1
|
Deidda V, Ventisette I, Langione M, Giammarino L, Pioner JM, Credi C, Carpi F. 3D-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation into Cardiomyocytes. J Funct Biomater 2024; 15:297. [PMID: 39452595 PMCID: PMC11508550 DOI: 10.3390/jfb15100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows for the growth of diverse cells, its 3D printability has been found to be limited by its low viscosity. To overcome that drawback, making the hydrogel both compatible with hiPSCs and 3D-printable, we developed an extrudable GelMA-based bioink by adding xanthan gum (XG). The GelMA-XG composite hydrogel had an elastic modulus (~9 kPa) comparable to that of cardiac tissue, and enabled 3D printing with high values of printing accuracy (83%) and printability (0.98). Tests with hiPSCs showed the hydrogel's ability to promote their proliferation within both 2D and 3D cell cultures. The tests also showed that hiPSCs inside hemispheres of the hydrogel were able to differentiate into cardiomyocytes, capable of spontaneous contractions (average frequency of ~0.5 Hz and amplitude of ~2%). Furthermore, bioprinting tests proved the possibility of fabricating 3D constructs of the hiPSC-laden hydrogel, with well-defined line widths (~800 μm).
Collapse
Affiliation(s)
- Virginia Deidda
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Isabel Ventisette
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Lucrezia Giammarino
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Josè Manuel Pioner
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Federico Carpi
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| |
Collapse
|
2
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Cappitti A, Palmieri F, Garella R, Tani A, Chellini F, Salzano De Luna M, Parmeggiani C, Squecco R, Martella D, Sassoli C. Development of accessible platforms to promote myofibroblast differentiation by playing on hydrogel scaffold composition. BIOMATERIALS ADVANCES 2023; 155:213674. [PMID: 37922662 DOI: 10.1016/j.bioadv.2023.213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Mechanomimetic materials are particularly attractive for modeling in vitro fibroblast to myofibroblast (Myof) transition, a key process in the physiological repair of damaged tissue, and recognized as the core cellular mechanism of pathological fibrosis in different organs. In vivo, mechanical stimuli from the extracellular matrix (ECM) are crucial, together with cell-cell contacts and the pro-fibrotic transforming growth factor (TGF)-β1, in promoting fibroblast differentiation. Here, we explore the impact of hydrogels made by polyacrylamide with different composition on fibroblast behavior. By appropriate modulation of the hydrogel composition (e.g. adjusting the crosslinker content), we produce and fully characterize three kinds of scaffolds with different Young modulus (E). We observe that soft hydrogels (E < 1 kPa) induced fibroblast differentiation better than stiffer ones, also in the absence of TGF-β1. This study provides a readily accessible biomaterial platform to promote Myof generation. The easy approach used and the commercial availability of the monomers make these hydrogels suitable to a wide range of biomedical applications combined with high reproducibility and simple preparation protocols.
Collapse
Affiliation(s)
- Alice Cappitti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Martina Salzano De Luna
- Department of chemical, materials and industrial production engineering, University of Naples Federico II, 80125 Napoli, Italy
| | - Camilla Parmeggiani
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy.
| | - Daniele Martella
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy; Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Torino, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| |
Collapse
|
4
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
5
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Pioner JM, Vitale G, Steczina S, Langione M, Margara F, Santini L, Giardini F, Lazzeri E, Piroddi N, Scellini B, Palandri C, Schuldt M, Spinelli V, Girolami F, Mazzarotto F, van der Velden J, Cerbai E, Tesi C, Olivotto I, Bueno-Orovio A, Sacconi L, Coppini R, Ferrantini C, Regnier M, Poggesi C. Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human MYBPC3 HCM. Circ Res 2023; 132:628-644. [PMID: 36744470 PMCID: PMC9977265 DOI: 10.1161/circresaha.122.321956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the MYBPC3:c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of MYBPC3-HCM with a comprehensive translational approach. METHODS We collected clinical and genetic data from 93 HCM patients carrying the MYBPC3:c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated. RESULTS Haplotype analysis revealed MYBPC3:c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. CONCLUSIONS HCM-related MYBPC3:c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- Department of Biology (J.M.P.), University of Florence, Italy
| | - Giulia Vitale
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Marianna Langione
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Francesca Margara
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Lorenzo Santini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesco Giardini
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Erica Lazzeri
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Beatrice Scellini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Chiara Palandri
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Maike Schuldt
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Valentina Spinelli
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesca Girolami
- Pediatric Cardiology (F. Girolami), IRCCS Meyer Children’s Hospital, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Italy (F. Mazzarotto)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (F. Mazzarotto)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Elisabetta Cerbai
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Chiara Tesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Iacopo Olivotto
- Cardiogenetics Unit (I.O.), IRCCS Meyer Children’s Hospital, Florence, Italy
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (I.O.)
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Italy (L. Sacconi)
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg (L. Sacconi)
| | - Raffaele Coppini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| |
Collapse
|
7
|
Ernst P, Bidwell PA, Dora M, Thomas DD, Kamdar F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front Cell Dev Biol 2023; 10:986107. [PMID: 36742199 PMCID: PMC9889838 DOI: 10.3389/fcell.2022.986107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are based on ground-breaking technology that has significantly impacted cardiovascular research. They provide a renewable source of human cardiomyocytes for a variety of applications including in vitro disease modeling and drug toxicity testing. Cardiac calcium regulation plays a critical role in the cardiomyocyte and is often dysregulated in cardiovascular disease. Due to the limited availability of human cardiac tissue, calcium handling and its regulation have most commonly been studied in the context of animal models. hiPSC-CMs can provide unique insights into human physiology and pathophysiology, although a remaining limitation is the relative immaturity of these cells compared to adult cardiomyocytes Therefore, this field is rapidly developing techniques to improve the maturity of hiPSC-CMs, further establishing their place in cardiovascular research. This review briefly covers the basics of cardiomyocyte calcium cycling and hiPSC technology, and will provide a detailed description of our current understanding of calcium in hiPSC-CMs.
Collapse
Affiliation(s)
- Patrick Ernst
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Philip A. Bidwell
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Michaela Dora
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Forum Kamdar,
| |
Collapse
|
8
|
Pioner JM, Santini L, Palandri C, Langione M, Grandinetti B, Querceto S, Martella D, Mazzantini C, Scellini B, Giammarino L, Lupi F, Mazzarotto F, Gowran A, Rovina D, Santoro R, Pompilio G, Tesi C, Parmeggiani C, Regnier M, Cerbai E, Mack DL, Poggesi C, Ferrantini C, Coppini R. Calcium handling maturation and adaptation to increased substrate stiffness in human iPSC-derived cardiomyocytes: The impact of full-length dystrophin deficiency. Front Physiol 2022; 13:1030920. [PMID: 36419836 PMCID: PMC9676373 DOI: 10.3389/fphys.2022.1030920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyocytes differentiated from human induced Pluripotent Stem Cells (hiPSC- CMs) are a unique source for modelling inherited cardiomyopathies. In particular, the possibility of observing maturation processes in a simple culture dish opens novel perspectives in the study of early-disease defects caused by genetic mutations before the onset of clinical manifestations. For instance, calcium handling abnormalities are considered as a leading cause of cardiomyocyte dysfunction in several genetic-based dilated cardiomyopathies, including rare types such as Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy. To better define the maturation of calcium handling we simultaneously measured action potential and calcium transients (Ca-Ts) using fluorescent indicators at specific time points. We combined micropatterned substrates with long-term cultures to improve maturation of hiPSC-CMs (60, 75 or 90 days post-differentiation). Control-(hiPSC)-CMs displayed increased maturation over time (90 vs 60 days), with longer action potential duration (APD), increased Ca-T amplitude, faster Ca-T rise (time to peak) and Ca-T decay (RT50). The progressively increased contribution of the SR to Ca release (estimated by post-rest potentiation or Caffeine-induced Ca-Ts) appeared as the main determinant of the progressive rise of Ca-T amplitude during maturation. As an example of severe cardiomyopathy with early onset, we compared hiPSC-CMs generated from a DMD patient (DMD-ΔExon50) and a CRISPR-Cas9 genome edited cell line isogenic to the healthy control with deletion of a G base at position 263 of the DMD gene (c.263delG-CMs). In DMD-hiPSC-CMs, changes of Ca-Ts during maturation were less pronounced: indeed, DMD cells at 90 days showed reduced Ca-T amplitude and faster Ca-T rise and RT50, as compared with control hiPSC-CMs. Caffeine-Ca-T was reduced in amplitude and had a slower time course, suggesting lower SR calcium content and NCX function in DMD vs control cells. Nonetheless, the inotropic and lusitropic responses to forskolin were preserved. CRISPR-induced c.263delG-CM line recapitulated the same developmental calcium handling alterations observed in DMD-CMs. We then tested the effects of micropatterned substrates with higher stiffness. In control hiPSC-CMs, higher stiffness leads to higher amplitude of Ca-T with faster decay kinetics. In hiPSC-CMs lacking full-length dystrophin, however, stiffer substrates did not modify Ca-Ts but only led to higher SR Ca content. These findings highlighted the inability of dystrophin-deficient cardiomyocytes to adjust their calcium homeostasis in response to increases of extracellular matrix stiffness, which suggests a mechanism occurring during the physiological and pathological development (i.e. fibrosis).
Collapse
Affiliation(s)
| | - Lorenzo Santini
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Silvia Querceto
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy
| | | | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | | | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neurofarba, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Kanade PP, Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, Kim ES, Lee BK, Lee DW. MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs. Biosens Bioelectron 2022; 216:114675. [DOI: 10.1016/j.bios.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
10
|
Zhu Y, Zheng B, Cai C, Lin Z, Qin H, Liu H, Cui C, Chen M. Febuxostat increases ventricular arrhythmogenesis through calcium handling dysregulation in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2022; 189:216-224. [PMID: 35866629 DOI: 10.1093/toxsci/kfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Febuxostat is a xanthine oxidase inhibitor used to reduce the formation of uric acid and prevent gout attacks. Previous studies have suggested that febuxostat was associated with a higher risk of cardiovascular events, including atrial fibrillation, compared with allopurinol, another anti-hyperuricemia drug. Whereas in our clinical practice, we identified two cases of febuxostat-associated ventricular tachycardia events. The proarrhythmogenic effects of febuxostat on human cardiomyocytes and underlined mechanisms remain poorly understood. In this study, we employed real time cell analysis (RTCA) and calcium transient to investigate the effects of febuxostat on the cytotoxicity and electrophysiology properties of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Up to 10 μM febuxostat treatment did not show toxicity to cell viability. However, 48-hour febuxostat exposure generated dose-dependent increased irregular calcium transients and decreased calcium transient amplitude. Furthermore, RNA-seq analysis indicated that the MAPK signaling pathway was enriched in the febuxostat-treated group, especially the protein kinases JNK. Western blotting of three main protein kinases demonstrated that JNK activation is related to febuxostat-induced arrythmia rather than ERK or p38. The dysfunctional calcium dynamics of febuxostat-treated hiPSC-CMs could be ameliorated by SP600125, the inhibitor of JNK. In conclusion, our study demonstrated that febuxostat increases the predisposition to ventricular arrythmia by dysregulating calcium dynamics.
Collapse
Affiliation(s)
- Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingyu Zheng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cheng Cai
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiao Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyuan Qin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
11
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
12
|
Ho BX, Yu H, Pang JKS, Hor JH, Liew LC, Szyniarowski P, Lim CYY, An O, Yang HH, Stewart CL, Chan WK, Ng SY, Soh BS. Upregulation of the JAK-STAT pathway promotes maturation of human embryonic stem cell-derived cardiomyocytes. Stem Cell Reports 2021; 16:2928-2941. [PMID: 34767749 PMCID: PMC8693666 DOI: 10.1016/j.stemcr.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/02/2023] Open
Abstract
The immature characteristics and metabolic phenotypes of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) restrict their applications for disease modeling, drug discovery, and cell-based therapy. Leveraging on the metabolic shifts from glycolysis to fatty acid oxidation as CMs mature, a human hexokinase1-GFP metabolic reporter cell line (H7 HK1-GFP) was generated to facilitate the isolation of fetal or more matured hPSC-CMs. RNA sequencing of fetal versus more matured CMs uncovered a potential role of interferon-signaling pathway in regulating CM maturation. Indeed, IFN-γ-treated CMs resulted in an upregulation of the JAK-STAT pathway, which was found to be associated with increased expression of CM maturation genes, shift from MYH6 to MYH7 expression, and improved sarcomeric structure. Functionally, IFN-γ-treated CMs exhibited a more matured electrophysiological profile, such as increased calcium dynamics and action potential upstroke velocity, demonstrated through calcium imaging and MEA. Expectedly, the functional improvements were nullified with a JAK-STAT inhibitor, ruxolitinib. RNA-seq revealed upregulation of IFN-signaling pathways during CM maturation IFN-γ-treated PSC-derived fetal CMs display increased MYH7:MYH6 ratio IFN-γ-treated PSC-derived fetal CMs exhibited improved electrophysiological profile
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongbing Yu
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jin-Hui Hor
- Neurotherapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Piotr Szyniarowski
- A∗STAR Skin Research Labs, 8A Biomedical Grove #06-40, Immunos, Singapore 138648
| | - Christina Ying Yan Lim
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Colin L Stewart
- A∗STAR Skin Research Labs, 8A Biomedical Grove #06-40, Immunos, Singapore 138648
| | - Woon Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shi-Yan Ng
- Neurotherapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Physiology, National University of Singapore, 2 Medical Dr, Singapore 117593, Singapore; National Neuroscience Institute, Singapore 308433, Singapore.
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
13
|
Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021; 119:49-60. [PMID: 33952430 PMCID: PMC8653577 DOI: 10.1016/j.semcdb.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Cell instructive Liquid Crystalline Networks for myotube formation. iScience 2021; 24:103077. [PMID: 34568797 PMCID: PMC8449234 DOI: 10.1016/j.isci.2021.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 08/29/2021] [Indexed: 02/04/2023] Open
Abstract
Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.
Collapse
|
15
|
Credi C, Balducci V, Munagala U, Cianca C, Bigiarini S, de Vries AAF, Loew LM, Pavone FS, Cerbai E, Sartiani L, Sacconi L. Fast Optical Investigation of Cardiac Electrophysiology by Parallel Detection in Multiwell Plates. Front Physiol 2021; 12:692496. [PMID: 34539428 PMCID: PMC8446431 DOI: 10.3389/fphys.2021.692496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Current techniques for fast characterization of cardiac electrophysiology employ optical technologies to control and monitor action potential features of single cells or cellular monolayers placed in multiwell plates. High-speed investigation capacities are commonly achieved by serially analyzing well after well employing fully automated fluorescence microscopes. Here, we describe an alternative cost-effective optical approach (MULTIPLE) that exploits high-power LED arrays to globally illuminate a culture plate and an sCMOS sensor for parallel detection of the fluorescence coming from multiple wells. MULTIPLE combines optical detection of action potentials using a red-shifted voltage-sensitive fluorescent dye (di-4-ANBDQPQ) with optical stimulation, employing optogenetic actuators, to ensure excitation of cardiomyocytes at constant rates. MULTIPLE was first characterized in terms of interwell uniformity of the illumination intensity and optical detection performance. Then, it was applied for probing action potential features in HL-1 cells (i.e., mouse atrial myocyte-like cells) stably expressing the blue light-activatable cation channel CheRiff. Under proper stimulation conditions, we were able to accurately measure action potential dynamics across a 24-well plate with variability across the whole plate of the order of 10%. The capability of MULTIPLE to detect action potential changes across a 24-well plate was demonstrated employing the selective K v 11.1 channel blocker (E-4031), in a dose titration experiment. Finally, action potential recordings were performed in spontaneous beating human induced pluripotent stem cell derived cardiomyocytes following pharmacological manipulation of their beating frequency. We believe that the simplicity of the presented optical scheme represents a valid complement to sophisticated and expensive state-of-the-art optical systems for high-throughput cardiac electrophysiological investigations.
Collapse
Affiliation(s)
- Caterina Credi
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy
| | - Valentina Balducci
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - U Munagala
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy.,Core Research Laboratory, ISPRO, Florence, Italy
| | - C Cianca
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - S Bigiarini
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Elisabetta Cerbai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy
| |
Collapse
|
16
|
Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021; 274:120818. [PMID: 34023620 DOI: 10.1016/j.biomaterials.2021.120818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Engineered cardiac tissues that can be directly produced from human induced pluripotent stem cells (hiPSCs) in scalable, suspension culture systems are needed to meet the demands of cardiac regenerative medicine. Here, we demonstrate successful production of functional cardiac tissue microspheres through direct differentiation of hydrogel encapsulated hiPSCs. To form the microspheres, hiPSCs were suspended within the photocrosslinkable biomaterial, PEG-fibrinogen (25 million cells/mL), and encapsulated at a rate of 420,000 cells/minute using a custom microfluidic system. Even at this high cell density and rapid production rate, high intra-batch and batch-to-batch reproducibility was achieved. Following microsphere formation, hiPSCs maintained high cell viability and continued to grow within and beyond the original PEG-fibrinogen matrix. These initially soft microspheres (<250 Pa) supported efficient cardiac differentiation; spontaneous contractions initiated by differentiation day 8, and the microspheres contained >75% cardiomyocytes (CMs). CMs responded appropriately to pharmacological stimuli and exhibited 1:1 capture up to 6.0 Hz when electrically paced. Over time, cells formed cell-cell junctions and aligned myofibril fibers; engineered cardiac microspheres were maintained in culture over 3 years. The capability to rapidly generate uniform cardiac microsphere tissues is critical for advancing downstream applications including biomanufacturing, multi-well plate drug screening, and injection-based regenerative therapies.
Collapse
|
17
|
Bian W, Chen W, Nguyen T, Zhou Y, Zhang J. miR-199a Overexpression Enhances the Potency of Human Induced-Pluripotent Stem-Cell-Derived Cardiomyocytes for Myocardial Repair. Front Pharmacol 2021; 12:673621. [PMID: 34149424 PMCID: PMC8209326 DOI: 10.3389/fphar.2021.673621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian cardiomyocytes exit the cell cycle during the perinatal period, and although cardiomyocytes differentiated from human induced-pluripotent stem cells (hiPSC-CMs) are phenotypically immature, their intrinsic cell-cycle activity remains limited. Thus, neither endogenous cardiomyocytes nor the small number of transplanted hiPSC-CMs that are engrafted by infarcted hearts can remuscularize the myocardial scar. microRNAs are key regulators of cardiomyocyte proliferation, and when adeno-associated viruses coding for microRNA-199a (miR-199a) expression were injected directly into infarcted pig hearts, measures of cardiac function and fibrosis significantly improved, but the treatment was also associated with lethal arrhythmia. For the studies reported here, the same vector (AAV6-miR-199a) was transduced into hiPSC-CMs, and the cells were subsequently evaluated in a mouse model of myocardial infarction. AAV6-mediated miR-199a overexpression increased proliferation in both cultured and transplanted hiPSC-CMs, and measures of left ventricular ejection fraction, fractional shortening, and scar size were significantly better in mice treated with miR-199a-overexpressing hiPSC-CMs than with hiPSC-CMs that had been transduced with a control vector. Furthermore, although this investigation was not designed to characterize the safety of transplanted AAV6-miR-199a-transduced hiPSC-CMs, there was no evidence of sudden death. Collectively, these results support future investigations of miR-199a-overexpressing hiPSC-CMs in large animals.
Collapse
Affiliation(s)
- Weihua Bian
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wangping Chen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thanh Nguyen
- Informatics Institute, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine/Cardiovascular Diseases, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Ernst P, Chen K, Tang Y, Kim S, Guan J, He J, Xie M, Zhang JJ, Liu XM, Zhou L. Investigation into the difference in mitochondrial-cytosolic calcium coupling between adult cardiomyocyte and hiPSC-CM using a novel multifunctional genetic probe. Pflugers Arch 2021; 473:447-459. [PMID: 33587181 PMCID: PMC8100988 DOI: 10.1007/s00424-021-02524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Ca2+ cycling plays a critical role in regulating cardiomyocyte (CM) function under both physiological and pathological conditions. Mitochondria have been implicated in Ca2+ handling in adult cardiomyocytes (ACMs). However, little is known about their role in the regulation of Ca2+ dynamics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In the present study, we developed a multifunctional genetically encoded Ca2+ probe capable of simultaneously measuring cytosolic and mitochondrial Ca2+ in real time. Using this novel probe, we determined and compared mitochondrial Ca2+ activity and the coupling with cytosolic Ca2+ dynamics in hiPSC-CMs and ACMs. Our data showed that while ACMs displayed a highly coordinated beat-by-beat response in mitochondrial Ca2+ in sync with cytosolic Ca2+, hiPSC-CMs showed high cell-wide variability in mitochondrial Ca2+ activity that is poorly coordinated with cytosolic Ca2+. We then revealed that mitochondrial-sarcoplasmic reticulum (SR) tethering, as well as the inter-mitochondrial network connection, is underdeveloped in hiPSC-CM compared to ACM, which may underlie the observed spatiotemporal decoupling between cytosolic and mitochondrial Ca2+ dynamics. Finally, we showed that knockdown of mitofusin-2 (Mfn2), a protein tethering mitochondria and SR, led to reduced cytosolic-mitochondrial Ca2+ coupling in ACMs, albeit to a lesser degree compared to hiPSC-CMs, suggesting that Mfn2 is a potential engineering target for improving mitochondrial-cytosolic Ca2+ coupling in hiPSC-CMs. Physiological relevance: The present study will advance our understanding of the role of mitochondria in Ca2+ handling and cycling in CMs, and guide the development of hiPSC-CMs for healing injured hearts.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kai Chen
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Seulhee Kim
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jiashiung Guan
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jin He
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Min Xie
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lufang Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020; 77:300-316. [PMID: 33323698 DOI: 10.1097/fjc.0000000000000972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
ABSTRACT Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.
Collapse
|
20
|
Min S, Lee HJ, Jin Y, Kim YH, Sung J, Choi HJ, Cho SW. Biphasic Electrical Pulse by a Micropillar Electrode Array Enhances Maturation and Drug Response of Reprogrammed Cardiac Spheroids. NANO LETTERS 2020; 20:6947-6956. [PMID: 32877191 DOI: 10.1021/acs.nanolett.0c01141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Direct reprogramming is an efficient strategy to produce cardiac lineage cells necessary for cardiac tissue engineering and drug testing for cardiac toxicity. However, functional maturation of reprogrammed cardiomyocytes, which is of great importance for their regenerative potential and drug response, still remains challenging. In this study, we propose a novel electrode platform to promote direct cardiac reprogramming and improve the functionality of reprogrammed cardiac cells. Nonviral cardiac reprogramming was improved via a three-dimensional spheroid culture of chemically induced cardiomyocytes exposed to a small-molecule cocktail. A micropillar electrode array providing biphasic electrical pulses mimicking the heartbeat further enhanced maturation and electrophysiological properties of reprogrammed cardiac spheroids, leading to proper responses and increased sensitivity to drugs. On the basis of our results, we conclude that our device may have a wider application in the generation of functional cardiac cells for regenerative medicine and screening of novel drugs.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yu Heun Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaesuk Sung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
22
|
Zhang XH, Morad M. Ca 2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium 2020; 90:102244. [PMID: 32585508 PMCID: PMC7483365 DOI: 10.1016/j.ceca.2020.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) have been extensively used for in vitro modeling of human cardiovascular disease, drug screening and pharmacotherapy, but little rigorous studies have been reported on their biophysical or Ca2+ signaling properties. There is also considerable concern as to the level of their maturity and whether they can serve as reliable models for adult human cardiac myocytes. Ultrastructural difference such as lack of t-tubular network, their polygonal shapes, disorganized sarcomeric myofilament, and their rhythmic automaticity, among others, have been cited as evidence for immaturity of hiPSC-CMs. In this review, we will deal with Ca2+ signaling, its regulation, and its stage of maturity as compared to the mammalian adult cardiomyocytes. We shall summarize the data on functional aspects of Ca2+signaling and its parameters that include: L-type calcium channel (Cav1.2), ICa-induced Ca2+release, CICR, and its parameters, cardiac Na/Ca exchanger (NCX1), the ryanodine receptors (RyR2), sarco-reticular Ca2+pump, SERCA2a/PLB, and the contribution of mitochondrial Ca2+ to hiPSC-CMs excitation-contraction (EC)-coupling as compared with adult mammalian cardiomyocytes. The comparative studies suggest that qualitatively hiPSC-CMs have similar Ca2+signaling properties as those of adult cardiomyocytes, but quantitative differences do exist. This review, we hope, will allow the readers to judge for themselves to what extent Ca2+signaling of hiPSC-CMs represents the adult form of this signaling pathway, and whether these cells can be used as good models of human cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States.
| |
Collapse
|
23
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|