1
|
Tao Z, Chen Z, Zeng X, Cui J, Quan M. An emerging aspect of cancer neuroscience: A literature review on chemotherapy-induced peripheral neuropathy. Cancer Lett 2024; 611:217433. [PMID: 39736454 DOI: 10.1016/j.canlet.2024.217433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The nervous system governs both ontogeny and oncology. Foundational discoveries have clarified the direct communication of neurotransmitters with tumors and indirect interactions through neural effects on the immune system and the tumor microenvironment. Meantime, the nervous system is susceptible to cancer and its treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common side effects that significantly reduce the efficacy of anti-cancer treatment and patients' quality of life by leading to dose reduction or early cessation of chemotherapy. However, there are no effective strategies to reverse or treat CIPN. A better understanding of the mechanisms is expected to enable the development of the next generation of therapies. Here, we summarize the recent important studies on clinical manifestations, risk factors, prediction, pathogenesis, prevention, and treatment of CIPN. We also provide perspectives and insights regarding the rationales of bidirectional interactions between cancer and the nervous system.
Collapse
Affiliation(s)
- Zhirui Tao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Zhiqin Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Xiaochen Zeng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jiujie Cui
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| |
Collapse
|
2
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
3
|
Kacem H, Cimini A, d’Angelo M, Castelli V. Molecular and Cellular Involvement in CIPN. Biomedicines 2024; 12:751. [PMID: 38672107 PMCID: PMC11048589 DOI: 10.3390/biomedicines12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Many anti-cancer drugs, such as taxanes, platinum compounds, vinca alkaloids, and proteasome inhibitors, can cause chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a frequent and harmful side effect that affects the sensory, motor, and autonomic nerves, leading to pain, numbness, tingling, weakness, and reduced quality of life. The causes of CIPN are not fully known, but they involve direct nerve damage, oxidative stress, inflammation, DNA damage, microtubule dysfunction, and altered ion channel activity. CIPN is also affected by genetic, epigenetic, and environmental factors that modulate the risk and intensity of nerve damage. Currently, there are no effective treatments or prevention methods for CIPN, and symptom management is mostly symptomatic and palliative. Therefore, there is a high demand for better understanding of the cellular and molecular mechanisms involved in CIPN, as well as the development of new biomarkers and therapeutic targets. This review gives an overview of the current knowledge and challenges in the field of CIPN, focusing on the biological and molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (H.K.); (A.C.); (V.C.)
| | | |
Collapse
|
4
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
5
|
Wang S, Du X, Yan G, Yang L, Sun H, Zhang X, Kong L, Han Y, Han D, Tang S, Wang X. Huangqi Guizhi Wuwu Decoction Improves Inflammatory Factor Levels in Chemotherapy-induced Peripheral Neuropathy by Regulating the Arachidonic Acid Metabolic Pathway. Curr Pharm Des 2024; 30:2701-2717. [PMID: 39092641 DOI: 10.2174/0113816128308622240709102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chemotherapy-induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN; however, the mechanism of the activity is not entirely understood. OBJECTIVE This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN. METHODS Changes in behavioral, biochemical, histopathological, and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments. RESULTS A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α,21-dihydroxypregnenolone were targeted as core biomarkers. CONCLUSION This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaohui Du
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Di Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songyuan Tang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
7
|
Sankaranarayanan I, Tavares-Ferreira D, He L, Kume M, Mwirigi JM, Madsen TM, Petersen KA, Munro G, Price TJ. Meteorin Alleviates Paclitaxel-Induced Peripheral Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2023; 24:555-567. [PMID: 36336327 PMCID: PMC10079550 DOI: 10.1016/j.jpain.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy is a challenging condition to treat, and arises due to severe, dose-limiting toxicity of chemotherapeutic drugs such as paclitaxel. This often results in debilitating sensory and motor deficits that are not effectively prevented or alleviated by existing therapeutic interventions. Recent studies have demonstrated the therapeutic effects of Meteorin, a neurotrophic factor, in reversing neuropathic pain in rodent models of peripheral nerve injury induced by physical trauma. Here, we sought to investigate the potential antinociceptive effects of recombinant mouse Meteorin (rmMeteorin) using a paclitaxel-induced peripheral neuropathy model in male and female mice. Paclitaxel treatment (4 × 4 mg/kg, i.p.) induced hind paw mechanical hypersensitivity by day 8 after treatment. Thereafter, in a reversal dosing paradigm, five repeated injections of rmMeteorin (.5 and 1.8 mg/kg s.c. respectively) administered over 9 days produced a significant and long-lasting attenuation of mechanical hypersensitivity in both sexes. Additionally, administration of rmMeteorin ( .5 and 1.8 mg/kg), initiated before and during paclitaxel treatment (prevention dosing paradigm), reduced the establishment of hind paw mechanical hypersensitivity. Repeated systemic administration of rmMeteorin in both dosing paradigms decreased histochemical signs of satellite glial cell reactivity as measured by glutamine synthetase and connexin 43 protein expression in the dorsal root ganglion. Additionally, in the prevention administration paradigm rmMeteorin had a protective effect against paclitaxel-induced loss of intraepidermal nerve fibers. Our findings indicate that rmMeteorin has a robust and sustained antinociceptive effect in the paclitaxel-induced peripheral neuropathy model and the development of recombinant human Meteorin could be a novel and effective therapeutic for chemotherapy-induced peripheral neuropathy treatment. PERSPECTIVE: Chemotherapy neuropathy is a major clinical problem that decreases quality of life for cancer patients and survivors. Our experiments demonstrate that Meteorin treatment alleviates pain-related behaviors, and signs of neurotoxicity in a mouse model of paclitaxel neuropathy.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Diana Tavares-Ferreira
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Lucy He
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Moeno Kume
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Juliet M Mwirigi
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | | | | | - Theodore J Price
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
8
|
Sankaranarayanan I, Tavares-Ferreira D, Mwirigi JM, Mejia GL, Burton MD, Price TJ. Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice. J Neuroinflammation 2023; 20:32. [PMID: 36774519 PMCID: PMC9922469 DOI: 10.1186/s12974-023-02719-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a primary dose-limiting side effect caused by antineoplastic agents, such as paclitaxel. A primary symptom of this neuropathy is pain. Currently, there are no effective treatments for CIPN, which can lead to long-term morbidity in cancer patients and survivors. Neuro-immune interactions occur in CIPN pain and have been implicated both in the development and progression of pain in CIPN and the resolution of pain in CIPN. We investigated the potential role of inducible co-stimulatory molecule (ICOS) in the resolution of CIPN pain-like behaviors in mice. ICOS is an immune checkpoint molecule that is expressed on the surface of activated T cells and promotes proliferation and differentiation of T cells. We found that intrathecal administration of ICOS agonist antibody (ICOSaa) alleviates mechanical hypersensitivity caused by paclitaxel and facilitates the resolution of mechanical hypersensitivity in female mice. Administration of ICOSaa reduced astrogliosis in the spinal cord and satellite cell gliosis in the DRG of mice previously treated with paclitaxel. Mechanistically, ICOSaa intrathecal treatment promoted mechanical hypersensitivity resolution by increasing interleukin 10 (IL-10) expression in the dorsal root ganglion. In line with these observations, blocking IL-10 receptor (IL-10R) activity occluded the effects of ICOSaa treatment on mechanical hypersensitivity in female mice. Suggesting a broader activity in neuropathic pain, ICOSaa also partially resolved mechanical hypersensitivity in the spared nerve injury (SNI) model. Our findings support a model wherein ICOSaa administration induces IL-10 expression to facilitate neuropathic pain relief in female mice. ICOSaa treatment is in clinical development for solid tumors and given our observation of T cells in the human DRG, ICOSaa therapy could be developed for combination chemotherapy-CIPN clinical trials.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Diana Tavares-Ferreira
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Juliet M. Mwirigi
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Galo L. Mejia
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Michael D. Burton
- grid.267323.10000 0001 2151 7939Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| |
Collapse
|
9
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
10
|
Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells 2022; 11:cells11081358. [PMID: 35456037 PMCID: PMC9033047 DOI: 10.3390/cells11081358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal degeneration is an active process that differs from neuronal death, and it is the hallmark of many disorders affecting the central and peripheral nervous system. Starting from the analyses of Wallerian degeneration, the simplest experimental model, here we describe how the long projecting neuronal populations affected in Parkinson’s disease and chemotherapy-induced peripheral neuropathies share commonalities in the mechanisms and molecular players driving the earliest phase of axon degeneration. Indeed, both dopaminergic and sensory neurons are particularly susceptible to alterations of microtubules and axonal transport as well as to dysfunctions of the ubiquitin proteasome system and protein quality control. Finally, we report an updated review on current knowledge of key molecules able to modulate these targets, blocking the on-going axonal degeneration and inducing neuronal regeneration. These molecules might represent good candidates for disease-modifying treatment, which might expand the window of intervention improving patients’ quality of life.
Collapse
|
11
|
Villalba‐Riquelme E, de la Torre‐Martínez R, Fernández‐Carvajal A, Ferrer‐Montiel A. Paclitaxel in vitro reversibly sensitizes the excitability of IB4(-) and IB4(+) sensory neurons from male and female rats. Br J Pharmacol 2022; 179:3693-3710. [PMID: 35102580 PMCID: PMC9311666 DOI: 10.1111/bph.15809] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eva Villalba‐Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | | | - Asia Fernández‐Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | - Antonio Ferrer‐Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| |
Collapse
|
12
|
Karmakar V, Mohammad FS, Baeesa SS, Alexiou A, Sivakumar SR, Ashraf GM. Effect of Cliothosa aurivilli on Paclitaxel-induced Peripheral Neuropathy in Experimental Animals. Mol Neurobiol 2022; 59:2232-2245. [PMID: 35064539 DOI: 10.1007/s12035-021-02685-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious complication leading to painful episodes of parasthesia and numbness in hands and feet. The present drugs that have been used for symptomatic treatment yield inconclusive results in trials and assorted side effects. Thus, there is a pressing demand for development of therapeutically efficacious strategy to combat CIPN. The present study investigates about the effect of a marine sponge; Cliothosa aurivilli (CA) on paclitaxel (PT)-induced peripheral neuropathy in mice. Peripheral neuropathy was induced by intoxication with chemotherapeutic drug PT (2 mg/kg; i.p.) for 5 days consequently. Subsequent treatment with aqueous extract of CA (100 and 200 mg/kg) and standard drug methylcobalamin (MCA) (5 mg/kg) was done and results compared statistically. Neuropathic pain sensations were assessed using various behavioural and locomotory models and evaluated on 0th, 7th and 14th days. Kinovea software was used for video path-tracking of animals and total distance travelled calculated. The results indicated clear signs of improvement post 10 days of PT intoxication in CA-treated groups when compared PT challenged group. A significant reduction in pain behaviours in mechanical allodynia, cold chemical allodynia and thermal hyperalgesia models, improvement in sensory motor coordination, locomotor activity, and distance travelled in closed field model reveals that CA possesses potential ameliorating effect against PT-induced neuropathic pain symptoms. The extract notably improved the movement of the PT challenged animals which was shown by the video path-tracking software and total distance travelled by those animals.
Collapse
Affiliation(s)
- Varnita Karmakar
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Kamre, Ranchi, Jharkhand, 835222, India
| | - Firdous Sayeed Mohammad
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - S R Sivakumar
- Department of Botany, Bharathidasan University, Trichy, 620024, Tamilnadu, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Ozkul B, Ozkul O, Erbas O. The Investigation of Ameliorating Effect of Methylene Blue on Cisplatin-Induced Neurotoxicity in Female Rats. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2022. [DOI: 10.29333/jcei/11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Cunningham GM, Shen F, Wu X, Cantor EL, Gardner L, Philips S, Jiang G, Bales CL, Tan Z, Liu Y, Wan J, Fehrenbacher JC, Schneider BP. The impact of SBF2 on taxane-induced peripheral neuropathy. PLoS Genet 2022; 18:e1009968. [PMID: 34986146 PMCID: PMC8765656 DOI: 10.1371/journal.pgen.1009968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Taxane-induced peripheral neuropathy (TIPN) is a devastating survivorship issue for many cancer patients. In addition to its impact on quality of life, this toxicity may lead to dose reductions or treatment discontinuation, adversely impacting survival outcomes and leading to health disparities in African Americans (AA). Our lab has previously identified deleterious mutations in SET-Binding Factor 2 (SBF2) that significantly associated with severe TIPN in AA patients. Here, we demonstrate the impact of SBF2 on taxane-induced neuronal damage using an ex vivo model of SBF2 knockdown of induced pluripotent stem cell-derived sensory neurons. Knockdown of SBF2 exacerbated paclitaxel changes to cell viability and neurite outgrowth while attenuating paclitaxel-induced sodium current inhibition. Our studies identified paclitaxel-induced expression changes specific to mature sensory neurons and revealed candidate genes involved in the exacerbation of paclitaxel-induced phenotypes accompanying SBF2 knockdown. Overall, these findings provide ex vivo support for the impact of SBF2 on the development of TIPN and shed light on the potential pathways involved.
Collapse
Affiliation(s)
- Geneva M. Cunningham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Fei Shen
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Xi Wu
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Erica L. Cantor
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Laura Gardner
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Santosh Philips
- Department of Clinical Pharmacology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Casey L. Bales
- Department of Clinical Pharmacology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Zhiyong Tan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Jill C. Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Bryan P. Schneider
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| |
Collapse
|
15
|
Malacrida A, Semperboni S, Di Domizio A, Palmioli A, Broggi L, Airoldi C, Meregalli C, Cavaletti G, Nicolini G. Tubulin binding potentially clears up Bortezomib and Carfilzomib differential neurotoxic effect. Sci Rep 2021; 11:10523. [PMID: 34006972 PMCID: PMC8131610 DOI: 10.1038/s41598-021-89856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Proteasome inhibitors (PIs) represent the gold standard in the treatment of multiple myeloma. Among PIs, Bortezomib (BTZ) is frequently used as first line therapy, but peripheral neuropathy (PN), occurring approximately in 50% of patients, impairs their life, representing a dose-limiting toxicity. Carfilzomib (CFZ), a second-generation PI, induces a significantly less severe PN. We investigated possible BTZ and CFZ off-targets able to explain their different neurotoxicity profiles. In order to identify the possible PIs off-targets we used the SPILLO-PBSS software that performs a structure-based in silico screening on a proteome-wide scale. Among the top-ranked off-targets of BTZ identified by SPILLO-PBSS we focused on tubulin which, by contrast, did not turn out to be an off-target of CFZ. We tested the hypothesis that the direct interaction between BTZ and microtubules would inhibit the tubulin alfa GTPase activity, thus reducing the microtubule catastrophe and consequently furthering the microtubules polymerization. This hypothesis was validated in a cell-free model, since BTZ (but not CFZ) reduces the concentration of the free phosphate released during GTP hydrolysis. Moreover, NMR binding studies clearly demonstrated that BTZ, unlike CFZ, is able to interact with both tubulin dimers and polymerized form. Our data suggest that different BTZ and CFZ neurotoxicity profiles are independent from their proteasome inhibition, as demonstrated in adult mice dorsal root ganglia primary sensory neurons, and, first, we demonstrate, in a cell free model, that BTZ is able to directly bind and perturb microtubules.
Collapse
Affiliation(s)
- A Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - S Semperboni
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - A Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy.,SPILLOproject, Via Stradivari 17, Paderno Dugnano, 20037, Milano, Italy
| | - A Palmioli
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - L Broggi
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy
| | - C Airoldi
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - C Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - G Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - G Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| |
Collapse
|
16
|
The proteasome and its role in the nervous system. Cell Chem Biol 2021; 28:903-917. [PMID: 33905676 DOI: 10.1016/j.chembiol.2021.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Proteasomes are multisubunit complexes that catalyze the majority of protein degradation in mammalian cells to maintain protein homeostasis and influence the regulation of most cellular processes. The proteasome, a multicatalytic protease complex, is a ring-like structure with a narrow pore that exhibits regulated gating, enabling the selective degradation of target proteins into peptide fragments. This process of removing proteins is essential for eliminating proteins that are no longer wanted, such as unfolded or aggregated proteins. This is important for preserving cellular function relevant to brain health and disease. Recently, in the nervous system, specialized proteasomes have been shown to generate peptides with important cellular functions. These discoveries challenge the prevailing notion that proteasomes primarily operate to eliminate proteins and identify signaling-competent proteasomes. This review focuses on the structure, function, and regulation of proteasomes and sheds light on emerging areas of investigation regarding the role of proteasomes in the nervous system.
Collapse
|
17
|
Campolo M, Lanza M, Paterniti I, Filippone A, Ardizzone A, Casili G, Scuderi SA, Puglisi C, Mare M, Memeo L, Cuzzocrea S, Esposito E. PEA-OXA Mitigates Oxaliplatin-Induced Painful Neuropathy through NF-κB/Nrf-2 Axis. Int J Mol Sci 2021; 22:ijms22083927. [PMID: 33920318 PMCID: PMC8069952 DOI: 10.3390/ijms22083927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics, such as oxaliplatin (L-OHP). The aim of the present work was to evaluate the potential beneficial effects of 2-pentadecyl-2-oxazoline (PEA-OXA) in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). OIPN was induced by an intraperitoneally injection of L-OHP in rats on five consecutive days (D0-4) for a final cumulative dose of 10 mg/kg. PEA-OXA and ultramicronized palmitoylethanolamide (PEAum), both 10 mg/kg, were given orally 15-20 min prior (L-OHP) and sacrifice was made on day 25. Our results demonstrated that PEA-OXA, more than PEAum, reduced the development of hypersensitivity in rats; this was associated with the reduction in hyperactivation of glia cells and the increased production of proinflammatory cytokines in the dorsal horn of the spinal cord, accompanied by an upregulation of neurotrophic factors in the dorsal root ganglia (DRG). Moreover, we showed that PEA-OXA reduced L-OHP damage via a reduction in NF-κB pathway activation and a modulation of Nrf-2 pathways. Our findings identify PEA-OXA as a therapeutic target in chemotherapy-induced painful neuropathy, through the biomolecular signaling NF-κB/Nrf-2 axis, thanks to its abilities to counteract L-OHP damage. Therefore, we can consider PEA-OXA as a promising adjunct to chemotherapy to reduce chronic pain in patients.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | | | - Marzia Mare
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Lorenzo Memeo
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
18
|
Prokop A. A common theme for axonopathies? The dependency cycle of local axon homeostasis. Cytoskeleton (Hoboken) 2021; 78:52-63. [PMID: 33713552 DOI: 10.1002/cm.21657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The number of acquired or inherited conditions leading to axon degeneration (from now on referred to as axonopathies) is vast. To diagnose patients, clinicians use a range of indicators including physiology, morphology, family and patient history, as well as genetics, with the specific location of the lesion within the nervous system being a prominent feature. For the neurobiologist, these criteria are often unsatisfactory, and key questions remain unanswered. For example, does it make sense that different axonopathies affect distinct neuron groups through distinct mechanisms? Would it not be more likely that there are common routes to axon degeneration? In this opinion piece, I shall pose this fundamental question and try to find answers that are hopefully thought-provoking and trigger some conceptual rethinking in the field. I will conclude by describing the 'dependency cycle of axon homeostasis' as a new approach to make sense of the intricate connections of axon biology and physiology, also suggesting that different axonopathies might share common paths to axon degeneration.
Collapse
Affiliation(s)
- Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Moschetti G, Kalpachidou T, Amodeo G, Lattanzi R, Sacerdote P, Kress M, Franchi S. Prokineticin Receptor Inhibition With PC1 Protects Mouse Primary Sensory Neurons From Neurotoxic Effects of Chemotherapeutic Drugs in vitro. Front Immunol 2020; 11:2119. [PMID: 33072073 PMCID: PMC7541916 DOI: 10.3389/fimmu.2020.02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Theodora Kalpachidou
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michaela Kress
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Brown W, Bonar SF, McGuigan L, Soper J, Boyle R. Blau syndrome: a rare cause of exuberant granulomatous synovitis of the knee. Skeletal Radiol 2020; 49:1161-1166. [PMID: 31960075 DOI: 10.1007/s00256-020-03376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/02/2023]
Abstract
Blau syndrome (BS) is a rare autosomal dominant familial granulomatous inflammatory disease presenting in early childhood with dermatitis, arthritis and uveitis. Early-onset sarcoidosis represents the sporadic form, and both are characterised by mutations in the CARD15/NOD2 gene on chromosome 16. We describe a 38-year-old man with known BS who presented for orthopaedic review following right-sided patellar dislocation. MRI of the injured knee demonstrated diffuse synovitis and prominent fatty tissue resembling lipoma arborescens with evidence of recent patellar dislocation. Synovectomy was performed and confirmed granulomatous synovitis. Knee imaging findings are described for the first time. Combining distinct morphological bone changes with synovitis which resembles lipoma arborescens and histology which includes sarcoidal-type granulomatous synovitis should lead the radiologist and pathologist to consider the diagnosis of BS.
Collapse
Affiliation(s)
- Wendy Brown
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| | - S Fiona Bonar
- Douglass Hanly Moir Pathology, 14 Giffnock Avenue, Macquarie Park, NSW, 2113, Australia
| | | | - Judy Soper
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Richard Boyle
- Department of Orthopaedic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| |
Collapse
|
21
|
Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ, Paul SM, Levine JD, Miaskowski C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 2020; 15:1744806919878088. [PMID: 31486345 PMCID: PMC6755139 DOI: 10.1177/1744806919878088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used
drugs to treat breast cancer, is peripheral neuropathy (paclitaxel-induced
peripheral neuropathy). Paclitaxel-induced peripheral neuropathy, which
persists into survivorship, has a negative impact on patient’s mood,
functional status, and quality of life. Currently, no interventions are
available to treat paclitaxel-induced peripheral neuropathy. A critical
barrier to the development of efficacious interventions is the lack of
understanding of the mechanisms that underlie paclitaxel-induced peripheral
neuropathy. While data from preclinical studies suggest that disrupting
cytoskeleton- and axon morphology-related processes are a potential
mechanism for paclitaxel-induced peripheral neuropathy, clinical evidence is
limited. The purpose of this study in breast cancer survivors was to
evaluate whether differential gene expression and co-expression patterns in
these pathways are associated with paclitaxel-induced peripheral
neuropathy. Methods Signaling pathways and gene co-expression modules associated with
cytoskeleton and axon morphology were identified between survivors who
received paclitaxel and did (n = 25) or did not (n = 25) develop
paclitaxel-induced peripheral neuropathy. Results Pathway impact analysis identified four significantly perturbed cytoskeleton-
and axon morphology-related signaling pathways. Weighted gene co-expression
network analysis identified three co-expression modules. One module was
associated with paclitaxel-induced peripheral neuropathy group membership.
Functional analysis found that this module was associated with four
signaling pathways and two ontology annotations related to cytoskeleton and
axon morphology. Conclusions This study, which is the first to apply systems biology approaches using
circulating whole blood RNA-seq data in a sample of breast cancer survivors
with and without chronic paclitaxel-induced peripheral neuropathy, provides
molecular evidence that cytoskeleton- and axon morphology-related mechanisms
identified in preclinical models of various types of neuropathic pain
including chemotherapy-induced peripheral neuropathy are found in breast
cancer survivors and suggests pathways and a module of genes for validation
and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Mazor
- School of Nursing, University of California, San Francisco, CA, USA
| | - Marilynn J Hammer
- Icahn School of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
23
|
Lycan TW, Hsu FC, Ahn CS, Thomas A, Walker FO, Sangueza OP, Shiozawa Y, Park SH, Peters CM, Romero-Sandoval EA, Melin SA, Sorscher S, Ansley K, Lesser GJ, Cartwright MS, Strowd RE. Neuromuscular ultrasound for taxane peripheral neuropathy in breast cancer. Muscle Nerve 2020; 61:587-594. [PMID: 32052458 DOI: 10.1002/mus.26833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our study aim was to evaluate neuromuscular ultrasound (NMUS) for the assessment of taxane chemotherapy-induced peripheral neuropathy (CIPN), the dose-limiting toxicity of this agent. METHODS This cross-sectional study of breast cancer patients with taxane CIPN measured nerve cross-sectional area (CSA) by NMUS and compared with healthy historical controls. Correlations were determined between CSA and symptom scale, nerve conduction studies, and intraepidermal nerve fiber density (IENFD). RESULTS A total of 20 participants reported moderate CIPN symptoms at a median of 3.8 months following the last taxane dose. Sural nerve CSA was 1.2 mm2 smaller than healthy controls (P ≤ .01). Older age and time since taxane were associated with smaller sural nerve CSA. For each 1 mm2 decrease in sural nerve CSA, distal IENFD decreased by 2.1 nerve/mm (R2 0.30; P = .04). CONCLUSIONS These data support a sensory predominant taxane neuropathy or neuronopathy and warrant future research on longitudinal NMUS assessment of CIPN.
Collapse
Affiliation(s)
- Thomas W Lycan
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | - Fang-Chi Hsu
- Biostatistics and Data Science, Wake Forest School of Medicine, North Carolina
| | | | - Alexandra Thomas
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | | | | | - Yusuke Shiozawa
- Cancer Biology, Wake Forest School of Medicine, North Carolina
| | - Sun Hee Park
- Cancer Biology, Wake Forest School of Medicine, North Carolina
| | | | | | - Susan A Melin
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | - Steven Sorscher
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | - Katherine Ansley
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | - Glenn J Lesser
- Internal Medicine: Hematology and Oncology, Wake Forest School of Medicine, North Carolina
| | | | - Roy E Strowd
- Neurology, Wake Forest School of Medicine, North Carolina
| |
Collapse
|
24
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
25
|
Yang J, Li Q, Han D, Liao C, Wang P, Gao J, Xu Z, Liu Y. Radiation-induced impairment of optic nerve axonal transport in tree shrews and rats monitored by longitudinal manganese-enhanced MRI. Neurotoxicology 2020; 77:145-154. [PMID: 31987859 DOI: 10.1016/j.neuro.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Radiation-induced optic neuropathy (RION) is a serious complication that occurs after radiation therapy of tumors in the vicinity of the optic nerve, yet its mechanism and imaging features are poorly understood. In this study, we employed manganese-enhanced MRI (MEMRI) to assess optic nerve axonal transport in tree shrews and rats after irradiation. MATERIALS AND METHODS A comparison of normal visual projections in tree shrews and rats was conducted by intravitreal MnCl2 injection followed by MRI. Adult male tree shrews and rats received a total dose of 20 Gy delivered in two fractions (10 Gy per fraction) within 5 days. Longitudinal MEMRI was conducted 5, 10, 20 and 30 weeks after radiation. At the end of observation, motor proteins involved in axonal transport were detected by western blotting, and the axon cytoskeleton was assessed by immunofluorescence. RESULTS The eyeballs, lens sizes, vitreous volumes, optic nerves and superior colliculi of tree shrews were significantly larger than those of rats on MEMRI (P < 0.05). The Mn2+-enhancement of the optic nerve showed no significant changes at 5 and 10 weeks (P > 0.05) but decreased gradually from 20 to 30 weeks postirradiation (P < 0.05). The enhancement of the superior colliculus gradually decreased from 5 weeks to 30 weeks, and the decrease was most significant at 30 weeks (P < 0.05). The levels of the motor proteins cytoplasmic dynein-1, kinesin-1 and kinesin-2 in the experimental group were significantly decreased (P < 0.05). The immunofluorescence results showed that the α-tubulin, β-tubulin and SMI 31 levels in the experimental groups and control groups were not significantly different (P > 0.05). CONCLUSION Tree shrews show great advantages in visual neuroscience research involving MEMRI. The main cause of the decline in axonal transport in RION is an insufficient level of motor protein rather than damage to the axonal cytoskeletal structure. Longitudinal MEMRI can be used to detect changes in axonal transport function and to observe the relatively intact axon structure from the early to late stages after radiation administration.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China.
| | - Qinqing Li
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Dan Han
- Department of Medical Imaging. The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, PR China
| | - Chengde Liao
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Pengfei Wang
- Department of Key Laboratory. The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Road, Kunming, 650101, Yunnan, PR China
| | - Jingyan Gao
- Department of Radiation Oncology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Zeyan Xu
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Yifan Liu
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| |
Collapse
|
26
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
27
|
Zhi WI, Chen P, Kwon A, Chen C, Harte SE, Piulson L, Li S, Patil S, Mao JJ, Bao T. Chemotherapy-induced peripheral neuropathy (CIPN) in breast cancer survivors: a comparison of patient-reported outcomes and quantitative sensory testing. Breast Cancer Res Treat 2019; 178:587-595. [PMID: 31456070 PMCID: PMC6819268 DOI: 10.1007/s10549-019-05416-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE CIPN is a common, debilitating, and dose-limiting side effect of chemotherapy. Here, we describe characteristics of patients with CIPN using both patient-reported outcomes (PRO) and quantitative sensory testing (QST). METHODS Breast cancer survivors with persistent moderate to severe CIPN defined by a rating of 4 or greater on a 0-10 Numeric Rating Scale (NRS) from two ongoing clinical trials were included. PROs included the Neuropathic Pain Scale (NPS) and Functional Assessment of Cancer Therapy-Gynecologic Oncology Group/Neurotoxicity (FACT/GOG-Ntx). QST included tactile and vibration detection threshold measurements. Data were analyzed using descriptive statistics and Spearman correlation coefficients. RESULTS 49 female patients with a mean age of 61 years were assessed; 63% were Caucasian. Mean NRS scores were 4.2, 5.7, and 4.3 on 0-10 scale for pain, numbness, and tingling, respectively. Mean NPS score was 41.0 on a 0-100 scale, and the mean FACT/GOG-Ntx score was 25.8 on a 0-44 scale. QST showed mild to moderate impairments in tactile and vibration perception. The FACT/GOG-Ntx subscale for numbness was negatively correlated with tactile and vibration thresholds in both hands and feet (both p < 0.05). NPS was positively correlated with tactile thresholds in the hands and feet (p < 0.05). CONCLUSION Patients with moderate to severe CIPN report moderate pain, numbness, and tingling, and exhibit reduced tactile and vibration perception on QST. Weak to moderate correlations were observed between PRO and QST. These data suggest that QST outcomes are associated with CIPN symptoms and may be useful in helping monitor and manage CIPN treatment.
Collapse
Affiliation(s)
- W Iris Zhi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patricia Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice Kwon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Connie Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lauren Piulson
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujata Patil
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun J Mao
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting Bao
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|