1
|
Naef V, Lieto M, Satolli S, De Micco R, Troisi M, Pasquariello R, Doccini S, Privitera F, Filla A, Tessitore A, Santorelli FM. SCAR32: Functional characterization and expansion of the clinical-genetic spectrum. Ann Clin Transl Neurol 2024; 11:1879-1886. [PMID: 38837640 PMCID: PMC11251466 DOI: 10.1002/acn3.52094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Biallelic mutations in PRDX3 have been linked to autosomal recessive spinocerebellar ataxia type 32. In this study, which aims to contribute to the growing body of knowledge on this rare disease, we identified two unrelated patients with mutations in PRDX3. We explored the impact of PRDX3 mutation in patient skin fibroblasts and the role of the gene in neurodevelopment. METHODS We performed trio exome sequencing that identified mutations in PRDX3 in two unrelated patients. We also performed functional studies in patient skin fibroblasts and generated a "crispant" zebrafish (Danio rerio) model to investigate the role of the gene during nervous system development. RESULTS Our study reports two additional patients. Patient 1 is a 19-year-old male who showed a novel homozygous c.525_535delGTTAGAAGGTT (p. Leu176TrpfsTer11) mutation as the genetic cause of cerebellar ataxia. Patient 2 is a 20-year-old male who was found to present the known c.425C>G/p. Ala142Gly variant in compound heterozygosity with the p. Leu176TrpfsTer11 one. While the fibroblast model failed to recapitulate the pathological features associated with PRDX3 loss of function, our functional characterization of the prdx3 zebrafish model revealed motor defects, increased susceptibility to reactive oxygen species-triggered apoptosis, and an impaired oxygen consumption rate. CONCLUSIONS We identified a new variant, thereby expanding the genetic spectrum of PRDX3-related disease. We developed a novel zebrafish model to investigate the consequences of prdx3 depletion on neurodevelopment and thus offered a potential new tool for identifying new treatment opportunities.
Collapse
Affiliation(s)
- Valentina Naef
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Maria Lieto
- Department of Neurology and Stroke UnitOspedale del Mare HospitalNaplesItaly
| | - Sara Satolli
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Martina Troisi
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa Pasquariello
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Stefano Doccini
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Flavia Privitera
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Alessandro Filla
- Department of NeurosciencesReproductive and Odontostomatological SciencesFederico II UniversityNaplesItaly
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | |
Collapse
|
2
|
Wang L, Mou L, Guan S, Wang C, Sik A, Stoika R, Liu K, Jin M. Isoliquiritigenin induces neurodevelopmental-toxicity and anxiety-like behavior in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109555. [PMID: 36717046 DOI: 10.1016/j.cbpc.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin, a flavonoid compound, exhibits a variety of pharmacological properties, including anti-inflammatory, anti-oxidative, anti-microbial, anti-viral, and anti-tumor effects. In the past few years, the consumption of isoliquiritigenin-containing dietary supplements has increased due to their health benefits. Although the neuroprotective effects of isoliquiritigenin have been well-investigated, these studies were performed in cells and adult animals. The potential effects of isoliquiritigenin on the development, especially the neurodevelopment, of certain populations, such as zebrafish larvae, have not been investigated. In this study, zebrafish larvae were employed as a model to investigate the effects of isoliquiritigenin on development and neurodevelopment. Zebrafish embryos treated with high concentrations of isoliquiritigenin (10 and 15 μM) exhibited high rates of mortality, hatching, and malformation, indicating that isoliquiritigenin can affect zebrafish development. In addition, isoliquiritigenin impeded the development of central nervous system regions and the length of dopaminergic neurons located in midbrains and thalami of transgenic zebrafish larvae. The locomotor ability of zebrafish larvae exposed to high concentrations of isoliquiritigenin was negatively affected. The total distance and the average velocity significantly decreased, and anxiety-related behaviors were observed under light-dark challenge. Furthermore, the levels of gap43, tuba1b, mbp, hcrt, vmat2, and pomc, which mediate neurodevelopment, neurotoxicity, and anxiety were significantly decreased in zebrafish larvae exposed to isoliquiritigenin. These results indicate that isoliquiritigenin can disrupt the development of dopaminergic neurons and the function of the central nervous system in zebrafish, causing anxiety-like symptoms.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Ji'nan 250098, Shandong Province, People's Republic of China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Naef V, Meschini MC, Tessa A, Morani F, Corsinovi D, Ogi A, Marchese M, Ori M, Santorelli FM, Doccini S. Converging Role for REEP1/SPG31 in Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043527. [PMID: 36834939 PMCID: PMC9959426 DOI: 10.3390/ijms24043527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.
Collapse
Affiliation(s)
- Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria C. Meschini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Debora Corsinovi
- Department of Biology, University of Pisa, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Asahi Ogi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Michela Ori
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Correspondence: ; Tel.: +39-050-886-311
| |
Collapse
|
4
|
Kalra J. Crosslink between mutations in mitochondrial genes and brain disorders: implications for mitochondrial-targeted therapeutic interventions. Neural Regen Res 2023. [PMID: 35799515 PMCID: PMC9241418 DOI: 10.4103/1673-5374.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
5
|
Sabharwal A, Campbell JM, Schwab TL, WareJoncas Z, Wishman MD, Ata H, Liu W, Ichino N, Hunter DE, Bergren JD, Urban MD, Urban RM, Holmberg SR, Kar B, Cook A, Ding Y, Xu X, Clark KJ, Ekker SC. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish. Genes (Basel) 2022; 13:1317. [PMID: 35893052 PMCID: PMC9331066 DOI: 10.3390/genes13081317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jarryd M. Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Hirotaka Ata
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Wiebin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Danielle E. Hunter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jake D. Bergren
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Alex Cook
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| |
Collapse
|
6
|
Truong L, Rericha Y, Thunga P, Marvel S, Wallis D, Simonich MT, Field JA, Cao D, Reif DM, Tanguay RL. Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128615. [PMID: 35263707 PMCID: PMC8970529 DOI: 10.1016/j.jhazmat.2022.128615] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of widely used chemicals with limited human health effects data relative to the diversity of structures manufactured. To help fill this data gap, an extensive in vivo developmental toxicity screen was performed on 139 PFAS provided by the US EPA. Dechorionated embryonic zebrafish were exposed to 10 nominal water concentrations of PFAS (0.015-100 µM) from 6 to 120 h post-fertilization (hpf). The embryos were assayed for embryonic photomotor response (EPR), larval photomotor response (LPR), and 13 morphological endpoints. A total of 49 PFAS (35%) were bioactive in one or more assays (11 altered EPR, 25 altered LPR, and 31 altered morphology). Perfluorooctanesulfonamide (FOSA) was the only structure that was bioactive in all 3 assays, while Perfluorodecanoic acid (PFDA) was the most potent teratogen. Low PFAS volatility was associated with developmental toxicity (p < 0.01), but no association was detected between bioactivity and five other physicochemical parameters. The bioactive PFAS were enriched for 6 supergroup chemotypes. The results illustrate the power of a multi-dimensional in vivo platform to assess the developmental (neuro)toxicity of diverse PFAS and in the acceleration of PFAS safety research.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Preethi Thunga
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Skylar Marvel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dylan Wallis
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Department of Chemistry at Oregon State University, Corvallis, OR, USA
| | - Dunping Cao
- Department of Environmental and Molecular Toxicology, Department of Chemistry at Oregon State University, Corvallis, OR, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Robyn L Tanguay
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
8
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Kumar V, Singh C, Singh A. Zebrafish an experimental model of Huntington's disease: molecular aspects, therapeutic targets and current challenges. Mol Biol Rep 2021; 48:8181-8194. [PMID: 34665402 DOI: 10.1007/s11033-021-06787-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a lethal autosomal dominant neurodegenerative disease whose exact causative mechanism is still unknown. It can transform from one generation to another generation. The CAG triplet expansion on polyglutamine (PolyQ) tract on Huntingtin protein primarily contributes in HD pathogenesis. Apart from this some another molecular mechanisms are also involved in HD pathology such as loss of Brain derived neurotrophic factor in medium spiny neurons, mitochondrial dysfunction, and alterations in synaptic plasticity are briefly discussed in this review. However, several chemicals (3-nitropropionic acid, and Quinolinic acid) and genetic (mHTT-ΔN17-97Q over expression) experimental models are used to explore the exact pathogenic mechanism and finding of new drug targets for the development of novel therapeutic approaches. The zebrafish (Danio rerio) is widely used in in-vivo screening of several central nervous system (CNS) diseases such as HD, Alzheimer's disease (AD), Parkinson's disease (PD), and in memory deficits. Thus, this makes zebrafish as an excellent animal model for the development of new therapeutic strategies against various CNS disorders. We had reviewed several publications utilizing zebrafish and rodents to explore the disease pathology. Studies suggested that zebrafish genes and their human homologues have conserved functions. Zebrafish advantages and their characteristics over the other experimental animals make it an excellent tool for the disease study. This review explains the possible pathogenic mechanism of HD and also discusses about possible treatment therapies, apart from this we also discussed about possible potential therapeutic targets which will helps in designing of novel therapeutic approaches to overcome the disease progression. Diagrammatic depiction shows prevention of HD pathogenesis through attenuation of various biochemical alterations.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
10
|
Efficient Neuroprotective Rescue of Sacsin-Related Disease Phenotypes in Zebrafish. Int J Mol Sci 2021; 22:ijms22168401. [PMID: 34445111 PMCID: PMC8395086 DOI: 10.3390/ijms22168401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs−/− larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.
Collapse
|
11
|
Lee H, Ko E, Shin S, Choi M, Kim KT. Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:115904. [PMID: 33714130 DOI: 10.1016/j.envpol.2020.115904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eun Ko
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
12
|
Ogi A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM. Social Preference Tests in Zebrafish: A Systematic Review. Front Vet Sci 2021; 7:590057. [PMID: 33553276 PMCID: PMC7862119 DOI: 10.3389/fvets.2020.590057] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.
Collapse
Affiliation(s)
- Asahi Ogi
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Valentina Naef
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | | | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Filippo M Santorelli
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| |
Collapse
|
13
|
Oonk KA, Bienvenu LB, Sickler PS, Martin C, Nickoloff-Bybel E, Volk AM, Weiser DC, Walsh S. Zebrafish Trak proteins 1a and 2 localize to the mitochondria. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 33274332 PMCID: PMC7704262 DOI: 10.17912/micropub.biology.000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kelsey A Oonk
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Paxton S Sickler
- Department of Biology, Rollins College, Winter Park, FL 32789, USA
| | - Christine Martin
- Department of Biology, Rollins College, Winter Park, FL 32789, USA
| | - Emily Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Susan Walsh
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA
| |
Collapse
|
14
|
A novel zebrafish model to emulate lung injury by folate deficiency-induced swim bladder defectiveness and protease/antiprotease expression imbalance. Sci Rep 2019; 9:12633. [PMID: 31477754 PMCID: PMC6718381 DOI: 10.1038/s41598-019-49152-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.
Collapse
|