1
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2024; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
2
|
Fanelli G, Alloisio G, Lelli V, Marini S, Rinalducci S, Gioia M. Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells. Front Mol Biosci 2024; 10:1297826. [PMID: 38726050 PMCID: PMC11079223 DOI: 10.3389/fmolb.2023.1297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 05/12/2024] Open
Abstract
There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Lelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
3
|
McKinley S, Taylor A, Peeples C, Jacob M, Khaparde G, Walter Y, Ekpenyong A. Simulated Microgravity-Induced Changes to Drug Response in Cancer Cells Quantified Using Fluorescence Morphometry. Life (Basel) 2023; 13:1683. [PMID: 37629540 PMCID: PMC10455503 DOI: 10.3390/life13081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike plants that have special gravity-sensing cells, such special cells in animals are yet to be discovered. However, microgravity, the condition of apparent weightlessness, causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. Decades of investigations show correlations between these organ and system-level dysfunctions with changes induced at the cellular level both by simulated microgravity as well as microgravity conditions in outer space. Changes in single bone, muscle and immune cells include morphological abnormalities, altered gene expression, protein expression, metabolic pathways and signaling pathways. These suggest that human cells mount some response to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear. Here, we addressed the question whether microgravity induces alterations to drug response in cancer cells. We used both adherent cancer cells (T98G) and cancer cells in suspension (K562) to confirm the known effects of simulated microgravity and then treated the K562 cells with common cancer drugs (hydroxyurea and paclitaxel) following 48 h of exposure to simulated microgravity via a NASA-developed rotary cell culture system. Through fluorescence-guided morphometry, we found that microgravity abolished a significant reduction (p < 0.01) in the nuclear-to-cytoplasm ratio of cancer cells treated with hydroxyurea. Our results call for more studies on the impact of microgravity on cellular drug response, in light of the growing need for space medicine, as space exploration grows.
Collapse
Affiliation(s)
- Spencer McKinley
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Adam Taylor
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Conner Peeples
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Megha Jacob
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Gargee Khaparde
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Yohan Walter
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| |
Collapse
|
4
|
Alloisio G, Rodriguez DB, Luce M, Ciaccio C, Marini S, Cricenti A, Gioia M. Cyclic Stretch-Induced Mechanical Stress Applied at 1 Hz Frequency Can Alter the Metastatic Potential Properties of SAOS-2 Osteosarcoma Cells. Int J Mol Sci 2023; 24:ijms24097686. [PMID: 37175397 PMCID: PMC10178551 DOI: 10.3390/ijms24097686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, there has been an increasing focus on cellular morphology and mechanical behavior in order to gain a better understanding of the modulation of cell malignancy. This study used uniaxial-stretching technology to select a mechanical regimen able to elevate SAOS-2 cell migration, which is crucial in osteosarcoma cell pathology. Using confocal and atomic force microscopy, we demonstrated that a 24 h 0.5% cyclic elongation applied at 1 Hz induces morphological changes in cells. Following mechanical stimulation, the cell area enlarged, developing a more elongated shape, which disrupted the initial nuclear-to-cytoplasm ratio. The peripheral cell surface also increased its roughness. Cell-based biochemical assays and real-time PCR quantification showed that these morphologically induced changes are unrelated to the osteoblastic differentiative grade. Interestingly, two essential cell-motility properties in the modulation of the metastatic process changed following the 24 h 1 Hz mechanical stimulation. These were cell adhesion and cell migration, which, in fact, were dampened and enhanced, respectively. Notably, our results showed that the stretch-induced up-regulation of cell motility occurs through a mechanism that does not depend on matrix metalloproteinase (MMP) activity, while the inhibition of ion-stretch channels could counteract it. Overall, our results suggest that further research on mechanobiology could represent an alternative approach for the identification of novel molecular targets of osteosarcoma cell malignancy.
Collapse
Affiliation(s)
- Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| |
Collapse
|
5
|
High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently. Bioinorg Chem Appl 2022; 2022:2343167. [PMID: 35140761 PMCID: PMC8820933 DOI: 10.1155/2022/2343167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young’s modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure.
Collapse
|
6
|
Cascione M, De Matteis V, Pellegrino P, Albanese G, De Giorgi ML, Paladini F, Corsalini M, Rinaldi R. Improvement of PMMA Dental Matrix Performance by Addition of Titanium Dioxide Nanoparticles and Clay Nanotubes. NANOMATERIALS 2021; 11:nano11082027. [PMID: 34443858 PMCID: PMC8402145 DOI: 10.3390/nano11082027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Over the last decades, several materials have been proposed for the fabrication of dental and mandibular prosthetic implants. Today, the poly(methyl-methacrylate) (PMMA) resin is the most spread material, due to its ease of processing, low cost, aesthetic properties, low weight, biocompatibility, and biostability in the oral cavity. However, the porous surface (which favors the adhesion of microorganisms) and the weak mechanical properties (which lead to wear or fracture) are the major concerns. The inclusion of engineered nanomaterials in the acrylic matrix could improve the performances of PMMA. In this study, we added two different kind of nanomaterials, namely titanium dioxide nanoparticles (TiO2NPs) and halloysite clay nanotubes (HNTs) at two concentrations (1% and 3% w/w) in PMMA. Then, we assessed the effect of nanomaterials inclusion by the evaluation of specific physical parameters: Young’s modulus, roughness, and wettability. In addition, we investigated the potential beneficial effects regarding the Candida albicans (C. albicans) colonization reduction, the most common yeast responsible of several infections in oral cavity. Our experimental results showed an improvement of PMMA performance, following the addition of TiO2NPs and HNTs, in a dose dependent manner. In particular, the presence of TiO2NPs in the methacrylate matrix induced a greater increase in PMMA stiffness respect to HNTs addition. On the other hand, HNTs reduced the rate of C. albicans colonization more significantly than TiO2NPs. The results obtained are of great interest for the improvement of PMMA physico-chemical properties, in view of its possible application in clinical dentistry.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Giovanni Albanese
- U.O.C. of Plastic Surgery and Burns Center, Department of Oral Hygiene Clinic, Hospital “A. Perrino”, 72100 Brindisi, Italy;
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Maria Luisa De Giorgi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Fabio Paladini
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Massimo Corsalini
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| |
Collapse
|
7
|
Lam SK, Yan S, Xu S, Ho JCM. Targeting polyamine as a novel therapy in xenograft models of malignant pleural mesothelioma. Lung Cancer 2020; 148:138-148. [PMID: 32911426 DOI: 10.1016/j.lungcan.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Inhalation of asbestos fibers is the key culprit in malignant pleural mesothelioma (MPM). Although the import and use of asbestos have been restricted, the incidence of MPM continues to increase globally due to the prolonged lag time in malignant transformation. The development of a novel adjuvant therapy for the minority of individuals with resectable early-stage disease and effective treatment for those with unresectable MPM are urgently needed. Our preliminary data revealed that ornithine decarboxylase (ODC) is highly expressed in MPM xenografts. This study aimed to determine the treatment effects of α-difluoromethylornithine (DFMO), a specific ODC inhibitor, in MPM xenografts. RESULTS In an "extended adjuvant DFMO treatment" setting, nude mice were fed with DFMO for 7 days prior to inoculation of 200,000 cells. DFMO suppressed tumor growth and increased median survival in both xenografts. In H226 xenograft, 43 % of treated mice had not reached the humane endpoint by day 132, mimicking long-term survival. DFMO decreased spermidine, increased nitrotyrosine and activated apoptosis in both xenografts. Furthermore, increase in nitrosocysteine, intratumoral IL-6, keratinocyte chemoattractant and TNFα, DNA lesion and inhibition of the Akt/mTOR pathway were induced by DFMO in H226 xenograft. In "DFMO treatment" setting, 107 cells were inoculated into nude mice and DFMO treatment commenced when tumor size reached ∼50-100 mm3. DFMO also suppressed tumor growth by similar mechanisms. Supplementation with spermidine reversed the therapeutic effect of DFMO. DFMO increased actin nitration at tyrosine 53 and inhibited actin polymerization. CONCLUSION DFMO is preclinically effective in treating MPM.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Sheng Yan
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Shi Xu
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
8
|
De Matteis V, Cascione M, Toma CC, Albanese G, De Giorgi ML, Corsalini M, Rinaldi R. Silver Nanoparticles Addition in Poly(Methyl Methacrylate) Dental Matrix: Topographic and Antimycotic Studies. Int J Mol Sci 2019; 20:E4691. [PMID: 31546661 PMCID: PMC6801538 DOI: 10.3390/ijms20194691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
The widespread use of nanoparticles (NPs) in medical devices has opened a new scenario in the treatment and prevention of many diseases and infections owing to unique physico-chemical properties of NPs. In this way, silver nanoparticles (AgNPs) are known to have a strong antimicrobial activity, even at low concentrations, due to their ability to selectively destroy cellular membranes. In particular, in the field of dental medicine, the use of AgNPs in different kinds of dental prosthesis matrixes could be a fundamental tool in immunodepressed patients that suffer of different oral infections. Candida albicans (C. albicans), an opportunistic pathogenic yeast with high colonization ability, is one of the causative agents of oral cavity infection. In our work, we added monodispersed citrate-capping AgNPs with a size of 20 nm at two concentrations (3 wt% and 3.5 wt%) in poly(methyl methacrylate) (PMMA), the common resin used to develop dental prostheses. After AgNPs characterization, we evaluated the topographical modification of PMMA and PMMA with the addition of AgNPs by means of atomic force microscopy (AFM), showing the reduction of surface roughness. The C. albicans colonization on PMMA surfaces was assessed by the Miles and Misra technique as well as by scanning electron microscopy (SEM) at 24 h and 48 h with encouraging results on the reduction of yeast viability after AgNPs exposure.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, 73100 Lecce (LE), Italy.
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, 73100 Lecce (LE), Italy.
| | - Chiara Cristina Toma
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, 73100 Lecce (LE), Italy.
| | - Giovanni Albanese
- U.O.C. of Plastic Surgery and Burns Center, Department of Oral Hygiene Clini, Hospital "A. Perrino", 72100 Brindisi (BR), Italy.
| | - Maria Luisa De Giorgi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, 73100 Lecce (LE), Italy.
| | - Massimo Corsalini
- Dental School, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari (Ba), Italy.
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, 73100 Lecce (LE), Italy.
| |
Collapse
|