1
|
Ma Y, Xiang Y, Li X, Zhang D, Chen Q. Recombinant streptococcal protein G-modified metal-organic framework ZIF-8 for the highly selective purification of immunoglobulin G from human serum. Anal Chim Acta 2024; 1288:342175. [PMID: 38220305 DOI: 10.1016/j.aca.2023.342175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
A novel solid phase extractant His-rSPG@ZIF-8 was prepared by covalently coupling recombinant streptococcal protein G (His-rSPG) with ZIF-8. The His-rSPG@ZIF-8 composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Due to the specific binding between the immunoglobulin binding region of His-rSPG and the Fc region of immunoglobulin G (IgG), the His-rSPG@ZIF-8 composite demonstrated exceptional selectivity in adsorbing IgG. In Britton-Robinson buffer (BR buffer) with a salt concentration of 500 mmol L-1 (0.04 mol L-1, pH 8.0), the His-rSPG@ZIF-8 composite exhibited a remarkable adsorption efficiency of 99.8 % for 0.05 mg of the composite on 200 μL of IgG solution (100 μg mL-1). The adsorption behavior of the His-rSPG@ZIF-8 composite aligns with the Langmuir adsorption model, and the theoretical maximum adsorption capacity is 1428.6 mg g-1. The adsorbed IgG molecules were successfully eluted using a SDS solution (0.5 %, m/m), resulting in a recovery rate of 91.2 %. Indeed, the His-rSPG@ZIF-8 composite was successfully utilized for the isolation and purification of IgG from human serum samples. The obtained IgG exhibited high purity, as confirmed by SDS-PAGE analysis. Additionally, LC-MS/MS analysis was employed to identify the human serum proteins following the adsorption and elution process using the His-rSPG@ZIF-8 composite material. The results revealed that the recovered solution contained an impressive content of immunoglobulin, accounting for 62.4 % of the total protein content. Furthermore, this process also led to the significant enrichment of low abundance proteins such as Serpin B4 and Cofilin-1. Consequently, the His-rSPG@ZIF-8 composite holds great promise for applications such as IgG purification and immunoassays. At the same time, it expands the application of metal-organic frameworks in the field of proteomics.
Collapse
Affiliation(s)
- Yufei Ma
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yuhan Xiang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Dandan Zhang
- School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
2
|
Ji HL, Xi NMS, Mohan C, Yan X, Jain KG, Zang QS, Gahtan V, Zhao R. Biomarkers and molecular endotypes of sarcoidosis: lessons from omics and non-omics studies. Front Immunol 2024; 14:1342429. [PMID: 38250062 PMCID: PMC10797773 DOI: 10.3389/fimmu.2023.1342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Nan Mile S. Xi
- Department of Mathematics and Statistics at Loyola University Chicago, Chicago, IL, United States
| | - Chandra Mohan
- Biomedical Engineering & Medicine, University of Houston, Houston, TX, United States
| | - Xiting Yan
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, United States
| | - Krishan G. Jain
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Qun Sophia Zang
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Vivian Gahtan
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Runzhen Zhao
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| |
Collapse
|
3
|
Wang J, Lundström SL, Lu W, Huang Y, Rodin S, Zubarev RA. SpotLight proteomics identifies variable sequences of blood antibodies specific against deamidated human serum albumin. Mol Cell Proteomics 2023:100589. [PMID: 37301377 PMCID: PMC10345337 DOI: 10.1016/j.mcpro.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Spontaneous deamidation of asparaginyl residues in proteins, if not repaired or cleared, can set in motion a cascade that leads to deteriorated health. Previously, we have discovered that deamidated human serum albumin (HSA) is elevated in blood of patients with Alzheimer's disease and other neurodegenerative diseases, while the level of endogenous antibodies against deamidated HSA is significantly diminished, creating an imbalance between the risk factor and the defense against it. Endogenous antibodies against deamidated proteins are still unexplored. In the current study, we employed the SpotLight proteomics approach to identify novel amino acid sequences in antibodies specific to deamidated HSA. The results provide new insights into the clearance mechanism of deamidated proteins, a possible avenue for prevention of neurodegeneration.
Collapse
Affiliation(s)
- Jijing Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden
| | - Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden
| | - Weiqi Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden; Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiqi Huang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden; Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sergey Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 165 Stockholm, Sweden.
| |
Collapse
|
4
|
Schulte D, Peng W, Snijder J. Template-Based Assembly of Proteomic Short Reads For De Novo Antibody Sequencing and Repertoire Profiling. Anal Chem 2022; 94:10391-10399. [PMID: 35834437 PMCID: PMC9330293 DOI: 10.1021/acs.analchem.2c01300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Antibodies can target a vast molecular diversity of antigens.
This
is achieved by generating a complementary diversity of antibody sequences
through somatic recombination and hypermutation. A full understanding
of the antibody repertoire in health and disease therefore requires
dedicated de novo sequencing methods. Next-generation
cDNA sequencing methods have laid the foundation of our current understanding
of the antibody repertoire, but these methods share one major limitation
in that they target the antibody-producing B-cells, rather than the
functional secreted product in bodily fluids. Mass spectrometry-based
methods offer an opportunity to bridge this gap between antibody repertoire
profiling and bulk serological assays, as they can access antibody
sequence information straight from the secreted polypeptide products.
In a step to meeting the challenge of mass spectrometry (MS)-based
antibody sequencing, we present a fast and simple software tool (Stitch)
to map proteomic short reads to user-defined templates with dedicated
features for both monoclonal antibody sequencing and profiling of
polyclonal antibody repertoires. We demonstrate the use of Stitch
by fully reconstructing two monoclonal antibody sequences with >98%
accuracy (including I/L assignment); sequencing a Fab from patient
serum isolated by reversed-phase liquid chromatography (LC) fractionation
against a high background of homologous antibody sequences; sequencing
antibody light chains from the urine of multiple-myeloma patients;
and profiling the IgG repertoire in sera from patients hospitalized
with COVID-19. We demonstrate that Stitch assembles a comprehensive
overview of the antibody sequences that are represented in the dataset
and provides an important first step toward analyzing polyclonal antibodies
and repertoire profiling.
Collapse
Affiliation(s)
- Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Houen G, Trier N. Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting. Int J Mol Sci 2020; 21:ijms21041405. [PMID: 32092996 PMCID: PMC7073054 DOI: 10.3390/ijms21041405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Molecular recognition, the specific interaction between molecules by a combination of physical forces, has been a subject of scientific investigation for decades [...].
Collapse
|
6
|
Liu S, Fu Y, Huang Z, Liu Y, Liu BF, Cheng L, Liu X. A comprehensive analysis of subclass-specific IgG glycosylation in colorectal cancer progression by nanoLC-MS/MS. Analyst 2020; 145:3136-3147. [DOI: 10.1039/d0an00369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is associated with changed IgG glycosylation, but the alteration in specific subclasses of IgG is unknown.
Collapse
Affiliation(s)
- Si Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yang Fu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Zhiwen Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yuanyuan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Liming Cheng
- Department of Laboratory Medicine
- Tongji Hospital
- Tongji Medical College
- Huzhong University of Science and Technology
- China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| |
Collapse
|
7
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|