamphetamine (MDMA, 4 × 20 mg/kg, 2 h apart, sacrificed 48 h later) administered at either adolescence or adulthood. Immunohistochemistry was performed in the substantia nigra pars compacta (SNc) and striatum, to evaluate dopaminergic degeneration by measuring tyrosine hydroxylase (TH), as well as astrogliosis and microgliosis by measuring glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1), respectively. Moreover, immunohistochemistry was used to ascertain the co-localization of IBA-1 with either the pro-inflammatory interleukin (IL) IL-1β or the anti-inflammatory IL IL-10, in order to determine the microglial phenotype. In utero administration of DEX induced dopaminergic damage by decreasing the density of TH-positive fibers in the striatum, although only in adult mice. MDMA administration induced dopaminergic damage and glia activation in the nigrostriatal tract of adolescent and adult mice. Mice exposed to DEX in utero and treated with MDMA later in life showed a more pronounced loss of dopaminergic neurons (adolescent mice) and astrogliosis (adolescent and adult mice) in the SNc, compared with control mice. These results suggest that prenatal exposure to glucocorticoids may induce an age-dependent and persistent increase in the susceptibility to central toxicity of amphetamine-related drugs used later in life.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elena Paci
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
14
|
Wu Y, Jiao Z, Wan Z, Qu S. Role of autophagy and oxidative stress to astrocytes in fenpropathrin-induced Parkinson-like damage. Neurochem Int 2021; 145:105000. [PMID: 33617931 DOI: 10.1016/j.neuint.2021.105000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Fenpropathrin is an insecticide that is widely used in agriculture. It remains unknown whether fenpropathrin exposure increases the risk of Parkinson's disease. We found that fenpropathrin increased oxidative stress both in vitro and in vivo. Additionally, fenpropathrin increased production of ROS, NOS2, and HO-1, and decreased SOD and GSH in astrocytes. We further found that fenpropathrin-mediated oxidative stress might inhibit autophagic flow, including decreased expression of LC3A/B and enhanced expression of SQSTM1 via down-regulation of CDK-5, an upstream marker of autophagy. In mice, autophagy was slightly different from that found in astrocytes, as reflected in the increased expressions of LC3A/B and SQSTM1. Our findings elucidate the toxicological phenomena and pathogenic mechanisms of fenpropathrin and may provide guidance for improved pesticide control and environmental protection.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
15
|
Shahraz A, Wißfeld J, Ginolhac A, Mathews M, Sinkkonen L, Neumann H. Phagocytosis-related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides. Glia 2020; 69:137-150. [PMID: 32721081 DOI: 10.1002/glia.23890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX-2) in inflammatory neurodegeneration. Cybb-deficient NOX-2 knock-out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA-seq of total brain tissue indicated increased LPS-induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX-2 KO mice. Validation of up-regulated gene transcripts via qRT-PCR confirmed that LPS-challenged NOX-2 KO mice expressed lower levels of the microglial phagocytosis-related genes Nos2, Cd68, Aif1/Iba1, Cyba, Itgam, and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro-inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX-2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis-related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox.
Collapse
Affiliation(s)
- Anahita Shahraz
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| |
Collapse
|
16
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|