1
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Díaz-Grijuela E, Hernández A, Caballero C, Fernandez R, Urtasun R, Gulak M, Astigarraga E, Barajas M, Barreda-Gómez G. From Lipid Signatures to Cellular Responses: Unraveling the Complexity of Melanoma and Furthering Its Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1204. [PMID: 39202486 PMCID: PMC11356604 DOI: 10.3390/medicina60081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
Recent advancements in mass spectrometry have significantly enhanced our understanding of complex lipid profiles, opening new avenues for oncological diagnostics. This review highlights the importance of lipidomics in the comprehension of certain metabolic pathways and its potential for the detection and characterization of various cancers, in particular melanoma. Through detailed case studies, we demonstrate how lipidomic analysis has led to significant breakthroughs in the identification and understanding of cancer types and its potential for detecting unique biomarkers that are instrumental in its diagnosis. Additionally, this review addresses the technical challenges and future perspectives of these methodologies, including their potential expansion and refinement for clinical applications. The discussion underscores the critical role of lipidomic profiling in advancing cancer diagnostics, proposing a new paradigm in how we approach this devastating disease, with particular emphasis on its application in comparative oncology.
Collapse
Affiliation(s)
| | | | | | - Roberto Fernandez
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | | | - Egoitz Astigarraga
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | - Gabriel Barreda-Gómez
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| |
Collapse
|
3
|
Mesén-Porras S, Rojas-Céspedes A, Molina-Mora JA, Vega-Baudrit J, Siles F, Quiros S, Mora-Rodríguez R. Sphingolipid-Based Synergistic Interactions to Enhance Chemosensitivity in Lung Cancer Cells. Cells 2023; 12:2588. [PMID: 37998323 PMCID: PMC10670127 DOI: 10.3390/cells12222588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor heterogeneity leads to drug resistance in cancer treatment with the crucial role of sphingolipids in cell fate and stress signaling. We analyzed sphingolipid metabolism and autophagic flux to study chemotherapeutic interactions on the A549 lung cancer model. Loaded cells with fluorescent sphingomyelin analog (BODIPY) and mCherry-EGFP-LC3B were used to track autophagic flux and assess cytotoxicity when cells are exposed to chemotherapy (epirubicin, cisplatin, and paclitaxel) together with sphingolipid pathway inhibitors and autophagy modulators. Our cell model approach employed fluorescent sphingolipid biosensors and a Gaussian Mixture Model of cell heterogeneity profiles to map the influence of chemotherapy on the sphingolipid pathway and infer potential synergistic interactions. Results showed significant synergy, especially when combining epirubicin with autophagy inducers (rapamycin and Torin), reducing cell viability. Cisplatin also synergized with a ceramidase inhibitor. However, paclitaxel often led to antagonistic effects. Our mapping model suggests that combining chemotherapies with autophagy inducers increases vesicle formation, possibly linked to ceramide accumulation, triggering cell death. However, the in silico model proposed ceramide accumulation in autophagosomes, and kinetic analysis provided evidence of sphingolipid colocalization in autophagosomes. Further research is needed to identify specific sphingolipids accumulating in autophagosomes. These findings offer insights into potential strategies for overcoming chemotherapy resistance by targeting the sphingolipid pathway.
Collapse
Affiliation(s)
- Susana Mesén-Porras
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Andrea Rojas-Céspedes
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Arturo Molina-Mora
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Francisco Siles
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Pattern Recognition and Intelligent Systems Laboratory (PRIS-Lab), Department and Postgraduate Studies in Electrical Engineering, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Steve Quiros
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Rodrigo Mora-Rodríguez
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
4
|
Chen Y, Lu T, Liu Y, Liu Y, Bai S, Chen Q, Zhao B, Wu X. Establishment of SLC7A11-knockout mouse and its preliminary investigation in melanoma. In Vitro Cell Dev Biol Anim 2023; 59:729-737. [PMID: 37932516 DOI: 10.1007/s11626-023-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
Solute carrier family 7 member 11 (SLC7A11)/xCT is an amino acid transporter that mediates the cystine uptake and glutamate export, participates in several malignant tumors' progression. However, the role of SLC7A11 on the occurrence and development of melanoma still remains unclear. Here, the transcribed mRNA encoding for Cas9 and sgRNA targeting SLC7A11 in vitro were microinjected into zygotes, to establish the SLC7A11 knockout (KO) mice (SLC7A11-/-). Further, we conducted melanoma-bearing mice using the metastatic melanoma cell line (B16-F10) to observe the melanoma development. There was no off-target in KO mice detected by T7E1 cleavage assay. The results showed that the tumor volume of KO mice was significantly lower than that of SLC7A11+/+ (WT) mice at 8d, 10d, 12d, 14d, and 16d (P < 0.05). The tumors of WT appeared to more disorganized morphology, more unbalanced nuclear-cytoplasmic ratio, less defined boundary, and increased tumor necrosis. And after SLC7A11 deletion, the expression of CXCL9 and TLR6 were significantly up-regulated, and that of NOS2 and CCL8 were significantly down-regulated (P < 0.01). Additionally, Ki67 immunostaining revealed lower proliferating cells in the tumors of SLC7A11 KO mice compared to WT mice. In summary, the deletion of SLC7A11 significantly inhibited the development of melanoma. Our results provide direct evidence to identify SLC7A11 as a novel target for molecular therapy and prognosis judgment of melanoma.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tingting Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yufei Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongqi Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiuran Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Liu Y, Zhang H, Hu D, Liu S. New algorithms based on autophagy-related lncRNAs pairs to predict the prognosis of skin cutaneous melanoma patients. Arch Dermatol Res 2023; 315:1511-1526. [PMID: 36624362 DOI: 10.1007/s00403-022-02522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Skin cutaneous melanoma (SKCM) is the most malignant skin tumor for it is enormously easy to develop invasion and metastasis. Autophagy is a process by which cellular material is degraded by lysosomes or vacuoles and recycled. Autophagy-related long non-coding RNAs (lncRNAs) have been thought to correlate with SKCM. This study aims to explore the prognostic significance of autophagy-related lncRNAs and establish a prognostic model of autophagy-related lncRNA pairs in SKCM. Firstly, the RNA-seq data and related clinical information were downloaded from the TCGA database. 446 qualified samples were enrolled. 222 autophagy-related genes were obtained from the HADb database. Pearson correlation analysis was conducted to identify autophagy-related lncRNAs (ARLs). After that, we obtained prognosis-related ARLs and autophagy-related lncRNA pairs (ARLPs). Using Lasso-Cox regression analysis, an autophagy-related lncRNA-pair prognostic signature was established. The accuracy of the signature were confirmed through a series of validations in terms of mutation profiles, immunity infiltration, and cellular pathways. And we used the random forest method to find USP30-AS1 as a key mediating factor in SKCM.
Collapse
Affiliation(s)
- Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Haoxue Zhang
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei , Anhui Province, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui Province, China
| | - Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Shengxiu Liu
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
- Key Laboratory of Dermatology, Ministry of Education, Hefei , Anhui Province, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
7
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
8
|
Oliviero B, Dei Cas M, Zulueta A, Maiello R, Villa A, Martinelli C, Del Favero E, Falleni M, Montavoci L, Varchetta S, Mele D, Donadon M, Soldani C, Franceschini B, Maestri M, Piccolo G, Barabino M, Bianchi PP, Banales JM, Mantovani S, Mondelli MU, Caretti A. Ceramide present in cholangiocarcinoma-derived extracellular vesicle induces a pro-inflammatory state in monocytes. Sci Rep 2023; 13:7766. [PMID: 37173330 PMCID: PMC10182100 DOI: 10.1038/s41598-023-34676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Aida Zulueta
- Neurorehabilitation Unit of Milan Institute, Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Carla Martinelli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, Milan, Italy
| | - Linda Montavoci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Piccolo
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Matteo Barabino
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Paolo Pietro Bianchi
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
10
|
Bahreyni A, Mohamud Y, Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother 2023; 159:114243. [PMID: 36641926 DOI: 10.1016/j.biopha.2023.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Melanoma is a malignant tumor that accounts for the deadliest form of skin cancers. Despite the significant efforts made recently for development of immunotherapeutic strategies including using immune checkpoint inhibitors and cancer vaccines, the clinical outcomes are unsatisfying. Different factors affect efficient cancer immunotherapy such as side-effects, immunosuppressive tumor microenvironment, and tumor heterogeneity. In the past decades, various nanotechnology-based approaches have been developed to enhance the efficacy of cancer immunotherapy, in addition to diminishing the toxicity associated with it. Several studies have shown that proper application of nanomaterials can revolutionize the outcome of immunotherapy in diverse melanoma models. This review summarizes the recent advancement in the integration of nanotechnology and cancer immunotherapy in melanoma treatment. The importance of nanomaterials and their therapeutic advantages for patients with melanoma are also discussed.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
11
|
Pangilinan C, Xu X, Herlyn M, Liang C. Autophagy Paradox: Strategizing Treatment Modality in Melanoma. Curr Treat Options Oncol 2023; 24:130-145. [PMID: 36670319 PMCID: PMC9883356 DOI: 10.1007/s11864-023-01053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
The altered lipidome of hepatocellular carcinoma. Semin Cancer Biol 2022; 86:445-456. [PMID: 35131480 DOI: 10.1016/j.semcancer.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.
Collapse
|
13
|
Zalpoor H, Bakhtiyari M, Akbari A, Aziziyan F, Shapourian H, Liaghat M, Zare-Badie Z, Yahyazadeh S, Tarhriz V, Ganjalikhani-Hakemi M. Potential role of autophagy induced by FLT3-ITD and acid ceramidase in acute myeloid leukemia chemo-resistance: new insights. Cell Commun Signal 2022; 20:172. [PMCID: PMC9620650 DOI: 10.1186/s12964-022-00956-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance.
Video abstract
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.472315.60000 0004 0494 0825Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Zahra Zare-Badie
- grid.412571.40000 0000 8819 4698Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sheida Yahyazadeh
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahideh Tarhriz
- grid.412888.f0000 0001 2174 8913Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazdak Ganjalikhani-Hakemi
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
15
|
Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase. Biochim Biophys Acta Rev Cancer 2021; 1877:188675. [PMID: 34974112 DOI: 10.1016/j.bbcan.2021.188675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
β-galactosylceramidase (GALC) is a lysosomal enzyme that removes β-galactose from β-galactosylceramide, leading to the formation of the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth by acting as an oncosuppressive or oncogenic enzyme depending on the different experimental approaches, in vitro versus in vivo observations, preclinical versus clinical findings, and tumor type investigated. This review will recapitulate and discuss the contrasting experimental evidence related to the impact of GALC on the biological behavior of cancer and stromal cells and its contribution to tumor progression.
Collapse
|
16
|
Transcriptional Differences in Lipid-Metabolizing Enzymes in Murine Sebocytes Derived from Sebaceous Glands of the Skin and Preputial Glands. Int J Mol Sci 2021; 22:ijms222111631. [PMID: 34769061 PMCID: PMC8584257 DOI: 10.3390/ijms222111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.
Collapse
|
17
|
Anthracycline-free tumor elimination in mice leads to functional and molecular cardiac recovery from cancer-induced alterations in contrast to long-lasting doxorubicin treatment effects. Basic Res Cardiol 2021; 116:61. [PMID: 34669013 PMCID: PMC8528750 DOI: 10.1007/s00395-021-00902-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/03/2022]
Abstract
Systemic effects of advanced cancer impact on the heart leading to cardiac atrophy and functional impairment. Using a murine melanoma cancer model (B16F10 melanoma cells stably transduced with a Ganciclovir (GCV)-inducible suicide gene), the present study analysed the recovery potential of cancer-induced cardiomyopathy with or without use of doxorubicin (Dox). After Dox-free tumor elimination and recovery for 70 ± 5 days, cancer-induced morphologic, functional, metabolic and molecular changes were largely reversible in mice previously bearing tumors. Moreover, grip strength and cardiac response to angiotensin II-induced high blood pressure were comparable with healthy control mice. In turn, addition of Dox (12 mg/kg BW) to melanoma-bearing mice reduced survival in the acute phase compared to GCV-alone induced recovery, while long-term effects on cardiac morphologic and functional recovery were similar. However, Dox treatment was associated with permanent changes in the cardiac gene expression pattern, especially the circadian rhythm pathway associated with the DNA damage repair system. Thus, the heart can recover from cancer-induced damage after chemotherapy-free tumor elimination. In contrast, treatment with the cardiotoxic drug Dox induces, besides well-known adverse acute effects, long-term subclinical changes in the heart, especially of circadian clock genes. Since the circadian clock is known to impact on cardiac repair mechanisms, these changes may render the heart more sensitive to additional stress during lifetime, which, at least in part, could contribute to late cardiac toxicity.
Collapse
|
18
|
Hu DG, Marri S, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase ( UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel) 2021; 13:4491. [PMID: 34503303 PMCID: PMC8430925 DOI: 10.3390/cancers13174491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
The human UDP-glycosyltransferase (UGTs) superfamily has 22 functional enzymes that play a critical role in the metabolism of small lipophilic compounds, including carcinogens, drugs, steroids, lipids, fatty acids, and bile acids. The expression profiles of UGT genes in human cancers and their impact on cancer patient survival remains to be systematically investigated. In the present study, a comprehensive analysis of the RNAseq and clinical datasets of 9514 patients from 33 different TCGA (the Genome Cancer Atlas) cancers demonstrated cancer-specific UGT expression profiles with high interindividual variability among and within individual cancers. Notably, cancers derived from drug metabolizing tissues (liver, kidney, gut, pancreas) expressed the largest number of UGT genes (COAD, KIRC, KIRP, LIHC, PAAD); six UGT genes (1A6, 1A9, 1A10, 2A3, 2B7, UGT8) showed high expression in five or more different cancers. Kaplan-Meier plots and logrank tests revealed that six UGT genes were significantly associated with increased overall survival (OS) rates [UGT1A1 (LUSC), UGT1A6 (ACC), UGT1A7 (ACC), UGT2A3 (KIRC), UGT2B15 (BLCA, SKCM)] or decreased OS rates [UGT2B15 (LGG), UGT8 (UVM)] in specific cancers. Finally, differential expression analysis of 611 patients from 12 TCGA cancers identified 16 UGT genes (1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10, 2A1, 2A3, 2B4, 2B7, 2B11, 2B15, 3A1, 3A2, UGT8) that were up/downregulated in at least one cancer relative to normal tissues. In conclusion, our data show widespread expression of UGT genes in cancers, highlighting the capacity for intratumoural drug metabolism through the UGT conjugation pathway. The data also suggests the potentials for specific UGT genes to serve as prognostic biomarkers or therapeutic targets in cancers.
Collapse
Affiliation(s)
- Dong Gui Hu
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Shashikanth Marri
- Dicipline of Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Peter I. Mackenzie
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Julie-Ann Hulin
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Ross A. McKinnon
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Robyn Meech
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| |
Collapse
|
19
|
da Silva G, de Matos LL, Kowalski LP, Kulcsar M, Leopoldino AM. Profile of sphingolipid-related genes and its association with prognosis highlights sphingolipid metabolism in oral cancer. Cancer Biomark 2021; 32:49-63. [PMID: 34092610 DOI: 10.3233/cbm-203100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sphingolipids are bioactive lipids that play a role in cancer development. However, the clinical role of sphingolipid (SPL)-related genes in oral cancer (OC) remains not fully understood. OBJECTIVE This study, aimed to examine the mRNA expression of 14 sphingolipid-related genes in oral cancer patients and their implication with clinicopathological features and prognosis. METHODS qPCR analysis was performed in 50 OC tissues and their matched surgical margins. Next, Kaplan-Meier, Cox regression, and Receiver operating characteristics (ROC) analysis were applied to evaluate the impact of sphingolipid-related genes expression on the prognosis of OC. RESULTS The genes SET, ACER3, SK1 and S1PR5 were predominantly up-regulated, while ABCG2, S1PR1, ABCB1 and SPNS2 were down-regulated in OC patients. Analyzing the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) data, which are predominantly composed of OC samples, these genes displayed a similar profile. In OC patients, high levels of SK1 were associated with lymph node metastasis, extracapsular invasion, desmoplasia, locoregional relapse, and disease status. Low levels of SPNS2 were associated with lymph node metastasis, perineural invasion, and disease status. Furthermore, OC and HNSC patients with higher SK1 expression demonstrated shorter disease-free survival (p= 0.0037; p= 0.0087), whereas those with lower SPNS2 expression exhibited shorter overall survival (p= 0.051; p= 0.0012). High levels of ACER3 and low levels of S1PR1 were associated with shorter disease-free and overall survival in HNSC patients. CONCLUSION Several sphingolipid-related genes are deregulated in OC at the mRNA level and are associated with clinicopathological features and presented potencial for the prediction of poor prognosis in OC patients.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil.,Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil
| | - Luiz Paulo Kowalski
- Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, SP, Brazil
| | - Marco Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
20
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
21
|
Hou Z, Liu S, Song F, Pi Z, Liu Z. Comprehensive physiopathology and serum metabolomics for the evaluation of the influence mechanism of qi deficiency on xenograft mouse models of liver cancer. J Sep Sci 2021; 44:3789-3798. [PMID: 34406706 DOI: 10.1002/jssc.202100260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022]
Abstract
Traditional Chinese medicine believes that qi deficiency is important pathogenesis and syndrome of liver cancer and thus is crucial in related research. However, the effect of qi deficiency on the occurrence and development of liver cancer is still unclear. This study aimed to establish a liver cancer model of qi deficiency through the swimming exhaustion and xenograft of human hepatoma HepG2 cells. The effects of qi deficiency on the occurrence and development of liver cancer were investigated by analyzing tumor development, blood routine, histopathology, and serum metabolomics. Results showed that qi deficiency greatly affected the physiology and tumor growth of xenograft mice. Eight potential biomarkers were identified by metabolomics based on ultra-high performance liquid chromatography and tandem quadrupole time-of-flight mass spectrometry. Their main pathways were arachidonic acid metabolism, phenylalanine metabolism, purine metabolism, glycerolipid metabolism, steroid biosynthesis, sphingomyelin metabolism, and fatty acid metabolism pathway. Finally, the effects of qi deficiency on the occurrence and development of liver cancer were comprehensively analyzed, and the mechanism of this process was preliminarily clarified.
Collapse
Affiliation(s)
- Zong Hou
- College of pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, P. R. China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zifeng Pi
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| |
Collapse
|
22
|
Akeus P, Szeponik L, Langenes V, Karlsson V, Sundström P, Bexe-Lindskog E, Tallon C, Slusher BS, Quiding-Järbrink M. Regulatory T cells reduce endothelial neutral sphingomyelinase 2 to prevent T-cell migration into tumors. Eur J Immunol 2021; 51:2317-2329. [PMID: 34272885 DOI: 10.1002/eji.202149208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022]
Abstract
Endothelial cells are key regulators of transendothelial migration and their secretion of chemokines and expression of adhesion molecules facilitates lymphocyte entry into tissues. Previously, we demonstrated that Tregs can reduce transendothelial migration of T cells into tumors by decreasing endothelial CXCL10 secretion, but the mechanism by which this occurs is still not known. In this study, we aimed to define how Tregs decrease transendothelial migration into tumors. mRNA sequencing of intestinal tumor endothelial cells from Treg depleted mice identified neutral sphingomyelinase 2 (nSMase2) as a gene downregulated in the presence of Tregs. nSMase2 is expressed in human umbilical vein endothelial cells (HUVECs) and was decreased after coculture with Tregs. Furthermore, blocking of nSMase2 activity in vitro decreased VCAM1, CX3CL1, and CXCL10 expression in HUVECs, mirroring the same decrease found in Treg cocultures. In the APCmin/+ mouse model of intestinal cancer, nSMase2 is lower in tumor endothelial cells than in unaffected small intestine and chronic treatment with a nSMase2 inhibitor suppressed the increased migration that is otherwise seen in the absence of Tregs. We conclude that nSMase2 is an important mediator in endothelial cells supporting transendothelial migration, which may be targeted by Tregs to reduce T-cell migration into tumors.
Collapse
Affiliation(s)
- Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Veronica Langenes
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Viktoria Karlsson
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Patrik Sundström
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elinor Bexe-Lindskog
- Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin. Sci Rep 2021; 11:11221. [PMID: 34045496 PMCID: PMC8159975 DOI: 10.1038/s41598-021-90219-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Acid ceramidase (AC) is a lysosomal hydrolase encoded by the ASAH1 gene, which cleaves ceramides into sphingosine and fatty acid. AC is expressed at high levels in most human melanoma cell lines and may confer resistance against chemotherapeutic agents. One such agent, doxorubicin, was shown to increase ceramide levels in melanoma cells. Ceramides contribute to the regulation of autophagy and apoptosis. Here we investigated the impact of AC ablation via CRISPR-Cas9 gene editing on the response of A375 melanoma cells to doxorubicin. We found that doxorubicin activates the autophagic response in wild-type A375 cells, which effectively resist apoptotic cell death. In striking contrast, doxorubicin fails to stimulate autophagy in A375 AC-null cells, which rapidly undergo apoptosis when exposed to the drug. The present work highlights changes that affect melanoma cells during incubation with doxorubicin, in A375 melanoma cells lacking AC. We found that the remarkable reduction in recovery rate after doxorubicin treatment is strictly associated with the impairment of autophagy, that forces the AC-inhibited cells into apoptotic path.
Collapse
|
24
|
Ablation of Acid Ceramidase Impairs Autophagy and Mitochondria Activity in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22063247. [PMID: 33806766 PMCID: PMC8004726 DOI: 10.3390/ijms22063247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma is often resistant to therapy due to its high plasticity, as well as its ability to metabolise chemotherapeutic drugs. Sphingolipid signalling plays a pivotal role in its progression and metastasis. One of the ways melanoma alters sphingolipid rheostat is via over-expression of lysosomal acid ceramidase (AC), which catalyses the hydrolysis of pro-apoptotic long-chain ceramides into sphingosine and fatty acid. In this report, we examine the role of acid ceramidase in maintaining cellular homeostasis through the regulation of autophagy and mitochondrial activity in melanoma cell lines. We show that under baseline conditions, wild-type melanoma cells had 3-fold higher levels of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3 II), compared to AC-null cells. This difference was further magnified after cell starvation. Moreover, we noticed autophagy impairment in A375 AC-null cells, possibly due to local accumulation of non-metabolized ceramides. Nonetheless, we observed that AC-null cells exhibited a significant increase in mitochondrial membrane potential compared to control cells. Consistent with this observation, we found that, after total starvation, ~30% of AC-null cells undergo apoptosis compared to ~6% of wild-type cells. As expected, AC transfection restored viability in A375 AC-null cells. Together, these findings suggest that AC-null melanoma cells change and adapt their metabolism to survive in the absence of AC, although in a way that does not allow them to cope with the stress of nutrient deprivation.
Collapse
|
25
|
The Phenoxyphenol Compound diTFPP Mediates Exogenous C 2-Ceramide Metabolism, Inducing Cell Apoptosis Accompanied by ROS Formation and Autophagy in Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2021; 10:antiox10030394. [PMID: 33807856 PMCID: PMC7998835 DOI: 10.3390/antiox10030394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe disease that accounts for 80% of liver cancers. Chemotherapy is the primary therapeutic strategy for patients who cannot be treated with surgery or who have late-stage HCC. C2-ceramide is an effective reagent that has been found to inhibit the growth of many cancer types. The metabolism of C2-ceramide plays a vital role in the regulation of cell death/cell survival. The phenoxyphenol compound 4-{2,3,5,6-tetrafluoro-4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenyl]phenoxy}phenol (diTFPP) was found to have a synergistic effect with C2-ceramide, resulting in considerable cell death in the HA22T HCC cell line. diTFPP/C2-ceramide cotreatment induced a two- to threefold increase in cell death compared to that with C2-ceramide alone and induced pyknosis. Annexin V/7-aminoactinomycin D (7AAD) double staining and Western blotting indicated that apoptosis was involved in diTFPP/C2-ceramide cotreatment-mediated cell death. We next analyzed transcriptome alterations in diTFPP/C2-ceramide-cotreated HA22T cells with next-generation sequencing (NGS). The data indicated that diTFPP treatment disrupted sphingolipid metabolism, inhibited cell cycle-associated gene expression, and induced autophagy and reactive oxygen species (ROS)-responsive changes in gene expression. Additionally, we assessed the activation of autophagy with acridine orange (AO) staining and observed alterations in the expression of the autophagic proteins LC3B-II and Beclin-1, which indicated autophagy activation after diTFPP/C2-ceramide cotreatment. Elevated levels of ROS were also reported in diTFPP/C2-ceramide-treated cells, and the expression of the ROS-associated proteins SOD1, SOD2, and catalase was upregulated after diTFPP/C2-ceramide treatment. This study revealed the potential regulatory mechanism of the novel compound diTFPP in sphingolipid metabolism by showing that it disrupts ceramide metabolism and apoptotic sphingolipid accumulation.
Collapse
|
26
|
Wang W, Bai L, Li W, Cui J. The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Front Oncol 2020; 10:605154. [PMID: 33364199 PMCID: PMC7753360 DOI: 10.3389/fonc.2020.605154] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid metabolism reprograming, as a hallmark of malignancy, has received renewed interest in recent years in such areas as energy sources, cell membrane components, and signaling molecules involved in the rapid tumor growth and the adaptation to the tumor microenvironment. Lipid metabolism deregulation in cancer involves multiple aspects, including an increased lipid uptake, endogenous de novo fatty acid synthesis, fatty acid oxidation, and cholesterol accumulation, thereby promoting tumor growth and progression. Recent advances in the understanding of specific metabolic alterations in cancer reveal novel pathogenesis mechanisms and a growing number of drugs targeting lipid metabolism have been applied in anti-tumor therapy. Thus, this review discusses the lipid metabolic landscape of cancers and the interplay with oncogenic signaling, and summarizes potential therapeutic targets to improve the therapeutic efficiency in cancer patients, in order to provide more reference and thinking for the treatment of lipid metabolism of cancer patients.
Collapse
|
27
|
Dowdy T, Zhang L, Celiku O, Movva S, Lita A, Ruiz-Rodado V, Gilbert MR, Larion M. Sphingolipid Pathway as a Source of Vulnerability in IDH1 mut Glioma. Cancers (Basel) 2020; 12:E2910. [PMID: 33050528 PMCID: PMC7601159 DOI: 10.3390/cancers12102910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
In addition to providing integrity to cellular structure, the various classes of lipids participate in a multitude of functions including secondary messengers, receptor stimulation, lymphocyte trafficking, inflammation, angiogenesis, cell migration, proliferation, necrosis and apoptosis, thus highlighting the importance of understanding their role in the tumor phenotype. In the context of IDH1mut glioma, investigations focused on metabolic alterations involving lipidomics' present potential to uncover novel vulnerabilities. Herein, a detailed lipidomic analysis of the sphingolipid metabolism was conducted in patient-derived IDH1mut glioma cell lines, as well as model systems, with the of identifying points of metabolic vulnerability. We probed the effect of decreasing D-2HG levels on the sphingolipid pathway, by treating these cell lines with an IDH1mut inhibitor, AGI5198. The results revealed that N,N-dimethylsphingosine (NDMS), sphingosine C17 and sphinganine C18 were significantly downregulated, while sphingosine-1-phosphate (S1P) was significantly upregulated in glioma cultures following suppression of IDH1mut activity. We exploited the pathway using a small-scale, rational drug screen and identified a combination that was lethal to IDHmut cells. Our work revealed that further addition of N,N-dimethylsphingosine in combination with sphingosine C17 triggered a dose-dependent biostatic and apoptotic response in a panel of IDH1mut glioma cell lines specifically, while it had little effect on the IDHWT cells probed here. To our knowledge, this is the first study that shows how altering the sphingolipid pathway in IDH1mut gliomas elucidates susceptibility that can arrest proliferation and initiate subsequent cellular death.
Collapse
Affiliation(s)
- Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Lumin Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Sriya Movva
- George Washington School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| |
Collapse
|
28
|
Carrié L, Virazels M, Dufau C, Montfort A, Levade T, Ségui B, Andrieu-Abadie N. New Insights into the Role of Sphingolipid Metabolism in Melanoma. Cells 2020; 9:E1967. [PMID: 32858889 PMCID: PMC7565650 DOI: 10.3390/cells9091967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.
Collapse
Affiliation(s)
- Lorry Carrié
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Mathieu Virazels
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Carine Dufau
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Anne Montfort
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
- Laboratoire de Biochimie Métabolique, CHU, 31059 Toulouse, France
| | - Bruno Ségui
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Nathalie Andrieu-Abadie
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| |
Collapse
|
29
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
30
|
Coazzoli M, Napoli A, Roux-Biejat P, De Palma C, Moscheni C, Catalani E, Zecchini S, Conte V, Giovarelli M, Caccia S, Procacci P, Cervia D, Clementi E, Perrotta C. Acid Sphingomyelinase Downregulation Enhances Mitochondrial Fusion and Promotes Oxidative Metabolism in a Mouse Model of Melanoma. Cells 2020; 9:cells9040848. [PMID: 32244541 PMCID: PMC7226741 DOI: 10.3390/cells9040848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells.
Collapse
Affiliation(s)
- Marco Coazzoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
- Unit of Clinical Pharmacology, University Hospital “Luigi Sacco”-ASST Fatebenefratelli Sacco, 20157 Milano, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milano, Italy;
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, 20133 Milano, Italy; (V.C.); (P.P.)
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, 20133 Milano, Italy; (V.C.); (P.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
- Scientific Institute IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy
- Correspondence: (E.C.); (C.P.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (M.C.); (A.N.); (P.R.-B.); (C.M.); (S.Z.); (M.G.); (S.C.)
- Correspondence: (E.C.); (C.P.)
| |
Collapse
|