1
|
Wang XW, Ding YL, Li CL, Ma Q, Shi YG, Liu GE, Li CJ, Kang XL. Effects of rumen metabolite butyric acid on bovine skeletal muscle satellite cells proliferation, apoptosis and transcriptional states during myogenic differentiation. Domest Anim Endocrinol 2025; 90:106892. [PMID: 39418766 DOI: 10.1016/j.domaniend.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Butyric acid, a pivotal short-chain fatty acid in rumen digestion, profoundly influences animal digestive and locomotor systems. Extensive research indicates its direct or indirect involvement in the growth and development of muscle and fat cells. However, the impact of butyric acid on the proliferation and differentiation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. This study aimed to elucidate the effects of butyrate on SMSCs proliferation and differentiation. After isolating, SMSCs were subjected to varying concentrations of sodium butyrate (NaB) during the proliferation and differentiation stages. Optimal treatment conditions (1 mM NaB for 2 days) were determined based on proliferative force, cell viability, and mRNA expression of proliferation and differentiation marker genes. Transcriptome sequencing was employed to screen for differential gene expression between 1 mM NaB-treated and untreated groups during SMSCs differentiation. Results indicated that lower NaB concentrations (≤1.0 mM) inhibited proliferation while promoting differentiation and apoptosis after a 2-day treatment. Conversely, higher NaB concentrations (≥2.0 mM) suppressed proliferation and differentiation and induced apoptosis. Transcriptome sequencing revealed differential expression of genes(ND1, ND3, CYTB, COX2, ATP6, MYOZ2, MYOZ3, MYBPC1 and ATP6V0A4,etc.) were associated with SMSCs differentiation and energy metabolism, enriching pathways such as Oxidative phosphorylation, MAPK, and Wnt signaling. These findings offer valuable insights into the molecular mechanisms underlying butyrate regulation of bovine SMSCs proliferation and differentiation, as well as muscle fiber type conversion in the future study.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan750002, China
| | - Yan-Ling Ding
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cheng-Long Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan750002, China
| | - Yuan-Gang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States.
| | - Xiao-Long Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Yu W, Yao Y, Ye N, Zhao Y, Ye Z, Wei W, Zhang L, Chen J. The myokine CCL5 recruits subcutaneous preadipocytes and promotes intramuscular fat deposition in obese mice. Am J Physiol Cell Physiol 2024; 326:C1320-C1333. [PMID: 38497114 DOI: 10.1152/ajpcell.00591.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yao Yao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Nanwei Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yuelei Zhao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Zijian Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Wei Wei
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Lifan Zhang
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Jie Chen
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| |
Collapse
|
3
|
Wang F, Jiang L, Liu P, Jiang Y. Mechanism of adipose tissue-derived stromal cell-extracellular vesicles in treating oral submucous fibrosis by blocking the TGF-β1/Smad3 pathway via the miR-760-3p/IGF1R axis. BIOMOLECULES & BIOMEDICINE 2023; 24:827-839. [PMID: 38059910 PMCID: PMC11293217 DOI: 10.17305/bb.2023.9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Oral submucous fibrosis (OSF) is a prevalent chronic condition, and understanding its pathogenesis is crucial for developing effective therapeutic strategies. This study explores the potential of adipose tissue-derived stromal cell-extracellular vesicles (ADSC-EVs) in mitigating OSF and investigates the underlying molecular mechanisms. OSF was induced in mice by arecoline feeding. Adipose tissue-derived stromal cells (ADSCs), fibrotic buccal mucosal fibroblasts (fBMFs) isolated from OSF mice, and ADSC-EVs were comprehensively characterized. The treatment effects of extracellular vesicles (EVs) and pcDNA3.1-IGF1R on fBMF proliferation, migration, and invasion were assessed using Cell Counting Kit-8 (CCK-8) assay, transwell assay, and flow cytometry assay. The expression levels of alpha-smooth muscle actin (α-SMA), collagen I, collagen III, and insulin-like growth factor 1 receptor (IGF1R) were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The interaction between miR-760-3p and IGF1R was investigated. In fBMFs and OSF mice treated with a miR-760-3p inhibitor and/or EVs, the expression patterns of miR-760-3p, IGF1R, and proteins related to the TGF-β1/Smad3 pathway were determined. ADSC-EVs demonstrated the ability to upregulate miR-760-3p, impede cell proliferation, migration, and invasion, and reduce α-SMA, collagen I, and collagen III levels in fBMFs. The expression of miR-760-3p was diminished in ADSC-EVs treated with a miR-760-3p inhibitor. However, silencing miR-760-3p or overexpressing IGF1R partially counteracted the beneficial effects of ADSC-EVs on fBMF fibrosis. miR-760-3p directly targets IGF1R. Significantly, ADSC-EVs exert their suppressive effects on the TGF-β1/Smad3 pathway through the miR-760-3p/IGF1R axis. In summary, ADSC-EVs, by transferring miR-760-3p and inhibiting IGF1R expression, effectively block the TGF-β1/Smad3 pathway, thereby alleviating fibrosis in fBMFs and preventing the progression of OSF.
Collapse
Affiliation(s)
- Fengcong Wang
- Department of Orthodontics, Jinan Stomatological Hospital, Shandong, China
| | - Li Jiang
- Department of Endodontics, Jinan Stomatological Hospital, Shandong, China
| | - Ping Liu
- Department of Orthodontics, Jinan Stomatological Hospital, Shandong, China
| | - Yanjun Jiang
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Zhejiang, China
| |
Collapse
|
4
|
Lee J, Lee H, Jin EJ, Ryu D, Kim GH. 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. NPJ Regen Med 2023; 8:18. [PMID: 37002225 PMCID: PMC10066283 DOI: 10.1038/s41536-023-00292-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a highly effective technique for fabricating cell-loaded constructs in tissue engineering. However, the versatility of fabricating precise and complex cell-loaded hydrogels is limited owing to the poor crosslinking ability of cell-containing hydrogels. Herein, we propose an optic-fiber-assisted bioprinting (OAB) process to efficiently crosslink methacrylated hydrogels. By selecting appropriate processing conditions for the photo-crosslinking technique, we fabricated biofunctional cell-laden structures including methacrylated gelatin (Gelma), collagen, and decellularized extracellular matrix. To apply the method to skeletal muscle regeneration, cell-laden Gelma constructs were processed with a functional nozzle having a topographical cue and an OAB process that could induce a uniaxial alignment of C2C12 and human adipose stem cells (hASCs). Significantly higher degrees of cell alignment and myogenic activities in the cell-laden Gelma structure were observed compared with those in the cell construct that was printed using a conventional crosslinking method. Moreover, an in vivo regenerative potential was observed in volumetric muscle defects in a mouse model. The hASC-laden construct significantly induced greater muscle regeneration than the cell construct without topographical cues. Based on the results, the newly designed bioprinting process can prove to be highly effective in fabricating biofunctional cell-laden constructs for various tissue engineering applications.
Collapse
Affiliation(s)
- JaeYoon Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Zhao X, Zhang S, Gao S, Chang HM, Leung PCK, Tan J. A Novel Three-Dimensional Follicle Culture System Decreases Oxidative Stress and Promotes the Prolonged Culture of Human Granulosa Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15084-15095. [PMID: 36926803 PMCID: PMC10065000 DOI: 10.1021/acsami.2c18734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tissue engineering advancements have made it possible to modify biomaterials to reconstruct a similar three-dimensional structure of the extracellular matrix (ECM) for follicle development and to supply the required biological signals. We postulated that an artificial polysaccharide hydrogel modified with an ECM mimetic peptide may produce efficient irritation signals by binding to specific integrins providing a suitable environment for follicular development and influencing the behavior of human granulosa cells (hGCs). Laminin, an important component of the extracellular matrix, can modulate hGCs and oocyte growth. Specifically, follicles of mice were randomly divided into two-dimensional (2D) and three-dimensional (3D) culture systems established by a hydrogel modified with RGD or laminin mimetic peptides (IKVAV and YIGSR) and RGD (IYR). Our results showed that 3D cultured systems significantly improved follicle survival, growth, and viability. IYR peptides enhanced the oocyte meiosis competence. Additionally, we explored the effect of 3D culture on hGCs, which improved hGCs viability, increased the proportion of S- and G2/M-phase cells, and inhibited cell apoptosis of hGCs. On days 1 and 2, the secretion of progesterone was reduced in 3D-cultured hGCs. Notably, 3D-cultured hGCs exhibited delayed senescence, decreased oxidative stress, and elevated mitochondrial membrane potential. Moreover, the expression levels of cumulus expansion-related genes (COX2, HAS2, and PTX3) and integrin α6β1 were upregulated in 3D-cultured hGCs. In conclusion, a 3D culture utilizing hydrogels modified with Laminin-mimetic peptides can provide a durable physical environment suitable for follicular development. The laminin-mimetic peptides may regulate the biological activity of hGCs by attaching to the integrin α6β1.
Collapse
Affiliation(s)
- Xinyang Zhao
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Siwen Zhang
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Shan Gao
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Hsun-Ming Chang
- Department
of Obstetrics and Gynaecology, BC Children’s Hospital Research
Institute, University of British Columbia, Vancouver, British Columbia V5Z4H4, Canada
- Reproductive
Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Peter C. K. Leung
- Department
of Obstetrics and Gynaecology, BC Children’s Hospital Research
Institute, University of British Columbia, Vancouver, British Columbia V5Z4H4, Canada
| | - Jichun Tan
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| |
Collapse
|
6
|
Sikorska M, Dutkiewicz M, Zegrocka-Stendel O, Kowalewska M, Grabowska I, Koziak K. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153791. [PMID: 34666284 DOI: 10.1016/j.phymed.2021.153791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recent advancements in understanding β-escin action provide basis for new therapeutic claims for the drug. β-escin-evoked attenuation of NF-κB-dependent signaling, increase in MMP-14 and decrease in COUP-TFII content and a rise in cholesterol biosynthesis could be beneficial in alleviating muscle-damaging processes. PURPOSE The aim of this study was to investigate the effect of β-escin on skeletal muscle regeneration. METHODS Rat model of cardiotoxin-induced injury of fast-twich extensor digitorum longus (EDL) and slow-twich soleus (SOL) muscles and C2C12 myoblast cells were used in the study. We evaluated muscles obtained on day 3 and 14 post-injury by histological analyses of muscle fibers, connective tissue, and mononuclear infiltrate, by immunolocalization of macrophages and by qPCR to quantify the expression of muscle regeneration-related genes. Mechanism of drug action was investigated in vitro by assessing cell viability, NF-κB activation, MMP-2 and MMP-9 secretion, and ALDH activity. RESULTS In rat model, β-escin rescues regenerating muscles from atrophy. The drug reduces inflammatory infiltration, increases the number of muscle fibers and decreases fibrosis. β-escin reduces macrophage infiltration into injured muscles and promotes their M2 polarization. It also alters transcription of muscle regeneration-related genes: Myf5, Myh2, Myh3, Myh8, Myod1, Pax3 and Pax7, and Pcna. In C2C12 myoblasts in vitro, β-escin inhibits TNF-α-induced activation of NF-κB, reduces secretion of MMP-9 and increases ALDH activity. CONCLUSIONS The data reveal beneficial role of β-escin in muscle regeneration, particularly in poorly regenerating slow-twitch muscles. The findings provide rationale for further studies on β-escin repositioning into conditions associated with muscle damage such as strenuous exercise, drug-induced myotoxicity or age-related disuse atrophy.
Collapse
Affiliation(s)
- Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Magdalena Kowalewska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland; Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, ul. Roentgena 5, 02-781 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
7
|
Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater 2021; 8:57-70. [PMID: 34541387 PMCID: PMC8424428 DOI: 10.1016/j.bioactmat.2021.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
Volumetric muscle loss (VML) is associated with a severe loss of muscle tissue that overwhelms the regenerative potential of skeletal muscles. Tissue engineering has shown promise for the treatment of VML injuries, as evidenced by various preclinical trials. The present study describes the fabrication of a cell-laden GelMa muscle construct using an in situ crosslinking (ISC) strategy to improve muscle functionality. To obtain optimal biophysical properties of the muscle construct, two UV exposure sources, UV exposure dose, and wall shear stress were evaluated using C2C12 myoblasts. Additionally, the ISC system showed a significantly higher degree of uniaxial alignment and myogenesis compared to the conventional crosslinking strategy (post-crosslinking). To evaluate the in vivo regenerative potential, muscle constructs laden with human adipose stem cells were used. The VML defect group implanted with the bio-printed muscle construct showed significant restoration of functionality and muscular volume. The data presented in this study suggest that stem cell-based therapies combined with the modified bioprinting process could potentially be effective against VML injuries.
Collapse
|
8
|
Morawin B, Zembroń-Łacny A. Role of endocrine factors and stem cells in skeletal muscle
regeneration. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory
and immune responses, regeneration and reorganization, which are regulated by
a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of
these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the
expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction
between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting
apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result
of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced.
Regular physical exercise attenuates a decrease in SCs count, and thus elevates the
regenerative potential of muscles in both young and elderly people. One of the challenges of
modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative
and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic
muscle reconstruction. The aim of the study is to present current information on the
molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone
and growth factors in the activation of SCs and the possibility of their therapeutic use in
stimulating the reconstruction of damaged muscle fibers.
Collapse
Affiliation(s)
- Barbara Morawin
- Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski
| | | |
Collapse
|
9
|
Moreno-Manzano V, Zaytseva-Zotova D, López-Mocholí E, Briz-Redón Á, Løkensgard Strand B, Serrano-Aroca Á. Injectable Gel Form of a Decellularized Bladder Induces Adipose-Derived Stem Cell Differentiation into Smooth Muscle Cells In Vitro. Int J Mol Sci 2020; 21:E8608. [PMID: 33203120 PMCID: PMC7696281 DOI: 10.3390/ijms21228608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Biologic scaffolds composed of extracellular matrix components have been proposed to repair and reconstruct a variety of tissues in clinical and pre-clinical studies. Injectable gels can fill and conform any three-dimensional shape and can be delivered to sites of interest by minimally invasive techniques. In this study, a biological gel was produced from a decellularized porcine urinary bladder by enzymatic digestion with pepsin. The enzymatic digestion was confirmed by visual inspection after dissolution in phosphate-buffered saline solution and Fourier-transform infrared spectroscopy. The rheological and biological properties of the gel were characterized and compared to those of the MatrigelTM chosen as a reference material. The storage modulus G' reached 19.4 ± 3.7 Pa for the 30 mg/mL digested decellularized bladder gels after ca. 3 h at 37 °C. The results show that the gel formed of the porcine urinary bladder favored the spontaneous differentiation of human and rabbit adipose-derived stem cells in vitro into smooth muscle cells to the detriment of cell proliferation. The results support the potential of the developed injectable gel for tissue engineering applications to reconstruct for instance the detrusor muscle part of the human urinary bladder.
Collapse
Affiliation(s)
- Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, c/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain;
| | - Daria Zaytseva-Zotova
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (D.Z.-Z.); (B.L.S.)
| | - Eric López-Mocholí
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, c/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain;
| | - Álvaro Briz-Redón
- Statistics Office, City Council of Valencia, Plaza Ayuntamiento 1, 46002 Valencia, Spain;
| | - Berit Løkensgard Strand
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (D.Z.-Z.); (B.L.S.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| |
Collapse
|
10
|
Archacka K, Bem J, Brzoska E, Czerwinska AM, Grabowska I, Kasprzycka P, Hoinkis D, Siennicka K, Pojda Z, Bernas P, Binkowski R, Jastrzebska K, Kupiec A, Malesza M, Michalczewska E, Soszynska M, Ilach K, Streminska W, Ciemerych MA. Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells 2020; 9:cells9061479. [PMID: 32560483 PMCID: PMC7349575 DOI: 10.3390/cells9061479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Joanna Bem
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Areta M. Czerwinska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Dzesika Hoinkis
- Intelliseq Ltd., Stanisława Konarskiego 42/13, 30-046 Krakow, Poland;
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Patrycja Bernas
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Robert Binkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Kinga Jastrzebska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Aleksandra Kupiec
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Malgorzata Malesza
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Emilia Michalczewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Marta Soszynska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
- Correspondence: ; Tel.: +48-22-55-42-216
| |
Collapse
|
11
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
12
|
The new biocompatible material for mouse ovarian follicle development in three-dimensional in vitro culture systems. Theriogenology 2020; 144:33-40. [DOI: 10.1016/j.theriogenology.2019.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022]
|