1
|
Ragia G, Pallikarou M, Michou C, Manolopoulos VG. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Genes (Basel) 2024; 15:1491. [PMID: 39596691 PMCID: PMC11593693 DOI: 10.3390/genes15111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:MIR27A rs895819 polymorphism has emerged as a potential additional pharmacogenomic marker of fluoropyrimidine response. Current evidence on its potential effect on miR-27a expression, which represses DPD activity, leading to DPD deficiency and increased fluoropyrimidine-associated toxicity risk, is scarce and inconsistent. We have analyzed the effect of MIR27A rs895819 polymorphism on miR-27a-3p plasma expression levels under different models of inheritance to contribute further evidence on its plausible biological role in miR-27a expression. Methods: A total of 59 individuals with no medical history of cancer were included in this study. MIR27A rs895819 genotyping and miR-27a-3p expression were analyzed by using predesigned TaqMan assays. Results: The frequency of TT, TC, and CC genotypes was present at a prevalence of 50.8%, 44.1%, and 5.1%, respectively. Individuals carrying the CC genotype presented with decreased miR-27a-3p expression (0.422 fold-change versus TT, p = 0.041; 0.461 fold-change versus TC, p = 0.064), whereas no differences were present between TT and TC individuals (1.092 fold-change, p = 0.718). miR-27a-3p expression was decreased in CC individuals under a recessive model of inheritance (0.440 fold-change, p = 0.047). No differences were found in dominant (TT vs. TC+CC, 0.845 fold-change, p = 0.471) or over dominant (TT+CC vs. TC, 0.990 fold-change, p = 0.996) models of inheritance. Conclusions:MIR27A rs895819CC genotype leads to severely reduced miR-27a-3p expression in plasma. Further study of this association is warranted in cancer patients to apply MIR27A genotyping in therapeutics to identify fluoropyrimidine-treated patients who are at a decreased risk of experiencing fluoropyrimidine-induced severe toxicity.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
| | - Myria Pallikarou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
| | - Chrysoula Michou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Dragana Campus, 68100 Alexandroupolis, Greece
| |
Collapse
|
2
|
Khired ZA, Kattan SW, Alzahrani AK, Milebary AJ, Hussein MH, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Analysis of MIR27A (rs11671784) Variant Association with Systemic Lupus Erythematous. Life (Basel) 2023; 13:701. [PMID: 36983856 PMCID: PMC10058767 DOI: 10.3390/life13030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple microRNAs (miRs) are associated with systemic autoimmune disease susceptibility/phenotype, including systemic lupus erythematosus (SLE). With this work, we aimed to unravel the association of the miR-27a gene (MIR27A) rs11671784G/A variant with SLE risk/severity. One-hundred sixty-three adult patients with SLE and matched controls were included. A TaqMan allelic discrimination assay was applied for MIR27A genotyping. Logistic regression models were run to test the association with SLE susceptibility/risk. Genotyping of 326 participants revealed that the heterozygote form was the most common genotype among the study cohort, accounting for 72% of the population (n = 234), while A/A and G/G represented 15% (n = 49) and 13% (n = 43), respectively. Similarly, the most prevalent genotype among cases was the A/G genotype, which was present in approximately 93.3% of cases (n = 152). In contrast, only eight and three patients had A/A and G/G genotypes, respectively. The MIR27A rs11671784 variant conferred protection against the development of SLE in several genetic models, including heterozygous (G/A vs. A/A; OR = 0.10, 95% CI = 0.05-0.23), dominant (G/A + G/G vs. AA; OR = 0.15, 95% CI = 0.07-0.34), and overdominant (G/A vs. A/A + G/G; OR = 0.07, 95% CI = 0.04-0.14) models. However, the G/G genotype was associated with increased SLE risk in the recessive model (G/G vs. A/A+ G/G; OR = 17.34, 95% CI = 5.24-57.38). Furthermore, the variant showed significant associations with musculoskeletal and mucocutaneous manifestations in the patient cohort (p = 0.035 and 0.009, respectively) and platelet and white blood cell counts (p = 0.034 and 0.049, respectively). In conclusion, the MIR27A rs11671784 variant showed a potentially significant association with SLE susceptibility/risk in the studied population. Larger-scale studies on multiethnic populations are recommended to verify the results.
Collapse
Affiliation(s)
- Zenat Ahmed Khired
- Department of Surgery, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Ahmad Khuzaim Alzahrani
- Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Ahmad J. Milebary
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Safaa Y. Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
3
|
Urbańska K, Stępień PW, Nowakowska KN, Stefaniak M, Osial N, Chorągiewicz T, Toro MD, Nowomiejska K, Rejdak R. The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:ijms23147761. [PMID: 35887109 PMCID: PMC9319652 DOI: 10.3390/ijms23147761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using “Age-related macular degeneration”, “miRNA”, “AMD biomarkers”, “miRNA therapeutics” and “AMD pathogenesis” as keywords. Paper search was limited to articles published from 2011 to date. In the section “Retinal, circulating and vitreous body miRNAs found in human studies”, we limited the search to studies with patients published in 2016–2021.
Collapse
Affiliation(s)
- Karolina Urbańska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Piotr Witold Stępień
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Katarzyna Natalia Nowakowska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Martyna Stefaniak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Natalia Osial
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Tomasz Chorągiewicz
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Correspondence:
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Eye Clinic, Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| |
Collapse
|
4
|
WARE: Wet AMD Risk-Evaluation Tool as a Clinical Decision-Support System Integrating Genetic and Non-Genetic Factors. J Pers Med 2022; 12:jpm12071034. [PMID: 35887531 PMCID: PMC9321802 DOI: 10.3390/jpm12071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Given the multifactorial features characterizing age-related macular degeneration (AMD), the availability of a tool able to provide the individual risk profile is extremely helpful for personalizing the follow-up and treatment protocols of patients. To this purpose, we developed an open-source computational tool named WARE (Wet AMD Risk Evaluation), able to assess the individual risk profile for wet AMD based on genetic and non-genetic factors. In particular, the tool uses genetic risk measures normalized for their relative frequencies in the general population and disease prevalence. WARE is characterized by a user-friendly web page interface that is intended to assist clinicians in reporting risk assessment upon patient evaluation. When using the tool, plots of population risk distribution highlight a “low-risk zone” and a “high-risk zone” into which subjects can fall depending on their risk-assessment result. WARE represents a reliable population-specific computational system for wet AMD risk evaluation that can be exploited to promote preventive actions and personalized medicine approach for affected patients or at-risk individuals. This tool can be suitable to compute the disease risk adjusted to different populations considering their specific genetic factors and related frequencies, non-genetic factors, and the disease prevalence.
Collapse
|
5
|
Caputo V, Strafella C, Termine A, Fabrizio C, Ruffo P, Cusumano A, Giardina E, Ricci F, Cascella R. Epigenomic signatures in age-related macular degeneration: Focus on their role as disease modifiers and therapeutic targets. Eur J Ophthalmol 2021; 31:2856-2867. [PMID: 34798695 DOI: 10.1177/11206721211028054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetics is characterized by molecular modifications able to shape gene expression profiles in response to inner and external stimuli. Therefore, epigenetic elements are able to provide intriguing and useful information for the comprehension and management of different human conditions, including aging process, and diseases. On this subject, Age-related Macular Degeneration (AMD) represents one of the most frequent age-related disorders, dramatically affecting the quality of life of older adults worldwide. The etiopathogenesis is characterized by an interplay among multiple genetic and non-genetic factors, which have been extensively studied. Nevertheless, a deeper dissection of molecular machinery associated with risk, onset, progression and effectiveness of therapies is still missing. In this regard, epigenetic signals may be further explored to disentangle disease etiopathogenesis, the possible therapeutic avenues and the differential response to AMD treatment. This review will discuss the epigenomic signatures mostly investigated in AMD, which could be applied to improve the knowledge of disease mechanisms and to set-up novel or modified treatment options.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
6
|
ElShelmani H, Brennan I, Kelly DJ, Keegan D. Differential Circulating MicroRNA Expression in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212321. [PMID: 34830203 PMCID: PMC8625913 DOI: 10.3390/ijms222212321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
| | - Ian Brennan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- University College Cork, College Road, Cork, Ireland
| | - David J. Kelly
- Zoology Department, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - David Keegan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- Correspondence:
| |
Collapse
|
7
|
Investigation of Key Signaling Pathways Associating miR-204 and Common Retinopathies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568113. [PMID: 34646884 PMCID: PMC8505061 DOI: 10.1155/2021/5568113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a large group of small noncoding RNAs that work in multiple cellular pathways. miR-204, as one of the key axes in the development, maintenance, and pathogenesis of the retina, plays several roles by modulating its target genes. This study was aimed at evaluating the target genes of miR-204 involved in the development and progression of common retinopathies such as glaucoma, retinoblastoma, and age-related macular degeneration. In this study, three datasets related to retinopathies (GSE50195, GSE27276, and GSE97508) were selected from Gene Expression Omnibus. miR-204 target genes were isolated from TargeScan. The shares between retinopathy and miR-204 target genes were then categorized. Using Enrichr and STRING, we highlighted the signaling pathways and the relationships between the proteins. SHC1 events in ERBB2, adherent junction's interactions, NGF signaling via TRKA from the plasma membrane, IRF3-mediated activation of type 1 IFN, pathways in upregulated genes and G0 and early G1, RORA-activated gene expression, PERK-regulated gene expression, adherent junction's interactions, and CREB phosphorylation pathways in downregulated genes were identified in glaucoma, retinoblastoma, and age-related macular degeneration. WEE1, SMC2, HMGB1, RRM2, and POLA1 proteins were also observed to be involved in the progression and invasion of retinoblastoma; SLC24A2 and DTX4 in age-related macular degeneration; and EPHB6, EFNB3, and SHC1 in glaucoma. Continuous bioinformatics analysis has shown that miR-204 has a significant presence and expression in retinal tissue, and approximately 293 genes are controlled and regulated by miR-204 in this tissue; also, target genes of miR-204 have the potential to develop various retinopathies; thus, a study of related target genes can provide appropriate treatment strategies in the future.
Collapse
|
8
|
Du J, Wang X, Tan G, Wei W, Zhou F, Liang Z, Li H, Yu H. Predisposition to Graves' disease and Graves' ophthalmopathy by genetic variants of IL2RA. J Mol Med (Berl) 2021; 99:1487-1495. [PMID: 34287665 DOI: 10.1007/s00109-021-02111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/03/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022]
Abstract
Previous studies have identified that Th17/Treg cells were involved in the occurrence and development of Graves' disease (GD). This study aimed at clarifying the association between GD susceptibility and nine single nucleotide polymorphisms (SNPs) of Th17/Treg cell-related genes, including IL2RA, miR27a, miR182, and FoxO1. A two-stage association study was performed in 650 GD patients and 1300 healthy controls. PCR-RFLP assays, real-time PCR, and ELISA were performed. In the first stage, association analysis has identified that IL2RA/rs3118470 TT genotype (Pc = 0.027, OR = 1.688) and IL2RA/rs2104286 AA genotype (Pc = 0.027, OR = 1.658) has significantly increased frequencies in patients with GD than control subjects. In the second stage, the result of rs2104286 was consistent with the first-stage results (AA genotype: Pc = 0.006, OR = 1.618). The combined data showed that IL2RA/rs2104286 AA genotype had increased frequencies in patients with GD (Pc = 8.772 × 10-6, OR = 1.636). Stratification analysis also revealed that rs2104286 AA genotype was significantly associated with Graves' ophthalmopathy (GO) susceptibility (Pc = 9.150 × 10-4, OR = 1.851). Functional studies showed that carriers of the rs2104286 AA genotype had lower IL2RA mRNA expression than AG genotype carriers (P = 0.021). Cytokine analyses revealed that the rs2104286 AA genotype individuals had lower IL-10 levels (P = 0.015) and increased IL-17 levels than AG genotype carriers (P = 1.467 × 10-4). In conclusion, our findings suggested that IL2RA/rs2104286 was associated with GD and GO susceptibility in Southwest Chinese Han population, which may be involved in the occurrence of GD and GO by affecting the mRNA expression of IL2RA gene and the cytokine production. KEY MESSAGES: We identified that IL2RA/rs2104286 locus contributed to the predisposition of Graves' disease (GD) and Graves' ophthalmopathy (GO). Functional analyses suggested that IL2RA/rs2104286 may participate in the occurrence of GD and GO by affecting the mRNA expression of IL2RA and cytokine (IL-10 and IL-17) secretion. We found that IL2RA (rs3118470, rs7093069), miR27a/rs895819, miR182/rs76481776, and FoxO1 (rs2297626, rs17592236, rs9549241, rs12585277) loci polymorphisms were not associated with GD susceptibility.
Collapse
Affiliation(s)
- Juan Du
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xin Wang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Guiqin Tan
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Wenwen Wei
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Fangyu Zhou
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Zhongzhi Liang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Hua Li
- Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hongsong Yu
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
9
|
Strafella C, Caputo V, Termine A, Fabrizio C, Ruffo P, Potenza S, Cusumano A, Ricci F, Caltagirone C, Giardina E, Cascella R. Genetic Determinants Highlight the Existence of Shared Etiopathogenetic Mechanisms Characterizing Age-Related Macular Degeneration and Neurodegenerative Disorders. Front Neurol 2021; 12:626066. [PMID: 34135841 PMCID: PMC8200556 DOI: 10.3389/fneur.2021.626066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) showed several processes and risk factors in common with neurodegenerative disorders (NDDs). The present work explored the existence of genetic determinants associated with AMD, which may provide insightful clues concerning its relationship with NDDs and their possible application into the clinical practice. In this study, 400 AMD patients were subjected to the genotyping analysis of 120 genetic variants by OpenArray technology. As the reference group, 503 samples representative of the European general population were utilized. Statistical analysis revealed the association of 23 single-nucleotide polymorphisms (SNPs) with AMD risk. The analysis of epistatic effects revealed that ARMS2, IL6, APOE, and IL2RA could contribute to AMD and neurodegenerative processes by synergistic modulation of the expression of disease-relevant genes. In addition, the bioinformatic analysis of the associated miRNA variants highlighted miR-196a, miR-6796, miR-6499, miR-6810, miR-499, and miR-7854 as potential candidates for counteracting AMD and neurodegenerative processes. Finally, this work highlighted the existence of shared disease mechanisms (oxidative stress, immune-inflammatory response, mitochondrial dysfunction, axonal guidance pathway, and synaptogenesis) between AMD and NDDs and described the associated SNPs as candidate biomarkers for developing novel strategies for early diagnosis, monitoring, and treatment of such disorders in a progressive aging population.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Saverio Potenza
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
10
|
Abstract
INTRODUCTION In the retina, noncoding RNA (ncRNA) plays an integral role in regulating apoptosis, inflammatory responses, visual perception, and photo-transduction, with altered levels reported in diseased states. AREAS COVERED MicroRNA (miRNA), a class of ncRNA, regulates post-transcription gene expression through the binding of complementary sites of target messenger RNA (mRNA) with resulting translational repression. Small-interfering RNA (siRNA) is a double-stranded RNA (dsRNA) that regulates gene expression, leading to selective silencing of genes through a process called RNA interference (RNAi). Another form of RNAi involves short hairpin RNA (shRNA). In age-related macular degeneration (AMD) and diabetic retinopathy (DR), miRNA has been implicated in the regulation of angiogenesis, oxidative stress, immune response, and inflammation. EXPERT OPINION Many RNA-based therapies in development are conveniently administered intravitreally, with the potential for pan-retinal effect. The majority of these RNA therapeutics are synthetic ncRNA's and hold promise for the treatment of AMD, DR, and inherited retinal diseases (IRDs). These RNA-based therapies include siRNA therapy with its high specificity, shRNA to 'knock down' autosomal dominant toxic gain of function-mutated genes, antisense oligonucleotides (ASOs), which can restore splicing defects, and translational read-through inducing drugs (TRIDs) to increase expression of full-length protein from genes with premature stop codons.
Collapse
Affiliation(s)
- Michael C Gemayel
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Thomas Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA.,Preclinical and Clinical Development, Clearside Biomedical, Inc, Alpharetta, GA, USA.,Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
11
|
Li X, He S, Zhao M. An Updated Review of the Epigenetic Mechanism Underlying the Pathogenesis of Age-related Macular Degeneration. Aging Dis 2020; 11:1219-1234. [PMID: 33014534 PMCID: PMC7505275 DOI: 10.14336/ad.2019.1126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Epigenetics has been recognized to play an important role in physiological and pathological processes of the human body. Accumulating evidence has indicated that epigenetic mechanisms contribute to the pathogenesis of age-related macular degeneration (AMD). Although the susceptibility related to genetic variants has been revealed by genome-wide association studies, those genetic variants may predict AMD risk only in certain human populations. Other mechanisms, particularly those involving epigenetic factors, may play an important role in the pathogenesis of AMD. Therefore, we briefly summarize the most recent reports related to such epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA, and the interplay of genetic and epigenetic factors in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China.,5Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- 6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
12
|
Kenney MC, Nashine S. Further understanding of epigenetic dysfunction of the retinal pigment epithelium in AMD. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:221-231. [PMID: 33732291 DOI: 10.1080/17469899.2020.1767597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Modulation of epigenetic mechanisms that contribute to retinal development may render the eye susceptible to age-related macular degeneration (AMD). Progression of AMD involves alterations of epigenome such as CpG methylation and histone modifications, and study of the epigenetic regulation of molecular/ cellular pathways associated with AMD might identify target epigenetic markers for treatment of AMD. Areas covered In this review, we provide an overview of the influence of epigenetic factors on signaling pathways/ related genes associated with AMD, mainly hypoxia, angiogenesis, inflammation, complement, and oxidative stress; and discuss the critical role of microRNAs in AMD. Expert Opinion Better understanding of epigenetic-mediated and microRNA-mediated regulation of the AMD disease-related pathways would help to assess the risk of developing AMD besides providing valuable insight on potential target candidates for AMD therapy.
Collapse
Affiliation(s)
- Maria Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Caputo V, Strafella C, Termine A, Campione E, Bianchi L, Novelli G, Giardina E, Cascella R. RNAseq-Based Prioritization Revealed COL6A5, COL8A1, COL10A1 and MIR146A as Common and Differential Susceptibility Biomarkers for Psoriasis and Psoriatic Arthritis: Confirmation from Genotyping Analysis of 1417 Italian Subjects. Int J Mol Sci 2020; 21:ijms21082740. [PMID: 32326527 PMCID: PMC7215451 DOI: 10.3390/ijms21082740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Psoriasis (Ps) and Psoriatic Arthritis (PsA) are characterized by a multifactorial etiology, involving genetic and environmental factors. The present study aimed to investigate polymorphisms (SNPs) within genes involved in extracellular matrix and cell homeostasis and microRNA genes as susceptibility biomarkers for Ps and PsA. Bioinformatic analysis on public RNA-seq data allowed for selection of rs12488457 (A/C, COL6A5), rs13081855 (G/T, COL8A1), rs3812111 (A/T, COL10A1) and rs2910164 (C/G, MIR146A) as candidate biomarkers. These polymorphisms were analyzed by Real-Time PCR in a cohort of 1417 Italian patients (393 Ps, 424 PsA, 600 controls). Statistical and bioinformatic tools were utilized for assessing the genetic association and predicting the effects of the selected SNPs. rs12488457, rs13081855 and rs2910164 were significantly associated with both Ps (p = 1.39 × 10−8, p = 4.52 × 10−4, p = 0.04, respectively) and PsA (p = 5.12 × 10−5, p = 1.19 × 10−6, p = 0.01, respectively). rs3812111, instead, was associated only with PsA (p = 0.005). Bioinformatic analysis revealed common and differential biological pathways involved in Ps and PsA. COL6A5 and COL8A1 take part in the proliferation and angiogenic pathways which are altered in Ps/PsA and contribute to inflammation together with MIR146A. On the other hand, the exclusive association of COL10A1 with PsA highlighted the specific involvement of bone metabolism in PsA.
Collapse
Affiliation(s)
- Valerio Caputo
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Claudia Strafella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Elena Campione
- Dermatologic Clinic, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Luca Bianchi
- Dermatologic Clinic, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Giuseppe Novelli
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Neuromed Institute IRCCS, 86077 Pozzilli, Italy
| | - Emiliano Giardina
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
- Correspondence:
| |
Collapse
|
14
|
Chen X, Sun R, Yang D, Jiang C, Liu Q. LINC00167 Regulates RPE Differentiation by Targeting the miR-203a-3p/SOCS3 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1015-1026. [PMID: 32044724 PMCID: PMC7015824 DOI: 10.1016/j.omtn.2019.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) play significant roles in various diseases; however, their roles in age-related macular degeneration (AMD) remain unclear. Dedifferentiation and dysfunction of retinal pigment epithelium (RPE) cells have been shown to contribute to AMD etiology in several studies. Herein, we found that lncRNA LINC00167 was downregulated in RPE-choroid samples of AMD patients and dysfunctional RPE cells, and it was consistently upregulated along with RPE differentiation. In vitro study indicated that reduced endogenous LINC00167 expression resulted in RPE dedifferentiation, which was typified by attenuated expression of RPE markers, reduced vascular endothelial growth factor A secretion, accumulation of mitochondrial reactive oxygen species, and interrupted phagocytic ability. Mechanistically, LINC00167 functioned as a sponge for microRNA miR-203a-3p to restore the expression of the suppressor of cytokine signaling 3 (SOCS3), which further inhibited the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Taken together, our study demonstrated that LINC00167 showed a protective role in AMD by maintaining RPE differentiation through the LINC00167/miR-203a-3p/SOCS3 axis and might be a potential therapeutic target for AMD.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Daidi Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Blasiak J, Watala C, Tuuminen R, Kivinen N, Koskela A, Uusitalo-Järvinen H, Tuulonen A, Winiarczyk M, Mackiewicz J, Zmorzyński S, Filip A, Kaarniranta K. Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J Cell Mol Med 2019; 23:8464-8471. [PMID: 31633290 PMCID: PMC6850949 DOI: 10.1111/jcmm.14731] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland.,Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Niko Kivinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | | | - Anja Tuulonen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|