1
|
Nizhnik YP, Hansen E, Howard C, Zeller M, Rosokha SV. Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor-Acceptor Bonding. Molecules 2024; 29:3305. [PMID: 39064884 PMCID: PMC11279733 DOI: 10.3390/molecules29143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
4-Nitroquinoline-N-oxide (NQO) and 4-nitropyridine-N-oxide (NPO) are important precursors for the synthesis of substituted heterocycles while NQO is a popular model mutagen and carcinogen broadly used in cancer research; intermolecular interactions are critical for their reactions or functioning in vivo. Herein, the effects of the coordination of N-oxide's oxygen atom to Lewis acids on multicenter donor-acceptor bonding were explored via a combination of experimental and computational studies of the complexes of NQO and NPO with a typical π-electron donor, pyrene. Coordination with ZnCl2 increased the positive electrostatic potentials on the surfaces of these π-acceptors and lowered the energy of their LUMO. Analogous effects were observed upon the protonation of the N-oxides' oxygen or bonding with boron trifluoride. The interaction of ZnCl2, NPO, or NQO and pyrene resulted in the formation of dark co-crystals comprising π-stacked Zn-coordinated N-oxides and pyrene similar to that found with protonated or (reported earlier) BF3-bonded N-oxides. Computational studies indicated that the coordination of N-oxides to zinc(II), BF3, or protonation led to the strengthening of the multicenter bonding of the nitro-heterocycle with pyrene, and this effect was related both to the increased electrostatic attraction and molecular-orbital interactions in their complexes.
Collapse
Affiliation(s)
| | - Erin Hansen
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (E.H.); (C.H.)
| | - Cayden Howard
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (E.H.); (C.H.)
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
| | - Sergiy V. Rosokha
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (E.H.); (C.H.)
| |
Collapse
|
2
|
Ramírez-Palma LG, Castro-Ramírez R, Lozano-Ramos L, Galindo-Murillo R, Barba-Behrens N, Cortés-Guzmán F. DNA recognition site of anticancer tinidazole copper(II) complexes. Dalton Trans 2023; 52:2087-2097. [PMID: 36692493 DOI: 10.1039/d2dt02854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper describes the recognition process of tetrahedral [CuII(tnz)2X2] (X = Cl, Br) complexes by a DNA chain, analyzing the specific interaction between the DNA bases and backbone with the metal and the tinidazole (tnz) ligand. We identified the coordination of the copper metal center with one or two phosphates as the first recognition site for the tinidazole copper(II) complexes, while the ligands present partial intercalation into the minor groove. Also, we discuss a novel trigonal copper(I) tnz bromide complex, obtained by reducing the previously reported [Cu(tnz)2Br2]. This complex sheds light on the mechanism of action of tnz metal complexes as one of the most stable DNA-complex adducts depicts a trigonal geometry around the copper ion.
Collapse
Affiliation(s)
- Lillian G Ramírez-Palma
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Rodrigo Castro-Ramírez
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - León Lozano-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, UT 84112, USA
| | - Norah Barba-Behrens
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| | - Fernando Cortés-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U., México City, 04510, Mexico.
| |
Collapse
|
3
|
Host-Guest Complexes. Int J Mol Sci 2022; 23:ijms232415730. [PMID: 36555372 PMCID: PMC9779678 DOI: 10.3390/ijms232415730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Host-guest complexes, also known as inclusion complexes, are supramolecular structures [...].
Collapse
|
4
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Wang X, Li B, Li Y, Wang H, Ni Y, Wang H. The influence of monomer deformation on triel and tetrel bonds between TrR3/TR4 (Tr = Al, Ga, In; T = Si, Ge, Sn) and N-base (N-base = HCN, NH3, CN−). COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Baykov SV, Semenov AV, Katlenok EA, Shetnev AA, Bokach NA. Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and πh···O(anhydride) Interaction. Molecules 2021; 26:3119. [PMID: 34071107 PMCID: PMC8197102 DOI: 10.3390/molecules26113119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Structures of three tetrahalophthalic anhydrides (TXPA: halogen = Cl (TCPA), Br (TBPA), I (TIPA)) were studied by X-ray diffraction, and several types of halogen bonds (HaB) and lone pair···π-hole (lp···πh) contacts were revealed in their structures. HaBs involving the central oxygen atom of anhydride group (further X···O(anhydride) were recognized in the structures of TCPA and TBPA. In contrast, for the O(anhydride) atom of TIPA, only interactions with the π system (π-hole) of the anhydride ring (further lp(O)···πh) were observed. Computational studies by a number of theoretical methods (molecular electrostatic potentials, the quantum theory of atoms in molecules, the independent gradient model, natural bond orbital analyses, the electron density difference, and symmetry-adapted perturbation theory) demonstrated that the X···O(anhydride) contacts in TCPA and TBPA and lp(O)···πh in TIPA are caused by the packing effect. The supramolecular architecture of isostructural TCPA and TBPA was mainly affected by X···O(acyl) and X···X HaBs, and, for TIPA, the main contribution provided I···I HaBs.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadskogo Pr, 119571 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Eugene A. Katlenok
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia;
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| |
Collapse
|
7
|
Suryaprasad B, Chandra S, Ramanathan N, Sundararajan K. Pentavalent P…π phosphorus bonding with associated Cl…π halogen bonding in influencing the geometry of POCl3-Phenylacetylene heterodimers: Evidence from matrix isolation infrared spectroscopy and ab initio computations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Belova NV, Pimenov OA, Kotova VE, Girichev GV. Molecular structure and electron distribution of 4-nitropyridine N-oxide: Experimental and theoretical study of substituent effects. J Mol Struct 2020; 1217:128476. [PMID: 32427177 PMCID: PMC7230146 DOI: 10.1016/j.molstruc.2020.128476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/06/2020] [Accepted: 05/15/2020] [Indexed: 12/02/2022]
Abstract
The molecular structure of 4-nitropyridine N-oxide, 4-NO2-PyO, has been determined by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and by quantum chemical calculations (DFT and MP2). Comparison of these results with those for non-substituted pyridine N-oxide and 4-methylpyridine N-oxide CH3-PyO, demonstrate strong substitution effects on structural parameters and electron density distribution. The presence of the electron-withdrawing -NO2 group in para-position of 4-NO2-PyO results in an increase of the ipso-angle and a decrease of the semipolar bond length r(N→O) in comparison to the non-substituted PyO. The presence of the electron-donating -CH3 group in 4-CH3-PyO leads to opposite structural changes. Electron density distribution in pyridine-N-oxide and its two substituted compounds are discussed in terms of natural bond orbitals (NBO) and quantum theory atoms in molecule (QTAIM).
Collapse
Affiliation(s)
- Natalya V Belova
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, 153460, Ivanovo, Russia
| | - Oleg A Pimenov
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, 153460, Ivanovo, Russia
| | - Vitaliya E Kotova
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, 153460, Ivanovo, Russia
| | - Georgiy V Girichev
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, 153460, Ivanovo, Russia
| |
Collapse
|
9
|
Chandra S, Suryaprasad B, Ramanathan N, Sundararajan K. Dominance of unique Pπ phosphorus bonding with π donors: evidence using matrix isolation infrared spectroscopy and computational methodology. Phys Chem Chem Phys 2020; 22:20771-20791. [PMID: 32909555 DOI: 10.1039/d0cp02880k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Albeit the first account of hypervalentπ interactions has been reported with halogenπ interactions, the feasibility of their extension to other hypervalent atoms as possible Lewis acids is still open. In this work, the role of phosphorus as an acceptor from the π electron cloud (Pπ pnicogen or phosphorus bonding) in PCl3-C2H2 and PCl3-C2H4 heterodimers is explored, by combining matrix isolation infrared spectroscopy with ab initio and DFT computational methodologies. The respective potential energy surfaces of the PCl3-C2H2 and PCl3-C2H4 heterodimers reveal unique minima stabilized by a concert of reasonably strong to weak interactions, of which Pπ phosphorus bonding was energetically dominant. Heterodimers, trimers and tetramers bound primarily by this unique phosphorus bond were generated at low temperatures. The dominance of phosphorus bonding in the PCl3-C2H2 and PCl3-C2H4 heterodimers over other interactions (such as Hπ, HCl, HP, Clπ and lone pair-π interactions) was confirmed and substantiated using extended quantum theory of atoms in molecules, natural bond orbital, electrostatic potential mapping and energy decomposition analyses. The following inferences in correlation with results from non-covalent-interaction analysis offer a complete understanding of the nature of the Pπ phosphorus bonding interactions. The significance of electrostatic forces kinetically favoring the formation of phosphorus bonded heterodimers, in addition to thermodynamic stabilization, is demonstrated experimentally.
Collapse
Affiliation(s)
- Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - B Suryaprasad
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| |
Collapse
|
10
|
Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors. CRYSTALS 2020. [DOI: 10.3390/cryst10070556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
11 aryl–lone pair and three aryl–anion π –hole interactions are investigated, along with the argon–benzene dimer and water dimer as reference compounds, utilizing the local vibrational mode theory, originally introduced by Konkoli and Cremer, to quantify the strength of the π –hole interaction in terms of a new local vibrational mode stretching force constant between the two engaged monomers, which can be conveniently used to compare different π –hole systems. Several factors have emerged which influence strength of the π –hole interactions, including aryl substituent effects, the chemical nature of atoms composing the aryl rings/ π –hole acceptors, and secondary bonding interactions between donors/acceptors. Substituent effects indirectly affect the π –hole interaction strength, where electronegative aryl-substituents moderately increase π –hole interaction strength. N-aryl members significantly increase π –hole interaction strength, and anion acceptors bind more strongly with the π –hole compared to charge neutral acceptors (lone–pair donors). Secondary bonding interactions between the acceptor and the atoms in the aryl ring can increase π –hole interaction strength, while hydrogen bonding between the π –hole acceptor/donor can significantly increase or decrease strength of the π –hole interaction depending on the directionality of hydrogen bond donation. Work is in progress expanding this research on aryl π –hole interactions to a large number of systems, including halides, CO, and OCH3− as acceptors, in order to derive a general design protocol for new members of this interesting class of compounds.
Collapse
|
11
|
Bauzá A, Frontera A. σ/π-Hole noble gas bonding interactions: Insights from theory and experiment. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213112] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Dutta D, Sharma P, Frontera A, Gogoi A, Verma AK, Dutta D, Sarma B, Bhattacharyya MK. Oxalato bridged coordination polymer of manganese( iii) involving unconventional O⋯π-hole(nitrile) and antiparallel nitrile⋯nitrile contacts: antiproliferative evaluation and theoretical studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj03712e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Unconventional O⋯π-hole(nitrile) and antiparallel nitrile⋯nitrile contacts have been theoretically investigated for a Mn(iii) coordination polymer considering cytotoxicity, apoptosis, ROS generation, molecular docking and pharmacophore features.
Collapse
Affiliation(s)
- Debajit Dutta
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Anshuman Gogoi
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati 781001
- India
| | - Diksha Dutta
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati 781001
- India
| | - Bipul Sarma
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | | |
Collapse
|
13
|
Bhattacharyya MK, Saha U, Dutta D, Frontera A, Verma AK, Sharma P, Das A. Unconventional DNA-relevant π-stacked hydrogen bonded arrays involving supramolecular guest benzoate dimers and cooperative anion–π/π–π/π–anion contacts in coordination compounds of Co(ii) and Zn(ii) phenanthroline: experimental and theoretical studies. NEW J CHEM 2020. [DOI: 10.1039/c9nj05727g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antiproliferative evaluation and supramolecular assemblies of Co(ii) and Zn(ii) coordination compounds involving cooperative anion–π and unconventional DNA-relevant π-stacked hydrogen bonded arrays.
Collapse
Affiliation(s)
| | - Utpal Saha
- Department of Chemistry
- Cotton University
- Guwahati 781001
- India
| | - Debajit Dutta
- Department of Chemistry
- Cotton University
- Guwahati 781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Crta de Valldemossa km 7.7
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati 781001
- India
| | - Amal Das
- Department of Chemistry
- Cotton University
- Guwahati 781001
- India
| |
Collapse
|
14
|
Naeem Ahmed M, Yasin KA, Aziz S, Khan SU, Tahir MN, Gil DM, Frontera A. Relevant π-hole tetrel bonding interactions in ethyl 2-triazolyl-2-oxoacetate derivatives: Hirshfeld surface analysis and DFT calculations. CrystEngComm 2020. [DOI: 10.1039/d0ce00335b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the synthesis and X-ray characterization of four triazole derivatives that include an α-ketoester functionality and two phenyl substituents. The compounds form self-assembled dimers in the solid state establishing two symmetrically equivalent O⋯π-hole interactions.
Collapse
Affiliation(s)
- Muhammad Naeem Ahmed
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- 13100 Pakistan
| | - Khawaja Ansar Yasin
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- 13100 Pakistan
| | - Shahid Aziz
- Department of Chemistry
- Mirpur University of Science and Technology (MUST) Mirpur-10250 (AJK)
- Pakistan
| | - Saba Urooge Khan
- Department of Polymer Engineering and Technology University of The Punjab Lahore
- Pakistan
| | | | - Diego Mauricio Gil
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica – Cátedra de Química Orgánica I
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Antonio Frontera
- Department de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca Baleares
- Spain
| |
Collapse
|
15
|
Bauzá A, Frontera A. Halogen and Chalcogen Bond Energies Evaluated Using Electron Density Properties. Chemphyschem 2019; 21:26-31. [PMID: 31823488 DOI: 10.1002/cphc.201901001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/17/2019] [Indexed: 12/16/2022]
Abstract
Halogen (X-bond) and chalcogen bond (Ch-bond) energies for 36 complexes have been obtained at the RI-MP2/def2-TZVP level of theory, involving the heavier halogen and chalcogen atoms (Br, I, Se, Te). We have explored the existence of linear relationships between the interaction energies and the local kinetic energy densities at the bond critical points that characterize the σ-hole interactions (both electronic G(r) and potential V(r) energy densities). Interestingly, we have found strong relationships for halogen and chalcogen bonding energies, especially for the V(r) energy density, thus allowing to estimate the interaction energy without computing the separate monomers. This is also useful to estimate the interaction in monomeric systems (intramolecular X/Ch-bonds), as illustrated using several examples. Remarkably, we have also found a good relationship when in the same representation both halogen and chalcogen atoms are included, thus allowing to use the same empirical correlation for both interactions.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.7, 07122, Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.7, 07122, Palma de Mallorca (Baleares), Spain
| |
Collapse
|
16
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|
17
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019; 58:18610-18618. [DOI: 10.1002/anie.201909759] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|