1
|
Zhang Y, Xiang Z, Chen L, Deng X, Liu H, Peng X. PSMA2 promotes glioma proliferation and migration via EMT. Pathol Res Pract 2024; 256:155278. [PMID: 38574629 DOI: 10.1016/j.prp.2024.155278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Gliomas advance rapidly and are associated with a poor prognosis. Epithelial-mesenchymal transition (EMT) accelerates the progression of gliomas, exerting a pivotal role in glioma development. Proteasome subunit alpha type-2 (PSMA2) exhibits high expression levels in gliomas. however, its specific involvement in glioma progression and its correlation with EMT remain elusive. This study aims to elucidate the role of PSMA2 in glioma progression and its potential association with EMT. METHODS Online tools were employed to analyze the expression patterns and survival curves of PSMA2 in gliomas. The relationship between PSMA2 and various characteristics of glioma patients was investigated using data from the TCGA and CGGA databases. In vitro, cell proliferation and migration were assessed through CCK-8, colony formation, and transwell assays. Furthermore, a tumor xenograft model in nude mice was established to evaluate in vivo tumorigenesis. Protein binding to PSMA2 was scrutinized using co-immunoprecipitation MS (co-IP MS). The potential biological functions and molecular pathways associated with PSMA2 were explored through GO analysis and KEGG analysis, and the correlation between PSMA2 and EMT was validated through correlation analysis and Western blot experiments. RESULTS Bioinformatics analysis revealed a significant upregulation of PSMA2 across various cancers, with particularly heightened expression in gliomas. Moreover, elevated PSMA2 levels were correlated with advanced tumor stages and diminished survival rates among glioma patients. Inhibition of PSMA2 demonstrated a pronounced suppressive effect on glioma cell proliferation, both in vitro and in vivo. Knockdown of PSMA2 also impeded the migratory capacity of glioma cells. GO and KEGG enrichment analyses indicated that PSMA2-binding proteins (identified through Co-IP-MS) were associated with cell adhesion molecule binding and cadherin binding. Western blot results further confirmed the role of PSMA2 in promoting epithelial-mesenchymal transition (EMT) in glioma cells. CONCLUSION Our study provides evidence supporting the role of PSMA2 as a regulatory factor in EMT and suggests its potential as a prognostic biomarker for glioma progression.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zijin Xiang
- Department of Pharmacy, Shaodong People's Hospital, Shaodong, Hunan 422800, China
| | - Le Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xingyan Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Brangulis K, Akopjana I, Bogans J, Kazaks A, Tars K. Structural studies of chromosomally encoded outer surface lipoprotein BB0158 from Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2024; 15:102287. [PMID: 38016210 DOI: 10.1016/j.ttbdis.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Lyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
3
|
Dai Z, Peng X, Cui X, Guo Y, Zhang J, Shen X, Liu CY, Liu Y. Innovative molecular subtypes of multiple signaling pathways in colon cancer and validation of FMOD as a prognostic-related marker. J Cancer Res Clin Oncol 2023; 149:13087-13106. [PMID: 37474678 DOI: 10.1007/s00432-023-05163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Colon cancer is highly heterogeneous in terms of the immune and stromal microenvironment, genomic integrity, and oncogenic properties; therefore, molecular subtypes of the four characteristic dimensions are expected to provide novel clues for immunotherapy of colon cancer. METHODS According to the enrichment of four dimensions, we performed consensus cluster analysis and identified three robust molecular subtypes for colon cancer, namely immune enriched, immune deficiency, and stroma enriched. We characterized and validated the immune infiltration, gene mutations, copy number variants, methylation, protein expression, and clinical features in different datasets. Finally, we developed an 8-gene risk prognostic model and proposed the innovative RiskScore. In addition, a nomogram model was constructed combining clinical characteristics and RiskScore to validate its excellent clinical predictive power. RESULTS Combining clinical patient tissue samples and histochemical microarray data, we found that high FMOD expression in tumor epithelial cells was associated with poorer patient prognosis, but FMOD expression in the mesenchyme was not associated with prognosis. In pan-cancer, RiskScore, a prognostic model constructed based on characteristic pathway scores, was a poor prognostic factor for malignancy and was negatively associated with immunotherapy response. CONCLUSION The identification of molecular subtypes could provide innovative ideas for immunotherapy of colon cancer.
Collapse
Affiliation(s)
- Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Xiang Peng
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Xuewei Cui
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuegui Guo
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Jie Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xia Shen
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Chen-Ying Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Yun Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
4
|
Artificial Intelligence-Based Computational Screening and Functional Assays Identify Candidate Small Molecule Antagonists of PTPmu-Dependent Adhesion. Int J Mol Sci 2023; 24:ijms24054274. [PMID: 36901713 PMCID: PMC10001486 DOI: 10.3390/ijms24054274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
PTPmu (PTPµ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma (glioma), and the resulting extracellular and intracellular fragments are believed to stimulate cancer cell growth and/or migration. Therefore, drugs targeting these fragments may have therapeutic potential. Here, we used the AtomNet® platform, the first deep learning neural network for drug design and discovery, to screen a molecular library of several million compounds and identified 76 candidates predicted to interact with a groove between the MAM and Ig extracellular domains required for PTPmu-mediated cell adhesion. These candidates were screened in two cell-based assays: PTPmu-dependent aggregation of Sf9 cells and a tumor growth assay where glioma cells grow in three-dimensional spheres. Four compounds inhibited PTPmu-mediated aggregation of Sf9 cells, six compounds inhibited glioma sphere formation/growth, while two priority compounds were effective in both assays. The stronger of these two compounds inhibited PTPmu aggregation in Sf9 cells and inhibited glioma sphere formation down to 25 micromolar. Additionally, this compound was able to inhibit the aggregation of beads coated with an extracellular fragment of PTPmu, directly demonstrating an interaction. This compound presents an interesting starting point for the development of PTPmu-targeting agents for treating cancer including glioblastoma.
Collapse
|
5
|
Vasile F, Lavore F, Gazzola S, Vettraino C, Parisini E, Piarulli U, Belvisi L, Civera M. A combined fragment-based virtual screening and STD-NMR approach for the identification of E-cadherin ligands. Front Chem 2022; 10:946087. [PMID: 36059878 PMCID: PMC9437437 DOI: 10.3389/fchem.2022.946087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cadherins promote cell-cell adhesion by forming homophilic interactions via their N-terminal extracellular domains. Hence, they have broad-ranging physiological effects on tissue organization and homeostasis. When dysregulated, cadherins contribute to different aspects of cancer progression and metastasis; therefore, targeting the cadherin adhesive interface with small-molecule antagonists is expected to have potential therapeutic and diagnostic value. Here, we used molecular docking simulations to evaluate the propensity of three different libraries of commercially available drug-like fragments (nearly 18,000 compounds) to accommodate into the Trp2 binding pocket of E-cadherin, a crucial site for the orchestration of the protein’s dimerization mechanism. Top-ranked fragments featuring five different aromatic chemotypes were expanded by means of a similarity search on the PubChem database (Tanimoto index >90%). Of this set, seven fragments containing an aromatic scaffold linked to an aliphatic chain bearing at least one amine group were finally selected for further analysis. Ligand-based NMR data (Saturation Transfer Difference, STD) and molecular dynamics simulations suggest that these fragments can bind E-cadherin mostly through their aromatic moiety, while their aliphatic portions may also diversely engage with the mobile regions of the binding site. A tetrahydro-β-carboline scaffold functionalized with an ethylamine emerged as the most promising fragment.
Collapse
Affiliation(s)
- Francesca Vasile
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Lavore
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Gazzola
- Department of Science and High Technology, Università Degli Studi Dell’Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia @Polimi, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia @Polimi, Milan, Italy
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Chemistry “Giacomo Ciamician”, Università Degli Studi di Bologna, Bologna, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, Università Degli Studi Dell’Insubria, Como, Italy
| | - Laura Belvisi
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Monica Civera
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Monica Civera,
| |
Collapse
|
6
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Tomassetti A. Editorial to the Special Issue “Activations of Cadherin Signaling in Cancer”. Int J Mol Sci 2022; 23:ijms23137022. [PMID: 35806026 PMCID: PMC9266632 DOI: 10.3390/ijms23137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The major object of this Editorial is to briefly put into context the processes, occurring during tumor onset and progression, and the biological mechanisms mediated by cadherins described in the review and research articles included in the Special Issue entitled "Activations of Cadherin Signaling in Cancer" [...].
Collapse
Affiliation(s)
- Antonella Tomassetti
- Unit of Molecular Therapies, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
8
|
Zhu Y, Chen S, Liu W, Zhang L, Xu F, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Collagens I and V differently regulate the proliferation and adhesion of rat islet INS-1 cells through the integrin β1/E-cadherin/β-catenin pathway. Connect Tissue Res 2021; 62:658-670. [PMID: 33957832 DOI: 10.1080/03008207.2020.1845321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) plays an important role in tissue repair, cell proliferation, and differentiation. Our previous study showed that collagen I and collagen V differently regulate the proliferation of rat pancreatic β cells (INS-1 cells) through opposite influences on the nuclear translocation of β-catenin. In this study, we investigated the β-catenin pathway in INS-1 cells on dishes coated with collagen I or V. We found that nuclear translocation of the transcription factor Yes-associated protein (YAP) was enhanced by collagen I and suppressed by collagen V, but had no effect on INS-1 cell proliferation. Morphologically, INS-1 cells on collagen V-coated dishes showed stronger cell-to-cell adhesion, while the cells on collagen I-coated dishes showed weaker cell-to-cell adhesion in comparison with the cells on non-coated dishes. E-cadherin played an inhibitory role in the proliferation of INS-1 cells cultured on collagen I or collagen V coated dishes via regulation of the nuclear translocation of β-catenin. Integrin β1 was enhanced with collagen I, while it was repressed with collagen V. The integrin β1 pathway positively regulated the cell proliferation. Inhibition of integrin β1 pathway restored the protein level of E-cadherin and inhibited the nuclear translocation of β-catenin in the cells on collagen I-coated dishes, but no effect was observed in the cells on collagen V-coated dishes. In conclusion, collagen I enhances the proliferation of INS-1 cells via the integrin β1 and E-cadherin/β-catenin signaling pathway. In INS-1 cells on collagen V-coated dishes, both integrin β1 and E-cadherin/β-catenin signal pathways are involved in the inhibition of proliferation.
Collapse
Affiliation(s)
- Yingying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shuaigao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Luxin Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,Department of Chemistry and Life Science, School of Advanced Engineering Kogakuin University, 2665-1, Nakanomachi Hachioji, Tokyo, 192-0015, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| |
Collapse
|
9
|
Regulation of cadherin dimerization by chemical fragments as a trigger to inhibit cell adhesion. Commun Biol 2021; 4:1041. [PMID: 34493804 PMCID: PMC8423723 DOI: 10.1038/s42003-021-02575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Many cadherin family proteins are associated with diseases such as cancer. Since cell adhesion requires homodimerization of cadherin molecules, a small-molecule regulator of dimerization would have therapeutic potential. Herein, we describe identification of a P-cadherin-specific chemical fragment that inhibits P-cadherin-mediated cell adhesion. Although the identified molecule is a fragment compound, it binds to a cavity of P-cadherin that has not previously been targeted, indirectly prevents formation of hydrogen bonds necessary for formation of an intermediate called the X dimer and thus modulates the process of X dimerization. Our findings will impact on a strategy for regulation of protein-protein interactions and stepwise assembly of protein complexes using small molecules.
Collapse
|
10
|
Hu Y, Ma Y, Luo G, Liao W, Zhang S, Li G. Effect of MiR-375 Regulates YAP1 on the Invasion, Apoptosis, and Epithelial-Mesenchymal Transition of Cervical Cancer HeLa Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3088723. [PMID: 34512774 PMCID: PMC8429006 DOI: 10.1155/2021/3088723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Yes-associated protein 1 (YAP1) is an important signaling pathway activator molecule. Studies have shown that it is involved in the occurrence of malignant tumors. This study identified a microRNA (miR/miRNA) targeting the 3' untranslated region (3″ utr) of the YAP1 gene and evaluated its biological impact on human cervical cancer cells and related molecular mechanisms. qPCR and western blotting were used to detect the levels of miR-375 and YAP1 in HeLa cells. TargetScan software was used to identify the binding sites of YAP1 and miR-375. The MTT method was used to determine the viability of HeLa cells transfected with miR-375 mimic and YAP1 interference vector, the Transwell chamber experiment was used to detect the invasion of HeLa cells after transfection, the apoptosis of HeLa cells after transfection was detected by flow cytometry, and the western blotting was used to detect the epithelial mesenchymal transition (EMT) of HeLa cells after transfection. The expression of miR-375 in HeLa cells was significantly lower than that of normal control cervical cells, and the expression of YAP1 in HeLa cells was significantly higher than that of normal control cervical cells. TargetScan analysis showed that miR-375 was bound to the 3' UTR of YAP1. qPCR and western blot analysis showed that transfection of miR-375 mimics inhibited YAP1 expression in HeLa cells. Transfection of miR-375 mimic and YAP1 interference vector inhibited HeLa cell invasion and EMT and promoted HeLa cell apoptosis. These findings indicate that miR-375 inhibits the malignant development of human cervical cancer cells by regulating the expression of YAP1.
Collapse
Affiliation(s)
- Yi Hu
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Ma
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guifang Luo
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shufen Zhang
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Genlin Li
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Zhao L, Liu SY, Li YM, Xiong ZT. Villin is a biomarker for reverse polarity in colorectal micropapillary carcinoma. Oncol Lett 2020; 21:72. [PMID: 33365083 PMCID: PMC7716710 DOI: 10.3892/ol.2020.12333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of digestive system. CRC with micropapillary pattern (MPP) is an aggressive variant of colorectal adenocarcinoma. The aim of the present study was to clarify the clinicopathological significance and the prognostic role of an immunohistochemical marker, MPP, in CRC. The association between MPP and clinicopathological characteristics and prognosis in 286 cases of CRC (286/453 cases had follow-up information) were analysed. Then, 81 tissues without MPP and 90 tissues with MPP were analysed by immunohistochemistry using antibodies against villin, E-cadherin and epithelial membrane antigen (EMA). Bioinformatics was used to evaluate the expression of these three indicators in CRC. The proportion of micropapillary carcinoma in the overall tumour was ≥5%, and was observed in 90/453 cases (19.8%). The present data showed that CRC with MPP displayed higher rates of vascular and lymphatic invasion, a higher metastatic lymph node ratio and a higher pathological tumour and metastasis stage compared with CRC without MPP. The positive expression rates of EMA, E-cadherin and villin were 50.3, 93.4 and 96.5%, respectively. In 90 CRC cases with MPP, EMA inside-out pattern (I/OP) staining was observed in 26 cases (28.9%), and it was often focal and partial, while 37 cases (41.1%) had E-cadherin focal and partial staining compatible with reverse polarity. Villin I/OP staining was observed in 77 cases (85.6%), and circumferential staining predominated over partial staining. Overall, the data suggested that the presence of MPP is significantly associated with aggressive tumour behaviour and worse overall survival rate in CRC. Visualization and distinction of reverse polarity of colorectal micropapillary carcinomas is improved villin compared with EMA or E-cadherin.
Collapse
Affiliation(s)
- Li Zhao
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shao-Yan Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Yu-Meng Li
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Zhong-Tang Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
12
|
Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of Cadherins in Cancer-A Review. Int J Mol Sci 2020; 21:E7624. [PMID: 33076339 PMCID: PMC7589192 DOI: 10.3390/ijms21207624] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, differentiation and carcinogenesis. Cadherins are inseparably connected with catenins, forming cadherin-catenin complexes, which are crucial for cell-to-cell adherence. Any dysfunction or destabilization of cadherin-catenin complex may result in tumor progression. Epithelial mesenchymal transition (EMT) is a mechanism in which epithelial cadherin (E-cadherin) expression is lost during tumor progression. However, during tumorigenesis, many processes take place, and downregulation of E-cadherin, nuclear β-catenin and p120 catenin (p120) signaling are among the most critical. Additional signaling pathways, such as Receptor tyrosine kinase (RTK), Rho GTPases, phosphoinositide 3-kinase (PI3K) and Hippo affect cadherin cell-cell adhesion and also contribute to tumor progression and metastasis. Many signaling pathways may be activated during tumorigenesis; thus, cadherin-targeting drugs seem to limit the progression of malignant tumor. This review discusses the role of cadherins in selected signaling mechanisms involved in tumor growth. The clinical importance of cadherin will be discussed in cases of human and animal cancers.
Collapse
Affiliation(s)
- Ilona Kaszak
- Department of Small Animal Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Zuzanna Niewiadomska
- Carnivore Reproduction Study Center, Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France;
| | - Bożena Dworecka-Kaszak
- Department of Preclinical Sciences, Institute of Veterinary Medicine; Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Felix Ngosa Toka
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, BOX 334 Basseterre, Saint Kitts and Nevis, West Indies;
| | - Piotr Jurka
- Department of Small Animal Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| |
Collapse
|
13
|
Medina Rangel PX, Moroni E, Merlier F, Gheber LA, Vago R, Tse Sum Bui B, Haupt K. Chemical Antibody Mimics Inhibit Cadherin‐Mediated Cell–Cell Adhesion: A Promising Strategy for Cancer Therapy. Angew Chem Int Ed Engl 2020; 59:2816-2822. [DOI: 10.1002/anie.201910373] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Paulina X. Medina Rangel
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Elena Moroni
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Franck Merlier
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Levi A. Gheber
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Razi Vago
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Bernadette Tse Sum Bui
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Karsten Haupt
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| |
Collapse
|
14
|
Medina Rangel PX, Moroni E, Merlier F, Gheber LA, Vago R, Tse Sum Bui B, Haupt K. Chemical Antibody Mimics Inhibit Cadherin‐Mediated Cell–Cell Adhesion: A Promising Strategy for Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Paulina X. Medina Rangel
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Elena Moroni
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Franck Merlier
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Levi A. Gheber
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Razi Vago
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Bernadette Tse Sum Bui
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Karsten Haupt
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| |
Collapse
|
15
|
Sinulariolide Inhibits Gastric Cancer Cell Migration and Invasion through Downregulation of the EMT Process and Suppression of FAK/PI3K/AKT/mTOR and MAPKs Signaling Pathways. Mar Drugs 2019; 17:md17120668. [PMID: 31783709 PMCID: PMC6950622 DOI: 10.3390/md17120668] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer metastasis is the main cause of death in cancer patients; however, there is currently no effective method to predict and prevent metastasis of gastric cancer. Therefore, gaining an understanding of the molecular mechanism of tumor metastasis is important for the development of new drugs and improving the survival rate of patients who suffer from gastric cancer. Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. We employed sinulariolide and gastric cancer cells in experiments such as MTT, cell migration assays, cell invasion assays, and Western blotting analysis. Analysis of cell migration and invasion capabilities showed that the inhibition effects on cell metastasis and invasion increased with sinulariolide concentration in AGS and NCI-N87 cells. Immunostaining analysis showed that sinulariolide significantly reduced the protein expressions of MMP-2, MMP-9, and uPA, but the expressions of TIMP-1 and TIMP-2 were increased, while FAK, phosphorylated PI3K, phosphorylated AKT, phosphorylated mTOR, phosphorylated JNK, phosphorylated p38MAPK, and phosphorylated ERK decreased in expression with increasing sinulariolide concentration. From the results, we inferred that sinulariolide treatment in AGS and NCI-N87 cells reduced the activities of MMP-2 and MMP-9 via the FAK/PI3K/AKT/mTOR and MAPKs signaling pathways, further inhibiting the invasion and migration of these cells. Moreover, sinulariolide altered the protein expressions of E-cadherin and N-cadherin in the cytosol and Snail in the nuclei of AGS and NCI-N87 cells, which indicated that sinulariolide can avert the EMT process. These findings suggested that sinulariolide is a potential chemotherapeutic agent for development as a new drug for the treatment of gastric cancer.
Collapse
|
16
|
In Silico Insights towards the Identification of NLRP3 Druggable Hot Spots. Int J Mol Sci 2019; 20:ijms20204974. [PMID: 31600880 PMCID: PMC6834175 DOI: 10.3390/ijms20204974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022] Open
Abstract
NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) activation has been linked to several chronic pathologies, including atherosclerosis, type-II diabetes, fibrosis, rheumatoid arthritis, and Alzheimer’s disease. Therefore, NLRP3 represents an appealing target for the development of innovative therapeutic approaches. A few companies are currently working on the discovery of selective modulators of NLRP3 inflammasome. Unfortunately, limited structural data are available for this target. To date, MCC950 represents one of the most promising noncovalent NLRP3 inhibitors. Recently, a possible region for the binding of MCC950 to the NLRP3 protein was described but no details were disclosed regarding the key interactions. In this communication, we present an in silico multiple approach as an insight useful for the design of novel NLRP3 inhibitors. In detail, combining different computational techniques, we propose consensus-retrieved protein residues that seem to be essential for the binding process and for the stabilization of the protein–ligand complex.
Collapse
|