1
|
Chen C, Ai Q, Tian H, Wei Y. CKLF1 in cardiovascular and cerebrovascular diseases. Int Immunopharmacol 2024; 139:112718. [PMID: 39032474 DOI: 10.1016/j.intimp.2024.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Chemokine like factor 1 (CKLF1) is a novel atypical chemokine, playing a crucial role in cardiovascular and cerebrovascular diseases (CCVDs) demonstrated by a growing body of works. In cardiovascular diseases including atherosclerosis and myocardial infarction, meanwhile in cerebrovascular diseases such as ischemic stroke and hemorrhagic stroke, the expression levels of CKLF1 change markedly, which triggers downstream signaling pathways by binding with its functional receptors, and then exerts multiple effects to participate in the occurrence and development of these CCVDs. The functional roles of CKLF1 are dynamic and CKLF1 may act as a double-edged sword. The CCVDs-promoting role is related to recruiting inflammatory cells, enhancing the proliferation of vascular smooth muscle cells and endothelial cells, while the CCVDs-suppressing role may correlate with migration of nerve cells and promotion of hematopoietic stem cell proliferation which contributes to disease recovery. Based on this, the paper intends to review expression shifts, potential roles, and molecular mechanisms of CKLF1 in CCVDs, and the current status of CKLF1 targeted therapeutic strategies is also included. We hope this review may provide a valuable reference for using CKLF1 as a diagnostic and prognostic biomarker for CCVDs or developing novel treatments.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qidi Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Haiyan Tian
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Wu X, Su C, Tian D, Ye Y, Du Q, Chen J, Li H, Liu J. Utility of serum chemokine-like factor 1 as a biomarker of severity and prognosis after severe traumatic brain injury: A prospective observational study. Brain Behav 2024; 14:e3522. [PMID: 38773776 PMCID: PMC11109498 DOI: 10.1002/brb3.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Chemokine-like factor 1 (CKLF1) may be involved in the inflammatory response and secondary brain injury after severe traumatic brain injury (sTBI). We determined serum CKLF1 levels of sTBI patients to further investigate the correlation of CKLF1 levels with disease severity, functional prognosis, and 180-day mortality of sTBI. METHODS Serum CKLF1 levels were measured at admission in 119 sTBI patients and at entry into study in 119 healthy controls. Serum CKLF levels of 50 patients were also quantified at days 1-3, 5, and 7 after admission. Glasgow coma scale (GCS) scores and Rotterdam computerized tomography (CT) classification were utilized to assess disease severity. Extended Glasgow outcome scale (GOSE) scores were recorded to evaluate function prognosis at 180 days after sTBI. Relations of serum CKLF1 levels to 180-day poor prognosis (GOSE scores of 1-4) and 180-day mortality were analyzed using univariate analysis, followed by multivariate analysis. Receiver-operating characteristic (ROC) curve was built to investigate prognostic predictive capability. RESULTS Serum CKLF1 levels of sTBI patients increased at admission, peaked at day 2, and then gradually decreased; they were significantly higher during the 7 days after sTBI than in healthy controls. Differences of areas under ROC curve (areas under the curve [AUCs]) were not significant among the six time points. Multivariate analysis showed that serum CKLF1 levels were independently correlated with GCS scores, Rotterdam CT classification, and GOSE scores. Serum CKLF1 levels were significantly higher in non-survivors than in survivors and in poor prognosis patients than in good prognosis patients. Serum CKLF1 levels independently predicted 180-day poor prognosis and 180-day mortality, and had high 180-day prognosis and mortality predictive abilities, and their AUCs were similar to those of GCS scores and Rotterdam CT classification. Combination model containing serum CKLF1, GCS scores, and Rotterdam CT classification performed more efficiently than any of them alone in predicting mortality and poor prognosis. The models were visually described using nomograms, which were comparatively stable under calibration curve and were relatively of clinical benefit under decision curve. CONCLUSION Serum CKLF1 levels are significantly associated with disease severity, poor 180-day prognosis, and 180-day mortality in sTBI patients. Hence, complement CKLF1 may serve as a potential prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Chang Su
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Da Tian
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Yufei Ye
- Department of NeurosurgeryQingyuan County People's HospitalQingyuanChina
| | - Qinghua Du
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Junxia Chen
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Huguang Li
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| | - Jin Liu
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiChina
- Department of NeurosurgeryLishui City People's HospitalLishuiChina
| |
Collapse
|
3
|
Jia Y, Pan J. CKLF1, transcriptionally activated by FOXC1, promotes hypoxia/reoxygenation‑induced oxidative stress and inflammation in H9c2 cells by NLRP3 inflammasome activation. Exp Ther Med 2024; 27:59. [PMID: 38234613 PMCID: PMC10790169 DOI: 10.3892/etm.2023.12347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 01/19/2024] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a clinical challenge in the treatment of ischemic heart disease. The present study aimed to establish a hypoxia/reoxygenation (H/R)-induced H9c2 cell model to explore the role and mechanism of chemokine-like factor 1 (CKLF1) in myocardial I/R injury. First, CKLF1 expression was measured in H/R-induced H9c2 cells by reverse transcription-quantitative PCR and western blotting. Subsequently, after CKLF1 silencing, cell viability and apoptosis were evaluated by Cell Counting Kit-8 assay and flow cytometry. In addition, 2,7-dichlorodihydrofluorescein diacetate staining was used to assess the levels of cellular reactive oxygen species. Additionally, the levels of superoxide dismutase, glutathione peroxidase and malondialdehyde, and the contents of inflammatory factors IL-6, IL-1β and TNF-α were detected using corresponding commercially available kits. Western blotting was used to examine the expression levels of proteins involved in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. The JASPAR database predicted that forkhead box protein C1 (FOXC1) would bind to the CKLF1 promoter region, and dual luciferase and chromatin immunoprecipitation assays were performed to verify it. Subsequently, FOXC1 overexpression and CKLF1 silencing were used to clarify the regulatory mechanism of FOXC1 on CKLF1 in H/R-induced H9c2 cells. The results revealed that CKLF1 expression was markedly enhanced in H/R-stimulated H9c2 cells. CKLF1 knockdown enhanced the viability and inhibited the apoptosis of H9c2 cells exposed to H/R. Moreover, the oxidative stress and inflammation induced by H/R were alleviated following CKLF1 silencing. CKLF1 knockdown also inhibited NLRP3 inflammasome activation. Furthermore, FOXC1 bound to the CKLF1 promoter region to upregulate CKLF1 expression, and FOXC1 overexpression alleviated the effects of CKLF1 knockdown on H9c2 cell damage induced by H/R via activation of the NLRP3 inflammasome. In conclusion, CKLF1 transcriptionally activated by FOXC1 may promote H/R-induced oxidative stress and inflammation in H9c2 cells via NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yinfeng Jia
- Department of Cardiovascular Medicine, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Jiansheng Pan
- Department of Cardiovascular Medicine, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| |
Collapse
|
4
|
Wang H, Wu Z, Xu K. CKLF1 interference alleviates IL‑1β‑induced inflammation, apoptosis and degradation of the extracellular matrix in chondrocytes via CCR5. Exp Ther Med 2023; 25:303. [PMID: 37229323 PMCID: PMC10203912 DOI: 10.3892/etm.2023.12002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is a type of joint disease with a rising prevalence and incidence among the elderly across the global population. Chemokine-like factor 1 (CKLF1) is a human cytokine, which has been demonstrated to be involved in the progression of multiple human diseases. However, little attention has been paid to the impact of CKLF1 on OA. The present study was designed to identify the role of CKLF1 in OA and to clarify the regulatory mechanism. The expression levels of CKLF1 and its receptor CC chemokine receptor 5 (CCR5) were examined by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. A Cell Counting Kit-8 assay was used to estimate cell viability. The levels and expression of inflammatory factors were determined by ELISA and RT-qPCR, respectively. Apoptosis was investigated by TUNEL assays and the protein levels of apoptosis-related factors were analyzed by western blotting. RT-qPCR and western blotting were used to examine the expression of extracellular matrix (ECM) degradation-associated proteins and ECM components. Dimethylmethylene blue analysis was used to analyze the production of soluble glycosamine sulfate additive. A co-immunoprecipitation assay was used to confirm the protein interaction between CKLF1 and CCR5. The results revealed that CKLF1 expression was increased in IL-1β-exposed murine chondrogenic ATDC5 cells. Furthermore, CKLF1 silencing enhanced the viability of IL-1β-induced ATDC5 cells, while inflammation, apoptosis and degradation of the ECM were reduced. Additionally, CKLF1 knockdown led to decreased CCR5 expression in IL-1β-challenged ATDC5 cells, and CKLF1 bound with CCR5. The enhanced viability, as well as the suppressed inflammation, apoptosis and degradation of the ECM, following CKLF1 knockdown in the IL-1β-induced ATDC5 cells were all restored after CCR5 was overexpressed. In conclusion, CKLF1 might serve a detrimental role in the development of OA by targeting its receptor CCR5.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongqing Wu
- Department of Orthopedics, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Kanna Xu
- Emergency Department, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
5
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Wang D, Zhang M, Wu CJ, Liang Q, Wei DN, He L, Ye X. Effects of musk volatile compounds on attenuated nerve injury and improving post-cerebral ischemic exercise functions. Curr Pharm Des 2022; 28:1932-1948. [PMID: 35619259 DOI: 10.2174/1381612828666220526154014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reperfusion Injury Acute ischemic stroke is increasing in people recently and Musk, as a commonly used Traditional Chinese Medicine (TCM), has been suggested as a potential agent against acute ischemic stroke, but the efficacies and underlying mechanisms of it remain unknown. OBJECTIVE This study was aimed to tested the hypotheses that volatile compounds of musk could attenuate nerve injury and identify the bioactive compounds and potential mechanisms of Musk. METHOD Transient middle cerebral artery occlusion (MCAO) model in vivo in Sprague-Dawley rats (SD rats) was used to test this hypothesis. Collecting ingredients of Musk and their related targets were discerned from the Gas chromatography-olfactory mass spectrometry (GC-O-MS) experiment. Then the potential mechanisms and targets of the compounds were searched by network pharmacology techniques. Finally, the pathway was verified by Western Bolt (WB). RESULTS First, Musk treatment significantly up-regulated the relative levels of AKT1, PI3KA, and VEGFA in the hippocampus, and improved the sport functions in the post-MCAO ischemic rats in vivo. Next, twenty potential flavor active compounds were recognized by GC-O-MS. A total of 89 key targets including HIF-1, PIK3CA, TNF signaling pathway, and VEGF were identified. AKT1, HIF1A, PIK3CA, and VEGFA were viewed as the most important genes, which were validated by molecular docking simulation. CONCLUSION The Volatile compounds of musk can attenuate nerve injury and improving post-cerebral ischemic exercise functions by HIF1A pathways, and the combined data provide novel insight for Musk volatile compounds developed as new drug for improving reperfusion injury in acute ischemic stroke.
Collapse
Affiliation(s)
- Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qi Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Da-Neng Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
7
|
Chemokine-like factor-like MARVEL transmembrane domain-containing family in autoimmune diseases. Chin Med J (Engl) 2021; 133:951-958. [PMID: 32195671 PMCID: PMC7176445 DOI: 10.1097/cm9.0000000000000747] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the immune system. Abnormal expression of CMTM is associated with the development of various diseases. This article summarizes the relevant research on the role of the CMTM family in immune disorders. This information will increase our understanding of pathogenesis and identify promising targets for the diagnosis and treatment of autoimmune diseases. The CMTM family is highly expressed in peripheral blood mononuclear cells. CKLF1 may be involved in the development of arthritis through its interaction with C-C chemokine receptor 4. CKLF1 is associated with the pathogenesis of lupus nephritis and psoriasis. Both CMTM4 and CMTM5 are associated with the pathogenesis of systemic lupus erythematosus. CMTM1, CMTM2, CMTM3, and CMTM6 play a role in rheumatoid arthritis, systemic sclerosis, Sjögren syndrome, and anti-phospholipid syndrome, respectively. The CMTM family has been implicated in various autoimmune diseases. Further research on the mechanism of the action of CMTM family members may lead to the development of new treatment strategies for autoimmune diseases.
Collapse
|
8
|
Chen C, Ai QD, Wei YH. Kanglaite enhances the efficacy of cisplatin in suppression of hepatocellular carcinoma via inhibiting CKLF1 mediated NF-κB pathway and regulating transporter mediated drug efflux. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113388. [PMID: 32918990 DOI: 10.1016/j.jep.2020.113388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kanglaite (KLT) is an active extract of the Coix lacryma-jobi seed, which can benefit Qi and nourish Yin, and disperse the accumulation of evils. It is used as a biphasic broad-spectrum anti-cancer drug, and shows synergistic effects with radiotherapy and chemotherapy. However, the mechanism of KLT combined with cisplatin (CDDP) against hepatocellular carcinoma (HCC) has not been elucidated. AIM OF THE STUDY The aim of present study was to investigate the potential synergistic effects of KLT and CDDP on HepG2 cells, discussing the possible mechanisms from the perspective of CKLF1 and NF-κB mediated inflammatory response and chemoresistance, and the involvement of drug efflux transporters. MATERIALS AND METHODS CDDP injured HepG2 cells were used to investigate the effects of KLT on chemotherapeutics treated HCC. Effects of KLT pretreatment on CDDP injured HepG2 cells were determined by MTT, wound healing assay, and transwell assay. Expression of chemokine-like factor 1 (CKLF1) and activation of nuclear factor κB (NF-κB) were examined by qPCR, western blot, and immunofluorescence staining. Furthermore, to study the role of CKLF1 in KLT mediated effects on this CDDP injured HCC cell model, HepG2 cells overexpressed with CKLF1 gene were used. Cell viability and NF-κB activation were investigated. Moreover, TNF-α and IL-1β levels were measured by Elisa analysis and western blot to evaluate the inflammatory response. Additionally, ATP-binding cassette (ABC) drug efflux transporters, MDR1, MRP2, and BCRP were also determined in present study. RESULTS KLT pretreatment followed by CDDP treatment was found to show synergistic effects, which showed by decreased cell viability, migration and invasion ability of HepG2 cells. Expression of CKLF1 enhanced significantly in CDDP treated HepG2 cells, and KLT decreased this elevation obviously. Furthermore, CDDP activated NF-κΒ and promoted translocation of NF-κB toward the nucleus. KLT inhibited the activation of NF-κΒ, which sensitized cancer cells. Overexpression of CKLF1 reversed the effects of KLT on CDDP injured HepG2 cells, which exhibited by increased cell viability and enhanced activation of NF-κΒ. CDDP induced NF-κΒ activation could also lead to excessive inflammatory response, and KLT can suppress the aggravating inflammation which may be beneficial for tumor progression. Furthermore, we found that ABC drug efflux transporters MDR1, MRP2, and BCRP in CDDP treated HepG2 cells were decreased when pretreated with KLT. CONCLUSIONS KLT pretreatment may increase the effects of CDDP on HepG2 cells, by exhibiting cooperative effects on suppression of HepG2 cells. The mechanisms may partly by inhibiting CKLF1 mediated NF-κB pathway, which may contribute to inflammation of tumor microenvironment and chemoresistance of CDDP. Inhibition of transporter-mediated drug efflux is also involved in KLT mediated sensitization effects of CDDP.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qi-di Ai
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
| | - Yu-Hui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Li M, Luo F, Tian X, Yin S, Zhou L, Zheng S. Chemokine-Like Factor-Like MARVEL Transmembrane Domain-Containing Family in Hepatocellular Carcinoma: Latest Advances. Front Oncol 2020; 10:595973. [PMID: 33282744 PMCID: PMC7691587 DOI: 10.3389/fonc.2020.595973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) is a new gene family, consisting of CKLF and CMTM1 to CMTM8, which plays an important role in hematopoiesis system, autoimmune diseases, male reproduction etc. Abnormal expression of CMTMs is also associated with tumor genesis, development and metastasis. In this review, we briefly describe the characteristics of CMTM family, outline its functions in multiple kinds of carcinomas, and summarize the latest research on their roles in hepatocellular carcinoma which are mainly related to the expression, prognostic effect, potential functions, and mechanism of action. The CMTM family is expected to provide new ideas and targets for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengxia Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Fangzhou Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Xinyao Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|
10
|
Chao M, Gao C, Huang Y. Xanthoangelol alleviates cerebral ischemia reperfusion injury in rats. Anat Rec (Hoboken) 2020; 304:602-612. [PMID: 32589370 DOI: 10.1002/ar.24481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Ischemia/reperfusion (I/R) injury accounts to be a prime cause of neurological deficit following stroke. This study aimed to explore the neuro-protective effects of Xanthoangelol (XAG) on I/R-induced injury in both in vivo and in vitro models. Our data demonstrated that XAG can shrink infarct size and brain edema in middle cerebral artery occlusion (MCAO) model. In addition, XAG was capable of alleviating the neurological deficit in rats that have undergone MCAO procedure. Meanwhile, antiapoptotic activities of XAG against I/R-induced neuronal injury were evidenced and further illustrated that XAG elicits antiapoptotic activities by suppressing excessive oxidative stress via nuclear factor erythroid-2-related factor 2 activation. Overall, our study revealed that XAG displayed the potential to be utilized as a neuroprotective agent against I/R-induced neurological injury.
Collapse
Affiliation(s)
- Meng Chao
- Department of Neurology, Yicheng District People's Hospital of Zaozhuang City, Zaozhuang, Shandong Province, China
| | - Chao Gao
- Department of General Practice, Zaozhuang Municipal Hospital, Zaozhuang, Shandong Province, China
| | - Yaping Huang
- Emergency Department, Yicheng District People's Hospital of Zaozhuang City, Zaozhuang, Shandong Province, China
| |
Collapse
|
11
|
Cai X, Deng J, Ming Q, Cai H, Chen Z. Chemokine-like factor 1: A promising therapeutic target in human diseases. Exp Biol Med (Maywood) 2020; 245:1518-1528. [PMID: 32715782 DOI: 10.1177/1535370220945225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPACT STATEMENT CKLF1, a recently identified chemokine, has been reported by a number of studies to play important roles in quite many diseases. However, the potential pathways that CKLF1 may be involved are not manifested well yet. In our review, we showed the basic molecular structure and major functions of this novel chemokine, and implication in human diseases, such as tumors. To attract more attention, we summarized its signaling pathways and clearly present them in a set of figures. With the overview of the experimental trial of CKLF1-targeting medicines in animal models, we hope to provide a few important insights about CKLF1 to both medical researchers and pharmacy.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingwen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qianqian Ming
- Department of Drug Discovery, 25301Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Aarhus N 8200, Denmark
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|