1
|
Cheng Y, Liu R, Yang T, Yang S, Chen J, Huang Y, Long D, Zeng J, Wu D, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Wang Y. Genetic factors of grain cadmium concentration in Polish wheat (Triticum polonicum L.). PLANT PHYSIOLOGY 2024; 196:979-995. [PMID: 38917222 DOI: 10.1093/plphys/kiae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Rui Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jia Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
2
|
Nørrevang AF, Shabala S, Palmgren M. A two-sequence motif-based method for the inventory of gene families in fragmented and poorly annotated genome sequences. BMC Genomics 2024; 25:26. [PMID: 38172704 PMCID: PMC10763278 DOI: 10.1186/s12864-023-09859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.
Collapse
Affiliation(s)
- Anton Frisgaard Nørrevang
- NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Michael Palmgren
- NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark.
| |
Collapse
|
3
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Zlobin IE, Danilova ED, Murgan OK, Kolomeichuk LV, Litvinovskaya RP, Sauchuk AL, Kuznetsov VV, Efimova MV. Structurally Different Exogenic Brassinosteroids Protect Plants under Polymetallic Pollution via Structure-Specific Changes in Metabolism and Balance of Cell-Protective Components. Molecules 2023; 28:molecules28052077. [PMID: 36903322 PMCID: PMC10003821 DOI: 10.3390/molecules28052077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Heavy metals and aluminum are among the most significant abiotic factors that reduce the productivity and quality of crops in acidic and contaminated soils. The protective effects of brassinosteroids containing lactone are relatively well-studied under heavy metal stress, but the effects of brassinosteroids containing ketone are almost unstudied. Moreover, there are almost no data in the literature on the protective role of these hormones under polymetallic stress. The aim of our study was to compare the stress-protective effects of lactone-containing (homobrassinolide) and ketone-containing (homocastasterone) brassinosteroids on the barley plant's resistance to polymetallic stress. Barley plants were grown under hydroponic conditions; brassinosteroids, increased concentrations of heavy metals (Mn, Ni, Cu, Zn, Cd, and Pb), and Al were added to the nutrient medium. It was found that homocastasterone was more effective than homobrassinolide in mitigating the negative effects of stress on plant growth. Both brassinosteroids had no significant effect on the antioxidant system of plants. Both homobrassinolide and homocastron equally reduced the accumulation of toxic metals (except for Cd) in plant biomass. Both hormones improved Mg nutrition of plants treated with metal stress, but the positive effect on the content of photosynthetic pigments was observed only for homocastasterone and not for homobrassinolide. In conclusion, the protective effect of homocastasterone was more prominent compared to homobrassinolide, but the biological mechanisms of this difference remain to be elucidated.
Collapse
Affiliation(s)
- Ilya E. Zlobin
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Elena D. Danilova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Ol’ga K. Murgan
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Liliya V. Kolomeichuk
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Raisa P. Litvinovskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus
| | - Alina L. Sauchuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus
| | - Vladimir V. Kuznetsov
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Correspondence: (V.V.K.); (M.V.E.); Tel.: +7-966-060-5878 (V.V.K.); +7-903-952-9672 (M.V.E.)
| | - Marina V. Efimova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- Correspondence: (V.V.K.); (M.V.E.); Tel.: +7-966-060-5878 (V.V.K.); +7-903-952-9672 (M.V.E.)
| |
Collapse
|
5
|
Wang NH, Zhou XY, Shi SH, Zhang S, Chen ZH, Ali MA, Ahmed IM, Wang Y, Wu F. An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. J Adv Res 2023; 44:23-37. [PMID: 36725193 PMCID: PMC9936425 DOI: 10.1016/j.jare.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Cadmium (Cd) is one of the most detrimental heavy metal pollutants, seriously affecting crop production and human health. Nucleobase-ascorbic acid transporters (NAT) are widely present in many living organisms including plants, animals and microbes; however, the role of NAT in plant Cd tolerance remains unknown. OBJECTIVES To identify Cd-induced miRNAs that target HvNAT2 and to determine the role of this gene and its product in Cd tolerance. METHODS High-throughput-sequencing was used to identify the miRNA expression profile of barley roots in response to Cd stress. Overexpression (OX) and RNAi lines were then constructed for HvNAT2 and comparative transcriptomic analysis was performed to determine the function of this transporter examining its effects on traits such as Cd uptake/flux and translocation, morphology and antioxidant capacity in relation to Cd tolerance. In addition, phylogenetic analysis was performed to obtain insights into the evolution of HvNAT2. RESULTS Cd stress-induced genome-wide expression profiles of miRNAs identified a Cd-induced miRNA, miR156g-3p_3, that had HvNAT2 as its target. HvNAT2 was negatively regulated in the high-Cd-accumulating and Cd-tolerant genotype Zhenong8. Evolutionary analysis indicated that orthologues of the plasma membrane localized, HvNAT2, can be traced back to the sister group of land plants, the streptophyte algae. Overexpression of HvNAT2 increases Cd tolerance with higher tissue Cd accumulation but less oxidative damage in transgenic barley plants. RNAi of HvNAT2 leads to a significant reduction of Cd tolerance. The higher Cd accumulation in roots of the OX3 line was also demonstrated by confocal microscopy and electrophysiology. Transcriptome analysis showed that the enhancement of antioxidant capacity by HvNAT2 was related to stress signaling pathways. Furthermore, oxidative stress tolerance in HvNAT2-OX plants was regulated by the synthesis of phytochelatins and the glutathione metabolism cycle. CONCLUSION Our study reveals a key molecular mechanism of NAT in Cd tolerance in plants that is useful for sustainable agricultural production and management of hazardous this heavy metal for better environment management and ecosystem function.
Collapse
Affiliation(s)
- Nian-Hong Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Xue-Yi Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Shou-Heng Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Abdelalim Ali
- Faculty of Agriculture, Microbiology Department, Cairo University, Giza, 2613, Egypt
| | - Imrul Mosaddek Ahmed
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
6
|
Li Y, Zhang Y, Luo H, Lv D, Yi Z, Duan M, Deng M. WGCNA Analysis Revealed the Hub Genes Related to Soil Cadmium Stress in Maize Kernel ( Zea mays L.). Genes (Basel) 2022; 13:2130. [PMID: 36421805 PMCID: PMC9690088 DOI: 10.3390/genes13112130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 01/12/2024] Open
Abstract
Soil contamination by heavy metals has become a prevalent topic due to their widespread release from industry, agriculture, and other human activities. Great progress has been made in elucidating the uptake and translocation of cadmium (Cd) accumulation in rice. However, there is still little known about corresponding progress in maize. In the current study, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) of maize immature kernel related to Cd stress. In total, 55, 92, 22, and 542 DEGs responsive to high cadmium concentration soil were identified between XNY22-CHS-8 vs. XNY22-YA-8, XNY22-CHS-24 vs. XNY22-YA-24, XNY27-CHS-8 vs. XNY27-YA-8, and XNY27-CHS-24 vs. XNY27-YA-24, respectively. The weighted gene co-expression network analysis (WGCNA) categorized the 9599 Cd stress-responsive hub genes into 37 different gene network modules. Combining the hub genes and DEGs, we obtained 71 candidate genes. Gene Ontology (GO) enrichment analysis of genes in the greenyellow module in XNY27-YA-24 and connectivity genes of these 71 candidate hub genes showed that the responses to metal ion, inorganic substance, abiotic stimulus, hydrogen peroxide, oxidative stress, stimulus, and other processes were enrichment. Moreover, five candidate genes that were responsive to Cd stress in maize kernel were detected. These results provided the putative key genes and pathways to response to Cd stress in maize kernel, and a useful dataset for unraveling the underlying mechanism of Cd accumulation in maize kernel.
Collapse
Affiliation(s)
- Yongjin Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| | - Dan Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| |
Collapse
|
7
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
8
|
Wang Q, Lu X, Chen X, Zhao L, Han M, Wang S, Zhang Y, Fan Y, Ye W. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.). BMC PLANT BIOLOGY 2021; 21:386. [PMID: 34416873 PMCID: PMC8377987 DOI: 10.1186/s12870-021-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| |
Collapse
|
9
|
Abstract
Cadmium (Cd) is an element that is nonessential and extremely toxic to both plants and human beings. Soil contaminated with Cd has adverse impacts on crop yields and threatens human health via the food chain. Cultivation of low-Cd cultivars has been of particular interest and is one of the most cost-effective and promising approaches to minimize human dietary intake of Cd. Low-Cd crop cultivars should meet particular criteria, including acceptable yield and quality, and their edible parts should have Cd concentrations below maximum permissible concentrations for safe consumption, even when grown in Cd-contaminated soil. Several low-Cd cereal cultivars and genotypes have been developed worldwide through cultivar screening and conventional breeding. Molecular markers are powerful in facilitating the selection of low-Cd cereal cultivars. Modern molecular breeding technologies may have great potential in breeding programs for the development of low-Cd cultivars, especially when coupled with conventional breeding. In this review, we provide a synthesis of low-Cd cereal breeding.
Collapse
Affiliation(s)
- Qin Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei-Bo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Derakhshani B, Jafary H, Maleki Zanjani B, Hasanpur K, Mishina K, Tanaka T, Kawahara Y, Oono Y. Combined QTL mapping and RNA-Seq profiling reveals candidate genes associated with cadmium tolerance in barley. PLoS One 2020; 15:e0230820. [PMID: 32298285 PMCID: PMC7182363 DOI: 10.1371/journal.pone.0230820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
The high toxicity of cadmium (Cd) and its ready uptake by plants has become a major agricultural problem. To investigate the genetic architecture and genetic regulation of Cd tolerance in barley, we conducted quantitative trait loci (QTL) analysis in the phenotypically polymorphic Oregon Wolfe Barley (OWB) mapping population, derived from a cross between Rec and Dom parental genotypes. Through evaluating the Cd tolerance of 87 available doubled haploid lines of the OWB mapping population at the seedling stage, one minor and one major QTL were detected on chromosomes 2H and 6H, respectively. For chlorosis and necrosis traits, the major QTL explained 47.24% and 38.59% of the phenotypic variance, respectively. RNA-Seq analysis of the parental seedlings under Cd treatment revealed 542 differentially expressed genes between Cd-tolerant Rec and Cd-susceptible Dom genotypes. By analyzing sequence variations in transcribed sequences of the parental genotypes, 155,654 SNPs and 1,525 InDels were identified between the two contrasting genotypes and may contribute to Cd tolerance. Finally, by integrating the data from the identified QTLs and RNA-Seq analysis, 16 Cd tolerance-related candidate genes were detected, nine of which were metal ion transporters. These results provide promising candidate genes for further gene cloning and improving Cd tolerance in barley.
Collapse
Affiliation(s)
- Behnam Derakhshani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- * E-mail: (HJ); (YO)
| | - Bahram Maleki Zanjani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kohei Mishina
- Plant Genome Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Tanaka
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Kawahara
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan
| | - Youko Oono
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail: (HJ); (YO)
| |
Collapse
|
11
|
Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21051820. [PMID: 32155784 PMCID: PMC7084258 DOI: 10.3390/ijms21051820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
|