1
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Xiong Y, Li JR, Peng PZ, Liu B, Zhao LN. Positive effect of peptide-calcium chelates from Grifola frondosa on a mouse model of senile osteoporosis. J Food Sci 2024; 89:3816-3828. [PMID: 38685878 DOI: 10.1111/1750-3841.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Calcium supplementation has been shown to be efficacious in mitigating the progression of senile osteoporosis (SOP) and reducing the incidence of osteoporotic fractures resulting from prolonged calcium shortage. In this study, Grifola frondosa (GF) peptides-calcium chelate were synthesized through the interaction between peptide from GF and CaCl2. The chelation reaction was shown to involve the participation of the amino and carboxyl groups in the peptide, as revealed by scanning electron microscope, Fourier-transform infrared, and ultraviolet spectrophotometry. Furthermore, a mouse model of (SOP) induced by d-galactose was established (SCXK-2018-0004). Results demonstrated that low dosage of low-molecular weight GF peptides-calcium chelates (LLgps-Ca) could significantly improve serum index and pathological features of bone tissue and reduce bone injury. Further research suggested that LLgps-Ca could ameliorate SOP by modulating the disrupted metabolic pathway, which includes focal adhesion, extracellular matrix receptor interaction, and PI3K-Akt signaling pathway. Using Western blot, the differentially expressed proteins were further confirmed. Thus, calciumchelating peptides from GF could serve as functional calcium agents to alleviate SOP.
Collapse
Affiliation(s)
- Yu Xiong
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing-Ru Li
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Pei-Zhi Peng
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Na Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Malkawi AK, Nimer RM, Almogren M, Masood A, Alarfaj AS, Benabdelkamel H, Abdel Rahman AM, Siaj M. Quantitative analysis of soluble costimulatory molecules as potential diagnostic biomarkers for rheumatoid arthritis using LC-MS/MS in MRM mode. Clin Chim Acta 2023; 548:117501. [PMID: 37516334 DOI: 10.1016/j.cca.2023.117501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND AIMS Rheumatoid arthritis (RA) is a chronic autoimmune disease. RA-induced immunological responses are coordinated by T-cell stimulation. The costimulatory signal CD28-B7 is essential for T-cell activation by interacting CD28 with CD80 and CD86 costimulatory proteins. CTLA4 is another costimulatory protein that binds to CD80 and CD86 to inhibit T-cell activity. The soluble costimulatory proteins: sCD80, sCD86, sCD28, and sCTLA-4 were detected and quantified in human plasma and correlated with RA development. As potential diagnostic biomarkers for RA, developing a sensitive, specific, and reproducible method for quantifying these costimulatory molecules in human plasma and establishing quantitative ranges for each protein in healthy and RA patients' plasma is essential for advancing the clinical diagnostic and health outcomes. MATERIALS AND METHODS A novel quantitative liquid chromatography-tandem spectrometry (LC-MS/MS) technique using multiple reaction monitoring (MRM) modes was developed and validated to measure soluble costimulatory molecules sCTLA4, sCD28, sCD80, and sCD86 in human plasma samples. Furthermore, the method was applied to determine sCTLA4, sCD28, sCD80, and sCD86 levels in plasma samples from RA patients (n = 23) and healthy controls (n = 21). RESULTS The method was successfully developed and validated according to international inter- and intra-assay precision and accuracy guidelines. The linearity of the method was achieved between 0.5 nM and 100 nM for each protein with a correlation coefficient of > 0.998. The plasma level of sCTLA4, sCD80, and sCD86 in RA patients was significantly elevated compared to controls. RA patients had 63.32 ± 17.63 nM sCTLA4 and controls 36.05 ± 18.83 nM; p < 0.0001. The performance of the four proteins was determined using ROC curves, where sCTLA4 showed the highest diagnostic and clinical performance compared to the others. CONCLUSIONS This study reports the first use of LC-MS/MS in MRM mode to accurately quantify soluble costimulatory molecules in plasma samples as potential RA diagnostic biomarkers. Determination of the reference range for each protein with high selectivity and sensitivity increases the potential for utilizing this method as a clinical diagnostic.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Maha Almogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Afshan Masood
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Abdulrahman S Alarfaj
- Department of Medicine, Rheumatology Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia; Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada.
| |
Collapse
|
4
|
Al-Ansari MM, Aleidi SM, Masood A, Alnehmi EA, Abdel Jabar M, Almogren M, Alshaker M, Benabdelkamel H, Abdel Rahman AM. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis. Int J Mol Sci 2022; 23:ijms231710200. [PMID: 36077598 PMCID: PMC9456664 DOI: 10.3390/ijms231710200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients’ proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Eman A. Alnehmi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Maha Almogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alshaker
- Department of Family Medicine and Polyclinic, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence:
| |
Collapse
|
5
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
6
|
Liu H, Liu D, Ji M, Xiao P, Qin Y, Zhao J, Wang N, Gou J, Yin T, He H, Chen G, Zhang Y, Tang X. Inflammation-targeted sialic acid-dexamethasone conjugates for reducing the side effects of glucocorticoids. Int J Pharm 2022; 622:121900. [PMID: 35690305 DOI: 10.1016/j.ijpharm.2022.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
As a potent glucocorticoid drug (GCs), Dexamethasone (Dex) is widely used clinically for the treatment of inflammatory diseases. However, such side effects as Cushing's syndrome and osteoporosis caused severe distress to patients. Herein, a sialic acid (SA)-modified dexamethasone conjugate (Dex-SA) was synthesized successfully to reduce side effects by targeting inflammatory diseases. The solubility of Dex-SA in water reached 58 times that of Dex, which meets the need for intravenous administration. The excellent stability of Dex-SA in plasma also laid a foundation for targeting disease sites. According to cellular uptake and biodistribution experiments, Dex-SA was more readily to be taken up by inflammatory cells and accumulated in diseased kidneys compared to Dex, which is attributed to the interaction of SA with E-selectin receptors overexpressed on the surface of inflammatory vascular endothelial cells. Besides, the pharmacodynamics studies of acute kidney injury showed that Dex-SA and Dex could produce comparable therapeutic effects. More importantly, Dex-SA was found to significantly reduce Dex-related side effects, as measured by blood glucose, red blood cells and immune cells, etc. At last, molecular docking results were obtained to confirm that Dex-SA could enter the cells by binding specifically with the E-selectin receptor, for combination with glucocorticoid receptors in the cytoplasm to exert pharmacological effects. Our study is expected to contribute a new strategy to the safe and effective targeting treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Dongdong Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Yi Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Jiansong Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Na Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| |
Collapse
|
7
|
The Effect of Long-Lasting Swimming on Rats Skeletal Muscles Energy Metabolism after Nine Days of Dexamethasone Treatment. Int J Mol Sci 2022; 23:ijms23020748. [PMID: 35054933 PMCID: PMC8775511 DOI: 10.3390/ijms23020748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats’ blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient’s health due to the common use of glucocorticoids like Dex.
Collapse
|
8
|
Stella R, Bovo D, Mastrorilli E, Pezzolato M, Bozzetta E, Biancotto G. Anabolic treatments in bovines: quantification of plasma protein markers of dexamethasone administration. Proteomics 2021; 21:e2000238. [PMID: 34133848 DOI: 10.1002/pmic.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study was to profile plasma proteome responses in bulls experimentally treated with dexamethasone at anabolic dosage. Illicit use of active substances in animal husbandry remains a matter of concern in Europe. Corticosteroids are probably one of the most widespread growth promoter family illegally used in beef cattle and veal calves. Testing for corticosteroids relies on detection of drug residues or their metabolites in biological fluids or tissues. Their indirect detection by mapping altered physiological parameters may overcome limits linked to route of administration, dosage, biotransformation and elimination kinetics that can lower residual drug concentration, hampering official controls. A set of 11 proteins proposed in literature as potential markers of anabolic treatments with dexamethasone, was quantified in bovine plasma by targeted proteomics based on liquid chromatography-high resolution tandem mass spectrometry. Among investigated proteins, sex hormone-binding globulin (SHBG), histidine-rich glycoprotein (HRG) and paraoxonase-1 (PON1) were found to be biomarkers of treatment. To investigate further such biomarkers, an additional group of veal calves was experimentally treated with dexamethasone at anabolic. These animals also demonstrated a significant alteration in SHBG, HRG and PON1 concentration, suggesting that quantification of plasma markers have the potential to detect animals illegally exposed to dexamethasone.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Davide Bovo
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Eleonora Mastrorilli
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro (PD), Italy.,Present address: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, CIBA, Torino, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, CIBA, Torino, Italy
| | - Giancarlo Biancotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| |
Collapse
|
9
|
Kather M, Koitzsch S, Breit B, Plontke S, Kammerer B, Liebau A. Metabolic reprogramming of inner ear cell line HEI-OC1 after dexamethasone application. Metabolomics 2021; 17:52. [PMID: 34028607 PMCID: PMC8144088 DOI: 10.1007/s11306-021-01799-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION One approach to dampen the inflammatory reactions resulting from implantation surgery of cochlear implant hearing aids is to embed dexamethasone into the matrix of the electrode carrier. Possible side effects for sensory cells in the inner ear on the metabolomics have not yet been evaluated. OBJECTIVE We examined changes in the metabolome of the HEI-OC1 cell line after dexamethasone incubation as a cell model of sensory cells of the inner ear. RESULTS AND CONCLUSION Untargeted GC-MS-profiling of metabolic alterations after dexamethasone treatment showed that dexamethasone had antithetical effects on the metabolic signature of the cells depending on growth conditions. The differentiated state of HEI-OC1 cells is better suited for elucidating metabolic changes induced by external factors. Dexamethasone treatment of differentiated cells led to an increase in intracellular amino acids and enhanced glucose uptake and β-oxidation in the cells. Increased availability of precursors for glycolysis and ATP production by β-oxidation stabilizes the energy supply in the cells, which could be assumed to be beneficial in coping with cellular stress. We found no negative effects of dexamethasone on the metabolic level, and changes may even prepare sensory cells to better overcome cellular stress following implantation surgery.
Collapse
Affiliation(s)
- Michel Kather
- Centre for Integrative Biological Signalling Studies CISA, University of Freiburg, Habsburger Straße 49, 79104, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Sabine Koitzsch
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Bernhard Breit
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Stefan Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Bernd Kammerer
- Centre for Integrative Biological Signalling Studies CISA, University of Freiburg, Habsburger Straße 49, 79104, Freiburg, Germany.
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany.
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Center for Biosystems Analysis, ZBSA, University of Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.
| | - Arne Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Kim JA, Vetrivel P, Kim SM, Ha SE, Kim HH, Bhosale PB, Heo JD, Lee WS, Senthil K, Kim GS. Quantitative Proteomics Analysis for the Identification of Differential Protein Expression in Calf Muscles between Young and Old SD Rats Using Mass Spectrometry. ACS OMEGA 2021; 6:7422-7433. [PMID: 33778255 PMCID: PMC7992086 DOI: 10.1021/acsomega.0c05821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 05/04/2023]
Abstract
Aging is associated with loss of muscle mass and strength that leads to a condition termed sarcopenia. Impaired conditions, morbidity, and malnutrition are the factors of devaluation of muscle fibers in aged animals. Satellite cells play an important role in maintaining muscle homeostasis during tissue regeneration and repair. Proteomic profiling on the skeletal muscle tissues of different age group rats helps to determine the differentially expressed (DE) proteins, which may eventually lead to the development of biomarkers in treating the conditions of sarcopenia. In this study, nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS) analysis was implemented in the calf tissues of young and old groups of rats. The mass spectrometry (MS) analysis revealed the presence of 335 differentially expressed proteins between the two different age conditions, among which those based on log-fold change 25 proteins were upregulated and 77 were downregulated. The protein-protein interaction network analysis revealed 18 upregulated proteins with three distinct interconnected networks and 57 downregulated proteins with two networks. Further, gene ontology (GO) enrichment analysis showed the biological process, cellular component, and molecular function of the differential proteins. Pathway enrichment analysis of the DE proteins identified nine significantly enriched pathways with a list of eight significant genes (Cryab, Hspb2, Acat1, Ak1, Adssl1, Anxa5, Gys1, Ogdh, Gc, and Adssl1). Quantification of significant genes by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the downregulation at the mRNA level. Western blot analysis of their protein expression showed concordant results on two candidate proteins (Ogdh and annexin 5) confirming their differential regulation between the two age groups of rats. Thus, these proteomic approaches on young and aged rats provide insights into the development of protein targets in the treatment of sarcopenia (muscle loss).
Collapse
Affiliation(s)
- Jin A. Kim
- Department
of Physical Therapy, International University
of Korea, Jinju 52833, Republic of Korea
| | - Preethi Vetrivel
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Seong Min Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam
Department of Environment Toxicology and Chemistry, Toxicity Screening
Research Center, Korea Institute of Toxicology, Munsan-eup, Jinju, Gyeongnam 52834, Republic of Korea
| | - Won Sup Lee
- Department
of Internal Medicine, Institute of Health Sciences, Gyeongsang National
University Hospital, Gyeongsang National
University School of Medicine, Jinju 660-702, Republic
of Korea
| | - Kalaiselvi Senthil
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, India
| | - Gon Sup Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Buzatto AZ, Malkawi A, Sabi EM, Mujamammi AH, Li L, Abdel Rahman AM. Tissue Lipidomic Alterations Induced by Prolonged Dexamethasone Treatment. J Proteome Res 2021; 20:1558-1570. [PMID: 33557525 DOI: 10.1021/acs.jproteome.0c00759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dexamethasone is a synthetic glucocorticoid medication vastly used to treat abnormal immune responses and inflammation. Although the medication is well-established in the medical community, the prolonged treatment with high dosages of dexamethasone may lead to severe adverse effects through mechanisms that are not yet well-known. Lipids are a large class of hydrophobic molecules involved in energy storage, signaling, modulation of gene expression, and membranes. Hence, untargeted lipidomics may help unravel the biochemical alterations following prolonged treatment with high dosages of dexamethasone. We performed comprehensive lipidomic analyses of brain, heart, kidney, liver, and muscle samples obtained from rats that were treated with intramuscular injections of dexamethasone for 14 weeks compared to healthy controls. The employed methodology and statistical analysis showed that phosphatidic acids, glycerophospholipids, plasmalogens, and fatty acids are deeply affected by prolonged use of the medication. Brain tissue was only mildly affected, but skeletal muscle showed a strong accumulation of lipids that may be correlated with alterations in the energy metabolism, myopathy, and oxidative processes. This work provides new insights into the mechanisms of action and adverse effects for one of the most commonly prescribed class of drugs in the world.
Collapse
Affiliation(s)
| | - Abeer Malkawi
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11211, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Anas M Abdel Rahman
- Metabolomics Section, Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
12
|
Liu L, Huang H, Li Y, Zhang R, Wei Y, Wu W. Severe Encephalatrophy and Related Disorders From Long-Term Ketamine Abuse: A Case Report and Literature Review. Front Psychiatry 2021; 12:707326. [PMID: 34658951 PMCID: PMC8519172 DOI: 10.3389/fpsyt.2021.707326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Ketamine is a glutamate N-methyl D-aspartate receptor antagonist and an anaesthetic agent that has been effectively used to treat depression. However, ketamine has also been increasingly used for recreational purposes. The dissociative side-effects of ketamine use, such as hallucinations, are the reason for abuse. Additionally, long-term ketamine abuse has been highly associated with liver-gallbladder and urinary symptoms. The present study reports the case of a 28-year-old young male adult with an 8-year history of daily inhalation of ketamine. We investigated the association between ketamine abuse and the mechanism of its adverse effects, particularly encephalatrophy, and attempted to find a link between these disorders. These results would help us to better understand ketamine usage, ketamine abuse effects and the addictive mechanism. To the best of our knowledge, the present case is the first report of severe brain atrophy related to ketamine abuse. Details of the patient are presented and the mechanism of the encephalatropy-associated ketamine abuse is discussed. Furthermore, organ dysfunction following chronic ketamine abuse may indicate that the side effects are the result of comprehensive action on multiple regions in the brain.
Collapse
Affiliation(s)
- Linying Liu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Haijian Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongbin Li
- Department of Urology, Fujian Jianou Hospital, Jianou, China
| | - Ruochen Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Weiwei Wu
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4614. [PMID: 32955134 PMCID: PMC8211109 DOI: 10.1002/jms.4614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage, and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars in these samples. This challenge is traditionally addressed using orthogonal liquid chromatography (LC)-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to IMS and highlight their importance to the field.
Collapse
Key Words
- IMS
- desorption electrospray ionization, DESI
- drift tube ion mobility spectrometry, DTIMS
- high-field asymmetric waveform ion mobility, FAIMS
- imaging mass spectrometry
- infrared matrix-assisted laser desorption electrospray ionization, IR-MALDESI
- ion mobility
- laser ablation electrospray ionization, LAESI
- lipids
- liquid extraction surface analysis, LESA
- liquid microjunction, (LMJ)
- matrix-assisted laser desorption electrospray ionization, MALDI
- metabolites
- proteins
- tissue analysis
- trapped ion mobility spectrometry, TIMS
- travelling wave ion mobility spectrometry, TWIMS
Collapse
Affiliation(s)
- Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Benabdelkamel H, Alamri H, Okla M, Masood A, Abdel Jabar M, Alanazi IO, Alfadda AA, Nizami I, Dasouki M, Abdel Rahman AM. Serum-Based Proteomics Profiling in Adult Patients with Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21197415. [PMID: 33050003 PMCID: PMC7582405 DOI: 10.3390/ijms21197415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Hanadi Alamri
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 183T11, Riyadh 11495, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 12354, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| |
Collapse
|
16
|
Griffiths RL, Hughes JW, Abbatiello SE, Belford MW, Styles IB, Cooper HJ. Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS. Anal Chem 2020; 92:2885-2890. [PMID: 31967787 PMCID: PMC7145278 DOI: 10.1021/acs.analchem.9b05124] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.
Collapse
Affiliation(s)
- Rian L Griffiths
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - James W Hughes
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom.,EPSRC Centre for Doctoral Training in Physical Sciences for Health , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Susan E Abbatiello
- Thermo Fisher Scientific , Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Michael W Belford
- Thermo Fisher Scientific , River Oaks Parkway , San Jose , California 95134 , United States
| | - Iain B Styles
- School of Computer Sciences , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Helen J Cooper
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| |
Collapse
|
17
|
Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS analysis. Metabolites 2020; 10:metabo10020042. [PMID: 31973046 PMCID: PMC7074358 DOI: 10.3390/metabo10020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague–Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.
Collapse
|
18
|
Wang R, Lu C, Shu Z, Yuan X, Jiang H, Guo H. iTRAQ-based proteomic analysis reveals several key metabolic pathways associated with male sterility in Salvia miltiorrhiza. RSC Adv 2020; 10:16959-16970. [PMID: 35496921 PMCID: PMC9053177 DOI: 10.1039/c9ra09240d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops. In 2002, our team discovered a natural male sterile mutant of Salvia miltiorrhiza. It provided us with the possibility of obtaining stable and controllable quality. To study the molecular mechanism of male sterility in S. miltiorrhiza, we generated proteomic profiles comparing the male sterile mutant type (MT) and wild type (WT) using iTRAQ sequencing. We found a total of 639 differential abundant proteins (DAPs) between MT and WT buds. The DAPs associated with male sterility were mainly involved in (1) carbohydrate and energy metabolism, and (2) protein synthesis and degradation. Based on a comparison between the protein expression profiles of MT and WT, we elucidated a potential protein interaction network involved in male sterility. These results provide new potential biomarkers and insights into the molecular mechanism of male sterility in S. miltiorrhiza. Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops.![]()
Collapse
Affiliation(s)
- Ruihong Wang
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
- College of Life Sciences
| | - Congyu Lu
- Centre for Bioinformatics & Computational Biology
- University of Delaware
- Newark
- USA
| | - Zhiming Shu
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Xinbo Yuan
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Han Jiang
- College of Life Sciences
- Northwest A&F University
- Yangling 712100
- China
| | - Hongbo Guo
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
19
|
Jacob M, Gu X, Luo X, Al-Mousa H, Arnaout R, Al-Saud B, L. Lopata A, Li L, Dasouki M, Rahman AMA. Metabolomics Distinguishes DOCK8 Deficiency from Atopic Dermatitis: Towards a Biomarker Discovery. Metabolites 2019; 9:metabo9110274. [PMID: 31718082 PMCID: PMC6918408 DOI: 10.3390/metabo9110274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Bi-allelic mutations in the dedicator of cytokinesis 8 (DOCK8) are responsible for a rare autosomal recessive primary combined immunodeficiency syndrome, characterized by atopic dermatitis, elevated serum Immunoglobulin E (IgE) levels, recurrent severe cutaneous viral infections, autoimmunity, and predisposition to malignancy. The molecular link between DOCK8 deficiency and atopic skin inflammation remains unknown. Severe atopic dermatitis (AD) and DOCK8 deficiency share some clinical symptoms, including eczema, eosinophilia, and increased serum IgE levels. Increased serum IgE levels are characteristic of, but not specific to allergic diseases. Herein, we aimed to study the metabolomic profiles of DOCK8-deficient and AD patients for potential disease-specific biomarkers using chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). Serum samples were collected from DOCK8-deficient (n = 10) and AD (n = 9) patients. Metabolomics profiling using CIL LC-MS was performed on patient samples and compared to unrelated healthy controls (n = 33). Seven metabolites were positively identified, distinguishing DOCK8-deficient from AD patients. Aspartic acid and 3-hydroxyanthranillic acid (3HAA, a tryptophan degradation pathway intermediate) were up-regulated in DOCK8 deficiency, whereas hypotaurine, leucyl-phenylalanine, glycyl-phenylalanine, and guanosine were down-regulated. Hypotaurine, 3-hydroxyanthranillic acid, and glycyl-phenyalanine were identified as potential biomarkers specific to DOCK8 deficiency. Aspartate availability has been recently implicated as a limiting metabolite for tumour growth and 3HAA; furthermore, other tryptophan metabolism pathway-related molecules have been considered as potential novel targets for cancer therapy. Taken together, perturbations in tryptophan degradation and increased availability of aspartate suggest a link of DOCK8 deficiency to oncogenesis. Additionally, perturbations in taurine and dipeptides metabolism suggest altered antixidation and cell signaling states in DOCK8 deficiency. Further studies examining the mechanisms underlying these observations are necessary.
Collapse
Affiliation(s)
- Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh 11211, Saudi Arabia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4814, Australia;
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada (X.L.); (R.A.); (L.L.)
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada (X.L.); (R.A.); (L.L.)
| | - Hamoud Al-Mousa
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research Centre (KFSH-RC), Riyadh 11211, Saudi Arabia; (H.A.-M.); (B.A.-S.)
| | - Rand Arnaout
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada (X.L.); (R.A.); (L.L.)
| | - Bandar Al-Saud
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research Centre (KFSH-RC), Riyadh 11211, Saudi Arabia; (H.A.-M.); (B.A.-S.)
| | - Andreas L. Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4814, Australia;
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada (X.L.); (R.A.); (L.L.)
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh 11211, Saudi Arabia;
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-1146-47272 (ext. 20481) (M.D.); +966-1146-47272 (ext. 36481) (A.M.A.R.); Fax: +966-1144-24585 (M.D. & A.M.A.R.)
| | - Anas M. Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh 11211, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-1146-47272 (ext. 20481) (M.D.); +966-1146-47272 (ext. 36481) (A.M.A.R.); Fax: +966-1144-24585 (M.D. & A.M.A.R.)
| |
Collapse
|