1
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Castricum A, Bakker EH, de Vetten NCMH, Weemen M, Angenent GC, Immink RGH, Bemer M. HD-ZIP Transcription Factors and Brassinosteroid Signaling Play a Role in Capitulum Patterning in Chrysanthemum. Int J Mol Sci 2023; 24:ijms24087655. [PMID: 37108818 PMCID: PMC10141471 DOI: 10.3390/ijms24087655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysanthemum is a genus in the Asteraceae family containing numerous cut flower varieties with high ornamental value. It owes its beauty to the composite flower head, which resembles a compact inflorescence. This structure is also known as a capitulum, in which many ray and disc florets are densely packed. The ray florets are localized at the rim, are male sterile, and have large colorful petals. The centrally localized disc florets develop only a small petal tube but produce fertile stamens and a functional pistil. Nowadays, varieties with more ray florets are bred because of their high ornamental value, but, unfortunately, this is at the expense of their seed setting. In this study, we confirmed that the disc:ray floret ratio is highly correlated to seed set efficiency, and therefore, we further investigated the mechanisms that underlie the regulation of the disc:ray floret ratio. To this end, a comprehensive transcriptomics analysis was performed in two acquired mutants with a higher disc:ray floret ratio. Among the differentially regulated genes, various potential brassinosteroid (BR) signaling genes and HD-ZIP class IV homeodomain transcription factors stood out. Detailed follow-up functional studies confirmed that reduced BR levels and downregulation of HD-ZIP IV gene Chrysanthemum morifolium PROTODERMAL FACTOR 2 (CmPDF2) result in an increased disc:ray floret ratio, thereby providing ways to improve seed set in decorative chrysanthemum varieties in the future.
Collapse
Affiliation(s)
- Annemarie Castricum
- Bioscience, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
- Dekker Chrysanten, 1711 RP Hensbroek, The Netherlands
| | - Erin H Bakker
- Dekker Chrysanten, 1711 RP Hensbroek, The Netherlands
| | | | - Mieke Weemen
- Bioscience, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Richard G H Immink
- Bioscience, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Marian Bemer
- Bioscience, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
3
|
Advances in Research on the Regulation of Floral Development by CYC-like Genes. Curr Issues Mol Biol 2023; 45:2035-2059. [PMID: 36975501 PMCID: PMC10047570 DOI: 10.3390/cimb45030131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes.
Collapse
|
4
|
Lu C, Qu J, Deng C, Liu F, Zhang F, Huang H, Dai S. The transcription factor complex CmAP3-CmPI-CmUIF1 modulates carotenoid metabolism by directly regulating carotenogenic gene CmCCD4a-2 in chrysanthemum. HORTICULTURE RESEARCH 2022; 9:uhac020. [PMID: 35184172 PMCID: PMC9125392 DOI: 10.1093/hr/uhac020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Carotenoids are one of the most important pigments for the coloring in many plants, fruits and flowers. Recently, significant progress has been made in carotenoid metabolism. However, the specific understanding on transcriptional regulation controlling the expression of carotenoid metabolic genes remains extremely limited. Anemone-type chrysanthemum, as a special group of chrysanthemum cultivars, contain elongated disc florets in capitulum, which usually appear in different colors compared with the ray florets since accumulating distinct content of carotenoids. In this study, the carotenoid composition and content of the ray and disc florets of an anemone-type chrysanthemum cultivar 'Dong Li Fen Gui' were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and the key structural gene CmCCD4a-2, of which differential expression resulted in the distinct content of carotenoids accumulated in these two types of florets, was identified. Then the promoter sequence of CmCCD4a-2 was used as bait to screen a chrysanthemum flower cDNA library and two transcription factors, CmAP3 and CmUIF1 were identified. Y2H, BiFC and Y3H experiments demonstrated that these two TFs were connected by CmPI to form CmAP3-CmPI-CmUIF1 TF complex. This TF complex regulated carotenoid metabolism through activating the expression of CmCCD4a-2 directly. Furthermore, a large number of target genes regulated directly by the CmAP3-CmPI-CmUIF1 TF complex, including carotenoid biosynthetic genes, flavonoid biosynthetic genes and flower development-related genes, were identified by DNA-affinity purification sequencing (DAP-seq), which indicated that the CmAP3-CmPI-CmUIF1 TF complex might participate in multiple processes. These findings expand our knowledge for the transcriptional regulation of carotenoid metabolism in plants and will be helpful to manipulating carotenoid accumulation in chrysanthemum.
Collapse
Affiliation(s)
- Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiaping Qu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangye Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fan Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
6
|
Tvorogova VE, Krasnoperova EY, Potsenkovskaia EA, Kudriashov AA, Dodueva IE, Lutova LA. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol Biol 2021. [DOI: 10.1134/s002689332102031x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 PMCID: PMC7853313 DOI: 10.1186/s12863-021-00959-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
8
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 DOI: 10.21203/rs.3.rs-27505/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
9
|
Su YH, Tang LP, Zhao XY, Zhang XS. Plant cell totipotency: Insights into cellular reprogramming. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:228-243. [PMID: 32437079 DOI: 10.1111/jipb.12972] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Plant cells have a powerful capacity in their propagation to adapt to environmental change, given that a single plant cell can give rise to a whole plant via somatic embryogenesis without the need for fertilization. The reprogramming of somatic cells into totipotent cells is a critical step in somatic embryogenesis. This process can be induced by stimuli such as plant hormones, transcriptional regulators and stress. Here, we review current knowledge on how the identity of totipotent cells is determined and the stimuli required for reprogramming of somatic cells into totipotent cells. We highlight key molecular regulators and associated networks that control cell fate transition from somatic to totipotent cells. Finally, we pose several outstanding questions that should be addressed to enhance our understanding of the mechanisms underlying plant cell totipotency.
Collapse
Affiliation(s)
- Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Ping Tang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Yu Q, Tian X, Lin C, Specht CD, Liao J. Expression and Function Studies of CYC/ TB1-Like Genes in the Asymmetric Flower Canna (Cannaceae, Zingiberales). FRONTIERS IN PLANT SCIENCE 2020; 11:580576. [PMID: 33343594 PMCID: PMC7746682 DOI: 10.3389/fpls.2020.580576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The asymmetric flower, lacking any plane of symmetry, is rare among angiosperms. Canna indica L. has conspicuously asymmetric flowers resulting from the presence of a half-fertile stamen, while the other androecial members develop as petaloid staminodes or abort early during development. The molecular basis of the asymmetric distribution of fertility and petaloidy in the androecial whorls remains unknown. Ontogenetic studies have shown that Canna flowers are borne on monochasial (cincinnus) partial florescences within a racemose inflorescence, with floral asymmetry likely corresponding to the inflorescence architecture. Given the hypothesized role of CYC/TB1 genes in establishing floral symmetry in response to the influence of the underlying inflorescence architecture, the spatiotemporal expression patterns of three Canna CYC/TB1 homologs (CiTBL1a, CiTBL1b-1, and CiTBL1b-2) were analyzed during inflorescence and floral development using RNA in situ hybridization and qRT-PCR. In the young inflorescence, both CiTBL1a and CiTBL1b-1 were found to be expressed in the bracts and at the base of the lateral florescence branches, whereas transcripts of CiTBL1b-2 were mainly detected in flower primordia and inflorescence primordia. During early flower development, expression of CiTBL1a and CiTBL1b-1 were both restricted to the developing sepals and petals. In later flower development, expression of CiTBL1a was reduced to a very low level while CiTBL1b-1 was detected with extremely high expression levels in the petaloid androecial structures including the petaloid staminodes, the labellum, and the petaloid appendage of the fertile stamen. In contrast, expression of CiTBL1b-2 was strongest in the fertile stamen throughout flower development, from early initiation of the stamen primordium to maturity of the ½ anther. Heterologous overexpression of CiTBL genes in Arabidopsis led to dwarf plants with smaller petals and fewer stamens, and altered the symmetry of mature flowers. These data provide evidence for the involvement of CYC/TB1 homologs in the development of the asymmetric Cannaceae flower.
Collapse
Affiliation(s)
- Qianxia Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Canjia Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology/Economic Botany/Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Yuan C, Huang D, Yang Y, Sun M, Cheng T, Wang J, Pan H, Zhang Q. CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium. PLANT MOLECULAR BIOLOGY 2020; 103:159-171. [PMID: 32088830 DOI: 10.1007/s11103-020-00981-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The complex capitulum of Chrysanthemum morifolium is often comprised of bilaterally symmetrical ray florets and radially symmetrical disc florets. The TCP transcription factor clade CYCLOIDEA2 (CYC2) appears to play a vital role in determining floral symmetry and in regulating floral organ development in Asteraceae. Our previous study identified six CmCYC2 genes from chrysanthemum and showed that CmCYC2c participated in the regulation of ray floret identity. However, the functions of other CmCYC2 genes and the underlying molecular mechanism of CmCYC2-mediated floral development regulation in chrysanthemums have not been elucidated. In this study, we analysed the function of CmCYC2 genes by ectopic expression of CmCYC2 in Arabidopsis. Then, we examined the protein-protein interaction using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Finally, we analysed the protein-DNA interaction using yeast one-hybrid (Y1H) and dual-luciferase reporter assays. We found that ectopic expression of CmCYC2 genes in the Arabidopsis tcp1 mutant changed its floral symmetry and flowering time. Y2H and BiFC assays confirmed three pairs of interactions between CmCYC2 proteins, that is, CmCYC2b-CmCYC2d, CmCYC2b-CmCYC2e and CmCYC2c-CmCYC2d, suggesting that heterodimeric complexes may form between CmCYC2 proteins to increase their functional specificity. The results of Y1H and dual-luciferase reporter assays indicate that CmCYC2c can bind to the promoter of ClCYC2f. Our findings provided clues that CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in C. morifolium. KEY MESSAGE: CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Di Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Yi Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, No. 35 East Qinghua Road, Haidian District, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. PLANT CELL REPORTS 2020; 39:431-444. [PMID: 31984435 DOI: 10.1007/s00299-020-02511-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
This review summarizes recent knowledge on functions of WUS and WUS-related homeobox (WOX) transcription factors in diverse signaling pathways governing shoot meristem biology and several other aspects of plant dynamics. Transcription factors (TFs) are master regulators involved in controlling different cellular and biological functions as well as diverse signaling pathways in plant growth and development. WUSCHEL (WUS) is a homeodomain transcription factor necessary for the maintenance of the stem cell niche in the shoot apical meristem, the differentiation of lateral primordia, plant cell totipotency and other diverse cellular processes. Recent research about WUS has uncovered several unique features including the complex signaling pathways that further improve the understanding of vital network for meristem biology and crop productivity. In addition, several reports bridge the gap between WUS expression and plant signaling pathway by identifying different WUS and WUS-related homeobox (WOX) genes during the formation of shoot (apical and axillary) meristems, vegetative-to-embryo transition, genetic transformation, and other aspects of plant growth and development. In this respect, the WOX family of TFs comprises multiple members involved in diverse signaling pathways, but how these pathways are regulated remains to be elucidated. Here, we review the current status and recent discoveries on the functions of WUS and newly identified WOX family members in the regulatory network of various aspects of plant dynamics.
Collapse
Affiliation(s)
- Priyanka Jha
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, Action Area II, Kolkata, West Bengal, India
| | - Sergio J Ochatt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vijay Kumar
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
13
|
Álvarez I, Agudo AB, Herrero A, Torices R. The Mendelian inheritance of gynomonoecy: insights from Anacyclus hybridizing species. AMERICAN JOURNAL OF BOTANY 2020; 107:116-125. [PMID: 31903550 DOI: 10.1002/ajb2.1414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Gynomonoecy is an infrequent sexual system in angiosperms, although widely represented within the Asteraceae family. Currently, the hypothesis of two nuclear loci controling gynomonoecy is the most accepted. However, the genic interactions are still uncertain. Anacyclus clavatus, A. homogamos, and A. valentinus differ in their sexual system and floral traits. Here, we investigate the inheritance of gynomonoecy in this model system to understand its prevalence in the family. METHODS We selected six natural populations (two per species) for intra- and interspecific experimental crosses, and generated a total of 1123 individuals from the F1 generation, F2 , and backcrosses for sexual system characterization. The frequency of gynomonoecy observed for each cross was tested to fit different possible hypotheses of genic interaction. Additionally, the breeding system and the degree of reproductive isolation between these species were assessed. RESULTS Complementary epistasis, in which two dominant alleles are required for trait expression, explained the frequencies of gynomonoecy observed across all generations. The heterozygosity inferred in Anacyclus valentinus, as well as its lower and variable seed set, is congruent with its hybrid origin. CONCLUSIONS In our model system gynomonoecy is controlled by complementary epistasis of two genes. A common origin of this sexual system in Asteraceae, in which genic duplications, mutations, and hybridization between lineages played a key role, is hypothesized whereas independent evolutionary pathways and possibly diverse underlying genetic factors are suggested for gynomonoecy expression in other angiosperm families.
Collapse
Affiliation(s)
- Inés Álvarez
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, 28014-Madrid, Spain
| | - A Bruno Agudo
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, 28014-Madrid, Spain
| | - Alberto Herrero
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, 28014-Madrid, Spain
| | - Rubén Torices
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933-Móstoles, Madrid, Spain
| |
Collapse
|
14
|
Martínez-Gómez P. Editorial for Special Issue "Plant Genetics and Molecular Breeding". Int J Mol Sci 2019; 20:ijms20112659. [PMID: 31151169 PMCID: PMC6600240 DOI: 10.3390/ijms20112659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
The development of new plant varieties is a long and tedious process involving the generation of large seedling populations to select the best individuals [...].
Collapse
Affiliation(s)
- Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|