1
|
Adiguzel C, Karaboduk H. Biochemical, Immunohistochemical, Histopathological, and Apoptotic Evaluation of Nickel Oxide Nanoparticle- and Microparticle-Induced Testicular Toxicity in Male Rats. ACS OMEGA 2024; 9:50910-50921. [PMID: 39758642 PMCID: PMC11696382 DOI: 10.1021/acsomega.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/07/2025]
Abstract
Nickel oxide nanoparticles are engineered particles that are now widely used in medicine, agriculture, and industry applications. This study aimed to investigate subchronic testicular toxicity induced by nickel oxide (NiO) and nickel oxide nanoparticles (NiONPs) in rats by comparing oral, intraperitoneal (IP), and intravenous (IV) routes of administration. Forty-two male Wistar rats were used for the study, and seven groups were formed: control group, NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg). At the end of the 21 day treatment, we collected the testicular tissue of rats to measure biomarkers such as oxidative stress, apoptotic, and inflammatory levels to observe histopathological and immunohistochemical changes. NiO and NiONP treatment caused a decrease in antioxidant activities and AChE levels, an increase in MDA, IL-1β, IL-6, and 8-OHdG levels, a decrease in Bcl-2 expression, and an increase in caspase-3, Bax, and p53 expressions in apoptotic markers. In addition to histopathologic changes in the testicular tissue, an increase in expression of the endoplasmic reticulum stress marker GRP78 was also observed. In conclusion, NiONPs (especially NiONP IV) increased testicular toxicity by disrupting the oxidant-antioxidant balance more than NiO microparticles.
Collapse
Affiliation(s)
- Caglar Adiguzel
- Faculty of Science, Department
of Biology, Gazi University, Ankara 06500, Türkiye
| | - Hatice Karaboduk
- Faculty of Science, Department
of Biology, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|
2
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Karaboduk H, Adiguzel C, Apaydin FG, Kalender S, Kalender Y. Investigating the impact of different routes of nano and micro nickel oxide administration on rat kidney architecture, apoptosis markers, oxidative stress, and histopathology. J Mol Histol 2024; 55:675-686. [PMID: 38990468 DOI: 10.1007/s10735-024-10221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Although the production and use of nickel oxide nanoparticles (NiONP) are widespread, environmental and public health problems are associated with it. The kidney is the primary organ in excretion and is among the target organs in nanoparticle toxicity. This study aimed to compare the renal toxicity of nickel oxide (NiO) microparticles and nickel oxide nanoparticles by different routes of administration, such as oral, intraperitoneal (IP), and intravenous (IV). Seven groups were formed, with 42 male rats and six animals in each group. NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg) was administered for 21 days. After NiO and NiONP administration, a decrease in antioxidant activities and an increase in lipid peroxidation occurred in the kidney tissue of rats. Increased kidney urea, uric acid, and creatinine levels were observed. Inhibition of acetylcholinesterase activity and an increase in interleukin 1 beta were detected. Apoptotic markers, Bax, caspase-3, and p53 up-regulation and Bcl-2 down-regulation were observed. In addition, histopathological changes occurred in the kidney tissue. In general, it was observed that nickel oxide microparticles and nickel oxide nanoparticles cause inflammation by causing oxidative stress in the kidney tissue, and NiONP IV administration is more effective in renal toxicity.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | | | - Suna Kalender
- Department of Science, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
4
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
6
|
Ryabova YV, Sutunkova MP, Minigalieva IA, Shabardina LV, Filippini T, Tsatsakis A. Toxicological effects of selenium nanoparticles in laboratory animals: A review. J Appl Toxicol 2024; 44:4-16. [PMID: 37312419 DOI: 10.1002/jat.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
This paper provides a comprehensive summary of the main toxicological studies conducted on selenium nanoparticles (NPs) using laboratory animals, up until February 28, 2023. A literature search revealed 17 articles describing experimental studies conducted on warm-blooded animals. Despite some uncertainties, in vivo studies have demonstrated that selenium NPs have an adverse effect on laboratory animals, as evidenced by several indicators of general toxic action. These effects include reductions of body mass, changes in hepatotoxicity indices (increased enzyme activity and accumulation of selenium in the liver), and the possibility of impairment of fatty acid, protein, lipid, and carbohydrate metabolisms. However, no specific toxic action attributable solely to selenium has been identified. The LOAEL and NOAEL values are contradictory. The NOAEL was 0.22 mg/kg body weight per day for males and 0.33 mg/kg body weight per day for females, while the LOAEL was assumed to be a dose of 0.05 mg/kg of nanoselenium. This LOAEL value is much higher for rats than for humans. The relationship between the adverse effects of selenium NPs and exposure dose is controversial and presents a wide typological diversity. Further research is needed to clarify the absorption, metabolism, and long-term toxicity of selenium NPs, which is critical to improving the risk assessment of these compounds.
Collapse
Affiliation(s)
- Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Lada V Shabardina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Tommaso Filippini
- CREAGEN Research Center for Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Zheng J, Wang J, Li K, Qin X, Li S, Chang X, Sun Y. LncRNA AP000487.1 regulates PRKCB DNA methylation-mediated TLR4/MyD88/NF-κB pathway in Nano NiO-induced collagen formation in BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2783-2796. [PMID: 37528634 DOI: 10.1002/tox.23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) have been shown to cause pulmonary fibrosis; But, the underlying epigenetic mechanisms remain poorly understood. In this study, we aimed to investigate the role of lncRNA AP000487.1 in regulating PRKCB DNA methylation and the Toll-like receptor 4 (TLR4)/ Myeloid differentiation primary response 88 (MyD88)/ Nuclear factor kappa-B (NF-κB) pathway in Nano NiO-induced collagen formation. We found that lncRNA AP000487.1 was able to bind to the promoter region of the PRKCB gene by Chromosomal RNA pull-down experiments (Ch-RNA pull-down). Moreover, Nano NiO exposure led to down-regulation of lncRNA AP000487.1 expression and PRKCB DNA methylation, resulting in up-regulation of PRKCB expression, activation of the TLR4/MyD88/NF-κB pathway, and increased collagen formation in BEAS-2B cells. Conversely, overexpression of lncRNA AP000487.1 restored PRKCB expression, reduced its hypomethylation and attenuated TLR4/MyD88/NF-κB pathway activation and collagen formation. Furthermore, treatment with the DNA methylation inhibitor, decitabine, alleviated Nano NiO-induced PRKCB2 expression, TLR4/MyD88/NF-κB pathway activation, and collagen formation. Additionally, using PRKCB2 overexpression plasmid, PRKCB2 siRNA, and PRKCB2 protein inhibitor LY317615 influenced NF-κB pathway activity and collagen formation. Finally, TLR4 inhibitor (TAK-242) restrained Nano NiO-induced MyD88/NF-κB pathway activation and excessive collagen formation. In summary, we demonstrated that the down-regulated lncRNA AP000487.1 could cause PRKCB hypomethylation and increased expression, resulting in NF-κB pathway activation and collagen formation in Nano NiO-induced BEAS-2B cells. This is the first study to reveal the role of lncRNA AP000487.1 in regulating collagen formation in Nano NiO-exposed BEAS-2B cells. Our study identified that lncRNA AP000487.1/PRKCB hypomethylation/NF-κB pathway was a regulatory axis of BEAS-2B cells collagen excessive formation. Our findings indicate that lncRNA AP000487.1 and PRKCB DNA methylation may function as biomarkers or potential targets in response to Nano NiO exposure.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14930. [PMID: 37834378 PMCID: PMC10573514 DOI: 10.3390/ijms241914930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Juan I. Chávez-Corona
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Luis E. Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - C. Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
| | - Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 04510, Mexico
| | - Jose L. Cerbón-Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José A. Herrera-Barragán
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| |
Collapse
|
9
|
Hadrup N, Sahlgren N, Jacobsen NR, Saber AT, Hougaard KS, Vogel U, Jensen KA. Toxicity dose descriptors from animal inhalation studies of 13 nanomaterials and their bulk and ionic counterparts and variation with primary particle characteristics. Nanotoxicology 2023:1-34. [PMID: 37300873 DOI: 10.1080/17435390.2023.2221728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nicklas Sahlgren
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| |
Collapse
|
10
|
Sutunkova MP, Klinova SV, Ryabova YV, Tazhigulova AV, Minigalieva IA, Shabardina LV, Solovyeva SN, Bushueva TV, Privalova LI. Comparative Evaluation of the Cytotoxic Effects of Metal Oxide and Metalloid Oxide Nanoparticles: An Experimental Study. Int J Mol Sci 2023; 24:ijms24098383. [PMID: 37176090 PMCID: PMC10178919 DOI: 10.3390/ijms24098383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Industrial production generates aerosols of complex composition, including an ultrafine fraction. This is typical for mining and metallurgical industries, welding processes, and the production and recycling of electronics, batteries, etc. Since nano-sized particles are the most dangerous component of inhaled air, in this study we aimed to establish the impact of the chemical nature and dose of nanoparticles on their cytotoxicity. Suspensions of CuO, PbO, CdO, Fe2O3, NiO, SiO2, Mn3O4, and SeO nanoparticles were obtained by laser ablation. The experiments were conducted on outbred female albino rats. We carried out four series of a single intratracheal instillation of nanoparticles of different chemical natures at doses ranging from 0.2 to 0.5 mg per animal. Bronchoalveolar lavage was taken 24 h after the injection to assess its cytological and biochemical parameters. At a dose of 0.5 mg per animal, cytotoxicity in the series of nanoparticles changed as follows (in decreasing order): CuO NPs > PbO NPs > CdO NPs > NiO NPs > SiO2 NPs > Fe2O3 NPs. At a lower dose of 0.25 mg per animal, we observed a different pattern of cytotoxicity of the element oxides under study: NiO NPs > Mn3O4 NPs > CuO NPs > SeO NPs. We established that the cytotoxicity increased non-linearly with the increase in the dose of nanoparticles of the same chemical element (from 0 to 0.5 mg per animal). An increase in the levels of intracellular enzymes (amylase, AST, ALT, LDH) in the supernatant of the bronchoalveolar lavage fluid indicated a cytotoxic effect of nanoparticles. Thus, alterations in the cytological parameters of the bronchoalveolar lavage and the biochemical characteristics of the supernatant can be used to predict the danger of new nanomaterials based on their comparative assessment with the available tested samples of nanoparticles.
Collapse
Affiliation(s)
- Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Anastasiya V Tazhigulova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Lada V Shabardina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Svetlana N Solovyeva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Larisa I Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| |
Collapse
|
11
|
Bocca B, Leso V, Battistini B, Caimi S, Senofonte M, Fedele M, Cavallo DM, Cattaneo A, Lovreglio P, Iavicoli I. Human biomonitoring and personal air monitoring. An integrated approach to assess exposure of stainless-steel welders to metal-oxide nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114736. [PMID: 36343713 DOI: 10.1016/j.envres.2022.114736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In welding, there is a potential risk due to metal-oxide nanoparticles (MONPs) exposure of workers. To investigate this possibility, the diameter and number particles concentration of MONPs were evaluated in different biological matrices and in personal air samples collected from 18 stainless-steel welders and 15 unexposed administrative employees engaged in two Italian mechanical engineering Companies. Exhaled breath condensate (EBC) and urine were sampled at pre-shift on 1st day and post-shift on 5th day of the workweek, while plasma and inhalable particulate matter (IPM) at post-shift on 5th day and analysed using the Single Particle Mass Spectrometry (SP-ICP-MS) technique to assess possible exposure to Cr2O3, Mn3O4 and NiO nanoparticles (NPs) in welders. The NPs in IPM at both Companies presented a multi-oxide composition consisting of Cr2O3 (median, 871,574 particles/m3; 70 nm), Mn3O4 (median, 713,481 particles/m3; 92 nm) and NiO (median, 369,324 particles/m3; 55 nm). The EBC of welders at both Companies showed Cr2O3 NPs median concentration significantly higher at post-shift (64,645 particles/mL; 55 nm) than at pre-shift (15,836 particles/mL; 58 nm). Significantly lower Cr2O3 NPs median concentration and size (7762 particles/mL; 44 nm) were observed in plasma compared to EBC of welders. At one Company, NiO NPs median concentration in EBC (22,000 particles/mL; 65 nm) and plasma (8248 particles/mL; 37 nm) were detected only at post-shift. No particles of Cr2O3, Mn3O4 and NiO were detected in urine of welders at both Companies. The combined analyses of biological matrices and air samples were a valid approach to investigate both internal and external exposure of welding workers to MONPs. Overall, results may inform suitable risk assessment and management procedures in welding operations.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Caimi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Fedele
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Andrea Cattaneo
- Department of Science and High Technology, Insubria University, Como, Italy
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
13
|
Alterations in reproductive parameters and steroid biosynthesis induced by nickel oxide nanoparticles in male rats: The ameliorative effect of hesperidin. Toxicology 2022; 473:153208. [DOI: 10.1016/j.tox.2022.153208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
|
14
|
Liu F, Cheng X, Wu S, Hu B, Yang C, Deng S, Shi Q. Nickel oxide nanoparticles induce apoptosis and ferroptosis in airway epithelial cells via ATF3. ENVIRONMENTAL TOXICOLOGY 2022; 37:1093-1103. [PMID: 35061333 DOI: 10.1002/tox.23467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Exposure to nickel oxide nanoparticles (NiONPs), which have been widely produced and applied in industry, leads to adverse pulmonary and systemic effects. The aim of this study is to investigate the involvement of apoptosis and ferroptosis in NiONPs-induced acute lung injury (ALI). Intratracheal instillation of NiONPs into mice elevated the levels of pro-inflammatory cytokines, neutrophils, and proteins in the bronchoalveolar lavage fluid, and triggered apoptosis and ferroptosis in the lung tissues. Consistently, NiONPs-induced apoptosis and ferroptosis were observed in in vitro experiments using human lung epithelial cells. Activating transcription factor 3 (ATF3), a stress-inducible transcription factor, was upregulated by NiONPs exposure in both murine lung tissues and human lung epithelial cells. Moreover, human lung epithelial cells with ATF3 deficiency exhibited a lower level of apoptosis and ferroptosis when exposed to NiONPs. Collectively, our findings demonstrated that ATF3 was responsive to NiONPs exposure, and promoted NiONPs-induced apoptosis and ferroptosis in lung epithelial cells, indicating that ATF3 is a potential biomarker and therapeutic target for NiONPs-associated ALI.
Collapse
Affiliation(s)
- Fengfan Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiang Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shuang Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bei Hu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chen Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
16
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
17
|
Khan MS, Buzdar SA, Hussain R, Afzal G, Jabeen G, Javid MA, Iqbal R, Iqbal Z, Mudassir KB, Saeed S, Rauf A, Ahmad HI. Hematobiochemical, Oxidative Stress, and Histopathological Mediated Toxicity Induced by Nickel Ferrite (NiFe 2O 4) Nanoparticles in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5066167. [PMID: 35308168 PMCID: PMC8933065 DOI: 10.1155/2022/5066167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.
Collapse
Affiliation(s)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Arshad Javid
- Department of Basic Sciences, University of Engineering and Technology, Taxila, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Khola Bint Mudassir
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-Anbar KPK, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
18
|
Jeong MJ, Jeon S, Yu HS, Cho WS, Lee S, Kang D, Kim Y, Kim YJ, Kim SY. Exposure to Nickel Oxide Nanoparticles Induces Acute and Chronic Inflammatory Responses in Rat Lungs and Perturbs the Lung Microbiome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:522. [PMID: 35010784 PMCID: PMC8744909 DOI: 10.3390/ijerph19010522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Nickel oxide nanoparticles (NiO NPs) are highly redox active nanoparticles. They can cause acute and chronic inflammation in rat lungs. Unlike the gut microbiome, the association between the lung microbiome's role and pulmonary inflammatory response to inhaled nanoparticles remains largely unexplored. We aimed to explore the interaction between the lung microbiome and inflammatory responses in rats exposed to NiO NPs. Thirty female Wistar rats were randomly categorized into control and low- (50 cm2/rat), and high- (150 cm2/rat) dose NiO NPs exposure groups. NiO NPs were intratracheally instilled, and cytological, biochemical, proinflammatory cytokine, and lung microbiome analyses of bronchoalveolar lavage fluid were performed at 1 day and 4 weeks after instillation. NiO NPs caused a neutrophilic and lymphocytic inflammatory response in rat lung. We demonstrated that exposure to NiO NPs can alter the lung microbial composition in rats. In particular, we found that more Burkholderiales are present in the NiO NPs exposure groups than in the control group at 1 day after instillation. Dysbiosis in the lung microbiome is thought to be associated with acute lung inflammation. We also suggested that Burkholderiales may be a key biomarker associated with lung neutrophilic inflammation after NiO NPs exposure.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Parasitology and Tropical Medicine, Medical College, Pusan National University, Yangsan 50612, Korea; (M.-J.J.); (H.-S.Y.)
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea; (S.J.); (W.-S.C.)
| | - Hak-Sun Yu
- Department of Parasitology and Tropical Medicine, Medical College, Pusan National University, Yangsan 50612, Korea; (M.-J.J.); (H.-S.Y.)
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea; (S.J.); (W.-S.C.)
| | - Seungho Lee
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.L.); (D.K.); (Y.K.)
- Environmental Health Center of Asbestos, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Dongmug Kang
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.L.); (D.K.); (Y.K.)
- Environmental Health Center of Asbestos, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Department of Preventive and Occupational & Environmental Medicine, Medical College, Pusan National University, Yangsan 50612, Korea
| | - Youngki Kim
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.L.); (D.K.); (Y.K.)
- Environmental Health Center of Asbestos, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Department of Preventive and Occupational & Environmental Medicine, Medical College, Pusan National University, Yangsan 50612, Korea
| | - Yoon-Ji Kim
- Environmental Health Center of Asbestos, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Department of Preventive and Occupational & Environmental Medicine, Medical College, Pusan National University, Yangsan 50612, Korea
| | - Se-Yeong Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.L.); (D.K.); (Y.K.)
- Department of Preventive and Occupational & Environmental Medicine, Medical College, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
19
|
Zhan H, Chang X, Wang X, Yang M, Gao Q, Liu H, Li C, Li S, Sun Y. LncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF-β1 expression and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2021; 36:1099-1110. [PMID: 33547861 DOI: 10.1002/tox.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) causes pulmonary fibrosis via activating transforming growth factor-β1 (TGF-β1) in rats, but its upstream regulatory mechanisms are unknown. This study aimed to explore the role of long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in NiO NPs-induced collagen deposition. Male Wistar rats were intratracheally instilled with NiO NPs (0.015, 0.06, and 0.24 mg/kg b.w.) twice a week for 9 weeks. Human lung adenocarcinoma epithelial cells (A549 cells) were cultured with NiO NPs (25, 50, and 100 μg/ml) to establish collagen deposition model. We discovered that NiO NPs-induced rat pulmonary fibrosis was accompanied by the epithelial-mesenchymal transition (EMT) occurrence and MEG3 down-regulation in rat lung tissues. In cell collagen deposition model, NiO NPs also evoked EMT and decreased MEG3 expression in a dose-dependent manner in A549 cells. By overexpressing MEG3 in A549 cells, we found that MEG3 inhibited the level of TGF-β1, EMT process and collagen formation. Moreover, our data showed that SB431542 (TGF-β1 inhibitor) had an inhibitory effect on NiO NPs-induced EMT and collagen formation. Our results indicated that MEG3 inhibited NiO NPs-induced collagen deposition by regulating TGF-β1-mediated EMT process, which may provide some clues for insighting into the mechanisms of NiO NPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, Liu H, Li S, Sun Y. A metabolomic-based study on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res (Camb) 2021; 10:579-591. [PMID: 34141172 DOI: 10.1093/toxres/tfab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) evoke hepatotoxicity, while whether it affects the hepatic metabolism remains unclear. The aim of this study was to explore the differential metabolites and their metabolic pathways in rat serum and to further verify the potential mechanism of bile acids' (BAs) metabolism dysregulation after Nano NiO exposure. Sixteen male Wistar rats were intratracheally instilled with Nano NiO (0.24 mg/kg body weight) twice a week for 9 weeks. Liquid chromatography/mass spectrometry was applied to filter the differentially expressed metabolites in rat serum. Western blot was employed to detect the protein contents. Twenty-one differential metabolites that associated with BAs, lipid and phospholipid metabolism pathways were identified in rat serum after Nano NiO exposure. Decreased cholic acid and deoxycholic acid implied that the BAs metabolism was disturbed. The nickel content increased in liver after Nano NiO exposure. The protein expression of cholesterol 7α-hydroxylase (CYP7A1) was down-regulated, and the bile salt export pump was up-regulated after Nano NiO administration in rat liver. Moreover, dehydroepiandrosterone sulphotransferase (SULT2A1) and cytochrome P450 (CYP) 3A4 were elevated in the exposure group. In conclusion, Nano NiO might trigger the disturbances of BAs, lipid and phospholipid metabolism pathways in rats. The diminished serum BAs induced by Nano NiO might be related to the down-regulation of synthetase and to the overexpression of transmembrane protein and detoxification enzymes in BAs metabolism.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
21
|
More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:642. [PMID: 33807756 PMCID: PMC7999720 DOI: 10.3390/nano11030642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The exceptional physical and chemical properties of nickel nanomaterials have been exploited in a range of applications such as electrical conductors, batteries, and biomaterials. However, it has been suggested that these unique properties may allow for increased bioavailability, bio-reactivity, and potential adverse health effects. Thus, the purpose of this review was to critically evaluate data regarding the toxicity of oxidic nickel nanoparticles (nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles) with respect to: (1) physico-chemistry properties; (2) nanomaterial characterization in the defined delivery media; (3) appropriateness of model system and translation to potential human effects; (4) biodistribution, retention, and clearance; (5) routes and relevance of exposure; and (6) current research data gaps and likely directions of future research. Inhalation studies were prioritized for review as this represents a potential exposure route in humans. Oxidic nickel particle size ranged from 5 to 100 nm in the 60 studies that were identified. Inflammatory responses induced by exposure of oxidic nickel nanoparticles via inhalation in rodent studies was characterized as acute in nature and only displayed chronic effects after relatively large (high concentration and long duration) exposures. Furthermore, there is no evidence, thus far, to suggest that the effects induced by oxidic nickel nanoparticles are related to preneoplastic events. There are some data to suggest that nano- and micron-sized NiO particles follow a similar dose response when normalized to surface area. However, future experiments need to be conducted to better characterize the exposure-dose-response relationship according to specific surface area and reactivity as a dose metric, which drives particle dissolution and potential biological responses.
Collapse
Affiliation(s)
- Sharlee L. More
- Cardno ChemRisk, 6720 S Macadam Ave Suite 150, Portland, OR 97219, USA
| | - Michael Kovochich
- Cardno ChemRisk, 30 North LaSalle St Suite 3910, Chicago, IL 60602, USA;
| | - Tara Lyons-Darden
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Michael Taylor
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Alexandra M. Schulte
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| | - Amy K. Madl
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| |
Collapse
|
22
|
Katsnelson BA, Chernyshov IN, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, Sahautdinova RR, Privalova LI, Tsaregorodtseva AE, Korotkov AV, Shuman EA, Panov VG, Sutunkova MP. Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats. Int J Mol Sci 2021; 22:ijms22010416. [PMID: 33401533 PMCID: PMC7796390 DOI: 10.3390/ijms22010416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022] Open
Abstract
Rats were exposed to nickel oxide nano-aerosol at a concentration of 2.4 ± 0.4 µg/m3 in a “nose only” inhalation setup for 4 h at a time, 5 times a week, during an overall period of 2 weeks to 6 months. Based on the majority of the effects assessed, this kind of exposure may be considered as close to LOAEL (lowest observed adverse effect level), or even to NOAEL (no observed adverse effect level). At the same time, the experiment revealed genotoxic and allergic effects as early as in the first weeks of exposure, suggesting that these effects may have no threshold at all.
Collapse
Affiliation(s)
- Boris A. Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-3717-740
| | - Ivan N. Chernyshov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Svetlana N. Solovyeva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Ilzira A. Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Vladimir B. Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Irene E. Valamina
- Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., 620109 Yekaterinburg, Russia; (I.E.V.); (O.H.M.); (A.E.T.); (A.V.K.); (E.A.S.)
| | - Oleg H. Makeyev
- Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., 620109 Yekaterinburg, Russia; (I.E.V.); (O.H.M.); (A.E.T.); (A.V.K.); (E.A.S.)
| | - Renata R. Sahautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Larisa I. Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Anastasia E. Tsaregorodtseva
- Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., 620109 Yekaterinburg, Russia; (I.E.V.); (O.H.M.); (A.E.T.); (A.V.K.); (E.A.S.)
| | - Artem V. Korotkov
- Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., 620109 Yekaterinburg, Russia; (I.E.V.); (O.H.M.); (A.E.T.); (A.V.K.); (E.A.S.)
| | - Eugene A. Shuman
- Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., 620109 Yekaterinburg, Russia; (I.E.V.); (O.H.M.); (A.E.T.); (A.V.K.); (E.A.S.)
| | - Vladimir G. Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Marina P. Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Yekaterinburg, Russia; (I.N.C.); (S.N.S.); (I.A.M.); (V.B.G.); (R.R.S.); (L.I.P.); (V.G.P.); (M.P.S.)
| |
Collapse
|
23
|
Di Girolamo D, Di Giacomo F, Matteocci F, Marrani AG, Dini D, Abate A. Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem Sci 2020; 11:7746-7759. [PMID: 34094149 PMCID: PMC8163100 DOI: 10.1039/d0sc02859b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022] Open
Abstract
The power conversion efficiency (PCE) of NiO based perovskite solar cells has recently hit a record 22.1% with a hybrid organic-inorganic perovskite composition and a PCE above 15% in a fully inorganic configuration was achieved. Moreover, NiO processing is a mature technology, with different industrially attractive processes demonstrated in the last few years. These considerations, along with the excellent stabilities reported, clearly point towards NiO as the most efficient inorganic hole selective layer for lead halide perovskite photovoltaics, which is the topic of this review. NiO optoelectronics is discussed by analysing the different doping mechanisms, with a focus on the case of alkaline and transition metal cation dopants. Doping allows tuning the conductivity and the energy levels of NiO, improving the overall performance and adapting the material to a variety of perovskite compositions. Furthermore, we summarise the main investigations on the NiO/perovskite interface stability. In fact, the surface of NiO is commonly oxidised and reactive with perovskite, also under the effect of light, thermal and electrical stress. Interface engineering strategies should be considered aiming at long term stability and the highest efficiency. Finally, we present the main achievements in flexible, fully printed and lead-free perovskite photovoltaics which employ NiO as a layer and provide our perspective to accelerate the improvement of these technologies. Overall, we show that adequately doped and passivated NiO might be an ideal hole selective layer in every possible application of perovskite solar cells.
Collapse
Affiliation(s)
- Diego Di Girolamo
- Department of Chemical, Materials and Production Engineering. University of Naples Federico II Pzz.le Vincenzo Tecchio 80 Naples 80125 Italy
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Francesco Di Giacomo
- C.H.O.S.E.- Center for Hybrid and Organic Solar Energy, Department of Electrical Engineering, University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Fabio Matteocci
- C.H.O.S.E.- Center for Hybrid and Organic Solar Energy, Department of Electrical Engineering, University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Andrea Giacomo Marrani
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Danilo Dini
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Antonio Abate
- Department of Chemical, Materials and Production Engineering. University of Naples Federico II Pzz.le Vincenzo Tecchio 80 Naples 80125 Italy
- Institute for Silicon Photovoltaics, Hemlholtz Zentrum Berlin Kekulestraße 5 D-12489 Berlin Germany
| |
Collapse
|
24
|
Cho YL, Tan HWS, Saquib Q, Ren Y, Ahmad J, Wahab R, He W, Bay BH, Shen HM. Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radic Biol Med 2020; 153:173-186. [PMID: 32353482 DOI: 10.1016/j.freeradbiomed.2020.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) are an important group of nanoparticles with increasing applications in many aspects of industry. At present, there is evidence demonstrating the cytotoxic characteristics of NiO-NPs, while the involvement of autophagy in the cytotoxicity of NiO-NPs has not been reported. In this study, we aimed to study the role of autophagy in the cytotoxicity of NiO-NPs and the underlying regulatory mechanisms. First, we provided evidence that NiO-NPs induce autophagy in human cancer cells. Second, we found that the enhanced autophagic flux by NiO-NPs via the generation of intracellular reactive oxygen species (ROS) from mitochondria and the subsequent activation of the JNK pathway. Third, we demonstrated that the activation of JNK is a main force in mediating NiO-NPs-induced apoptosis. Finally, we demonstrated that the autophagic response plays an important protective role against the cytotoxic effect of NiO-NPs. Therefore, this study identifies the dual role of oxidative stress-JNK activation in the biological effects of NiO-NPs via promoting autophagy and mediating apoptosis. Understanding the protective role of autophagy and the underlying mechanism is important for the potential application of NiO-NPs in the biomedical industry.
Collapse
Affiliation(s)
- Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Javed Ahmad
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Rizwan Wahab
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
25
|
Minigaliyeva IA, Sutunkova MP, Gurvich VB, Bushueva TV, Klinova SV, Solovyeva SN, Chernyshov IN, Valamina IE, Shur VY, Shishkina EV, Makeyev OH, Panov VG, Privalova LI, Katsnelson BA. An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology 2020; 14:788-806. [PMID: 32396411 DOI: 10.1080/17435390.2020.1762132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| | | | - Oleg H Makeyev
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir G Panov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.,The Institute of Industrial Ecology, Russian Academy of Sciences - Urals Branch, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
26
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|
27
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|