1
|
Rudic T, Stojanovic A, Sobot N, Novakovic J, Bolevich S, Bolevich S, Fisenko V, Krylova IN, Nikolic M, Jakovljevic V, Srejovic I. Antioxidative and cardioprotective effects of minocycline in ischemia/reperfusion injury in experimental model of hypertension. Mol Cell Biochem 2024:10.1007/s11010-024-05095-w. [PMID: 39187740 DOI: 10.1007/s11010-024-05095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Cardiovascular diseases remains leading cause of death and disabilities. Coronary artery occlusion and consequent ischemia leads to acute myocardial infarction, but restoration of blood flow, paradoxically, provokes further myocardial damage known as reperfusion injury. Minocycline is possessing anti-inflammatory and anti-apoptotic activity, immune-modulating and antioxidative properties besides its primary antibacterial effect. Recently it gained significant interest in preventing cardiac damage especially due to myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to assess the protective ability of pre-treatment and post-treatment of isolated hearts from healthy and spontaneously hypertensive rats with minocycline, on functional recovery and redox status after MI/RI using Langendorff technique. Using sensor in the left ventricle, the cardiodynamic parameters were recorded and in the samples of the coronary venous effluent oxidative stress biomarkers were analyzed. Minocycline was injected directly into the coronary vessels, in pre-treatment 5 min before global ischemia, and in post-treatment during the first 5 min of reperfusion. Changes in redox balance induced by minocycline were more prominent in post-treatment fashion of application. Cardioprotective effects of minocycline due to MI/RI are even more significant in hypertensive hearts. Minocycline showed significant cardioprotective effects, which was more pronounced in hypertensive compared to healthy hearts. Reduction of pro-oxidative biomarkers was more prominent in hypertensive hearts compared to the normotensive, especially if it is applied in the form of post-treatment. Minocycline could be important tool in reduction of heart damage induced by MI/RI due to its antioxidative potential, if these results are confirmed by clinical study.
Collapse
Affiliation(s)
| | - Aleksandra Stojanovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nikola Sobot
- Clinic for Cardiac Surgery, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Jovana Novakovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow, Russia
| | - Stefani Bolevich
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Fisenko
- Department of Pharmacology, First Moscow State, Medical University I.M. Sechenov, Moscow, Russia
| | - Irina Nikolaevna Krylova
- Department of Pharmacology, First Moscow State, Medical University I.M. Sechenov, Moscow, Russia
| | - Marina Nikolic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Kragujevac, Serbia.
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow, Russia.
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Ivan Srejovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacology, First Moscow State, Medical University I.M. Sechenov, Moscow, Russia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
2
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
3
|
Tallo FS, de Santana PO, Pinto SAG, Lima RY, de Araújo EA, Tavares JGP, Pires-Oliveira M, Nicolau LAD, Medeiros JVR, Taha MO, David AI, Luna-Filho B, Filho CEB, Barbosa AHP, Silva CMC, Wanderley AG, Caixeta A, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation of the Ca 2+/cAMP/Adenosine Signaling in Cardiac Cells as a New Cardioprotective Strategy to Reduce Severe Arrhythmias in Myocardial Infarction. Pharmaceuticals (Basel) 2023; 16:1473. [PMID: 37895945 PMCID: PMC10610028 DOI: 10.3390/ph16101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.
Collapse
Affiliation(s)
- Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Patricia Oliveira de Santana
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Sandra Augusta Gordinho Pinto
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Rildo Yamaguti Lima
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - José Gustavo Padrão Tavares
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura—School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil;
| | - Lucas Antonio Duarte Nicolau
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Murched Omar Taha
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - André Ibrahim David
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Adriano Henrique Pereira Barbosa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Célia Maria Camelo Silva
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil;
| | - Adriano Caixeta
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Francisco Sandro Menezes-Rodrigues
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| |
Collapse
|
4
|
Menezes-Rodrigues FS, de Oliveira MP, Araújo EA, Ferraz HB, Finsterer J, Olszewer E, Taha MO, Scorza CA, Caricati-Neto A, Scorza FA. Role of cardiac β 1-adrenergic and A 1-adenosine receptors in severe arrhythmias related to Parkinson's disease. Clinics (Sao Paulo) 2023; 78:100243. [PMID: 37459671 PMCID: PMC10757299 DOI: 10.1016/j.clinsp.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
AIMS Although reduced life expectancy in Parkinson's Disease (PD) patients has been related to severe cardiac arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of cardiac β1-Adrenergic (β1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological effects of stimulation of cardiac β1AR (isoproterenol, ISO), in the absence and presence of cardiac β1AR (atenolol, AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/Reperfusion (CIR) in an animal PD model were studied. METHODS PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the injection of 6-hydroxydopamine (6-OHDA, 6 μg) in rat striatum. CIR was produced by a surgical interruption for 10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR) were studied. RESULTS VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA (33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of cardiac β1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, confirming the involvement of cardiac β1AR and A1R. CONCLUSION Pharmacological modulation of cardiac β1AR and A1R could be a potential therapeutic strategy to reduce severe arrhythmias and increase life expectancy in PD patients.
Collapse
Affiliation(s)
- Francisco Sandro Menezes-Rodrigues
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; PostGraduate Program in Cardiology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marcelo Pires de Oliveira
- School of Medicine, Centro Universitário UNIFAS, União Metropolitana para a Educação e Cultura, Lauro de Freitas, BA, Brazil
| | - Erisvaldo Amarante Araújo
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Henrique Ballalai Ferraz
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Efrain Olszewer
- Fundação de Apoio à Pesquisa e Estudo na Área de Saúde (FAPES), São Paulo, SP, Brazil
| | - Murched Omar Taha
- Department of Surgery, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carla Alessandra Scorza
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Afonso Caricati-Neto
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Fúlvio Alexandre Scorza
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Li J, Yu D, He C, Yu Q, Huo Z, Zhang Y, Zhang S. KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy. Cell Death Dis 2023; 14:393. [PMID: 37391422 PMCID: PMC10313896 DOI: 10.1038/s41419-023-05872-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury, a common clinical complication of liver transplantation, gravely affects patient prognosis. Krüppel-like factors (KLFs) constitute a family of C2/H2 zinc finger DNA-binding proteins. KLF6, a member of the KLF protein family, plays crucial roles in proliferation, metabolism, inflammation, and injury responses; however, its role in HIR is largely remains unknown. After I/R injury, we found that KLF6 expression in mice and hepatocytes was significantly upregulated. Mice were then subjected to I/R following injection of shKLF6- and KLF6-overexpressing adenovirus through the tail vein. KLF6 deficiency markedly exacerbated liver damage, cell apoptosis, and activation of hepatic inflammatory responses, whereas hepatic overexpression of KLF6 in mice produced the opposite results. In addition, we knocked out or overexpressed KLF6 in AML12 cells before exposing them to a hypoxia-reoxygenation challenge. KLF6 knockout decreased cell viability and increased hepatocyte inflammation, apoptosis, and ROS, whereas KLF6 overexpression had the opposite effects. Mechanistically, KLF6 inhibited the overactivation of autophagy at the initial stage, and the regulatory effect of KLF6 on I/R injury was autophagy-dependent. CHIP-qPCR and luciferase reporter gene assays confirmed that KLF6 bound to the promoter region of Beclin1 and inhibited its transcription. Additionally, KLF6 activated the mTOR/ULK1 pathway. Finally, we performed a retrospective analysis of the clinical data of liver transplantation patients and identified significant associations between KLF6 expression and liver function following liver transplantation. In conclusion, KLF6 inhibited the overactivation of autophagy via transcriptional regulation of Beclin1 and activation of the mTOR/ULK1 pathway, thereby protecting the liver from I/R injury. KLF6 is expected to serve as a biomarker for estimating the severity of I/R injury following liver transplantation.
Collapse
Affiliation(s)
- Jiye Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongsheng Yu
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhui He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongkun Huo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Schiavi A, Salveridou E, Brinkmann V, Shaik A, Menzel R, Kalyanasundaram S, Nygård S, Nilsen H, Ventura N. Mitochondria hormesis delays aging and associated diseases in Caenorhabditis elegans impacting on key ferroptosis players. iScience 2023; 26:106448. [PMID: 37020951 PMCID: PMC10067770 DOI: 10.1016/j.isci.2023.106448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Excessive iron accumulation or deficiency leads to a variety of pathologies in humans and developmental arrest in the nematode Caenorhabditis elegans. Instead, sub-lethal iron depletion extends C. elegans lifespan. Hypoxia preconditioning protects against severe hypoxia-induced neuromuscular damage across species but it has low feasible application. In this study, we assessed the potential beneficial effects of genetic and chemical interventions acting via mild iron instead of oxygen depletion. We show that limiting iron availability in C. elegans through frataxin silencing or the iron chelator bipyridine, similar to hypoxia preconditioning, protects against hypoxia-, age-, and proteotoxicity-induced neuromuscular deficits. Mechanistically, our data suggest that the beneficial effects elicited by frataxin silencing are in part mediated by counteracting ferroptosis, a form of non-apoptotic cell death mediated by iron-induced lipid peroxidation. This is achieved by impacting on different key ferroptosis players and likely via gpx-independent redox systems. We thus point to ferroptosis inhibition as a novel potential strategy to promote healthy aging.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Eva Salveridou
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Vanessa Brinkmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | | | - Sumana Kalyanasundaram
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Filho CEB, Barbosa AHP, Nicolau LAD, Medeiros JVR, Pires-Oliveira M, dos Santos Póvoa RM, Govato TCP, Júnior HJF, de Carvalho RG, Luna-Filho B, Sabia Tallo F, de Araújo EA, Padrão Tavares JG, Arida RM, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10030103. [PMID: 36975867 PMCID: PMC10058697 DOI: 10.3390/jcdd10030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. Methods: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). Results: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. Conclusion: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.
Collapse
Affiliation(s)
- Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura–School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil
| | - Rui Manuel dos Santos Póvoa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Hézio Jadir Fernandes Júnior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Rafael Guzella de Carvalho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | |
Collapse
|
8
|
Xia Z, Chen B, Zhou C, Wang Y, Ren J, Yao X, Yang Y, Wan Q, Lian Z. Protective effect of ischaemic postconditioning combined with nicorandil on myocardial ischaemia‒reperfusion injury in diabetic rats. BMC Cardiovasc Disord 2022; 22:518. [PMID: 36460963 PMCID: PMC9719207 DOI: 10.1186/s12872-022-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The diabetic heart exhibits a high sensitivity to ischaemia/reperfusion (I/R) injury. Diabetes mellitus (DM) can affect the efficacy of cardioprotective interventions and reduce the therapeutic potential of existing treatment options. This study aimed to investigate the feasibility of shifting from monotherapy to combination therapy in diabetic myocardial I/R injury. METHODS 6-8 week rats were randomized into 10 groups: sham, I/R, ischaemia postconditioning (I-Post), nicorandil (Nic), combination therapy (I-Post + Nic), DM sham, DM I/R, DM I-Post, DM Nic and DM I-Post + Nic. The extent of myocardial injury was clarified by measuring CK-MB and NO levels in plasma, ROS content in myocardial tissues, and TTC/Evans Blue staining to assess the area of myocardial infarction. Pathological staining of cardiac tissue sections were performed to clarify the structural changes in myocardial histopathology. Finally, Western blotting was performed to detect the phosphorylation levels of some key proteins in the PI3K/Akt signalling pathway in myocardial tissues. RESULTS We confirms that myocardial injury in diabetic I/R rats remained at a high level after treatment with I-Post or nicorandil alone. I-Post combined with nicorandil showed better therapeutic effects in diabetic I/R rats, and the combined treatment further reduced the area of myocardial injury in diabetic I/R rats compared with I-Post or nicorandil treatment alone (P < 0.001), as well as the levels of the myocardial injury markers CK-MB and ROS (P < 0.001); it also significantly increased plasma NO levels. Pathological staining also showed that diabetic rats benefited significantly from the combination therapy. Further mechanistic studies confirmed this finding. The protein phosphorylation levels of PI3K/Akt signalling pathway in the heart tissue of diabetic I/R rats were significantly higher after the combination treatment than after one treatment alone (all P < 0.05). CONCLUSION I-Post combined with nicorandil treatment maintains effective cardioprotection against diabetic myocardial I/R injury by activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Zongyi Xia
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Bing Chen
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Chi Zhou
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Yitian Wang
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Jinyang Ren
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Xujin Yao
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Yifan Yang
- grid.410645.20000 0001 0455 0905Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Qi Wan
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Zhexun Lian
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| |
Collapse
|
9
|
Effects of Thymoquinone Alone or in Combination with Losartan on the Cardiotoxicity Caused by Oxidative Stress and Inflammation in Hypercholesterolemia. J Cardiovasc Dev Dis 2022; 9:jcdd9120428. [PMID: 36547425 PMCID: PMC9782872 DOI: 10.3390/jcdd9120428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.
Collapse
|
10
|
Schiavi A, Runci A, Maiorino T, Naso FD, Barenys M, Fritsche E, Strappazzon F, Ventura N. Cobalt chloride has beneficial effects across species through a hormetic mechanism. Front Cell Dev Biol 2022; 10:986835. [PMID: 36393859 PMCID: PMC9642780 DOI: 10.3389/fcell.2022.986835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 01/04/2025] Open
Abstract
Severe oxygen and iron deficiencies have evolutionarily conserved detrimental effects, leading to pathologies in mammals and developmental arrest as well as neuromuscular degeneration in the nematode Caenorhabditis elegans. Yet, similar to the beneficial effects of mild hypoxia, non-toxic levels of iron depletion, achieved with the iron chelator bipyridine or through frataxin silencing, extend C. elegans lifespan through hypoxia-like induction of mitophagy. While the positive health outcomes of hypoxia preconditioning are evident, its practical application is rather challenging. Here, we thus test the potential beneficial effects of non-toxic, preconditioning interventions acting on iron instead of oxygen availability. We find that limiting iron availability through the iron competing agent cobalt chloride has evolutionarily conserved dose-dependent beneficial effects: while high doses of cobalt chloride have toxic effects in mammalian cells, iPS-derived neurospheres, and in C. elegans, sub-lethal doses protect against hypoxia- or cobalt chloride-induced death in mammalian cells and extend lifespan and delay age-associated neuromuscular alterations in C. elegans. The beneficial effects of cobalt chloride are accompanied by the activation of protective mitochondrial stress response pathways.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Alessandra Runci
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | | | | | - Marta Barenys
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ellen Fritsche
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Flavie Strappazzon
- IRCCS Santa Lucia Foundation, Rome, Italy
- Institut NeuroMyogène, CNRS UMR5261—INSERM U1315, Université Claude Bernard Lyon1, Lyon, France
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| |
Collapse
|
11
|
Gadjieva LA, Bolevich SB, Jakovlevich V, Omarov IA, Ordashev HA, Kartashova MK. Creatine phosphate preconditioning reduces ischemiareperfusion injury in isolated rat heart. SECHENOV MEDICAL JOURNAL 2022. [DOI: 10.47093/2218-7332.2022.13.1.24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aim. To study the effect of simultaneous administration of creatine phosphate immediately before ischemia on cardiodynamic parameters and biomarkers of oxidative stress in the coronary venous blood flow during retrograde perfusion in an isolated rat heart.Materials and methods. 20 Wistar albino rats were divided into 2 groups: group 1 (control) and group 2 (experimental), 10 rats per group. Cannulation and retrograde perfusion of aorta of an isolated rat heart with Krebs–Henseleit buffered solution by Landendorff was performed. Both groups underwent ischemia-reperfusion injury, which included global ischemia for 20 minutes followed by reperfusion for 30 minutes. The group 2 (experimental) was preconditioned with creatine phosphate at a dose of 0.2 mmol/l for 5 min before ischemia. We registered cardiodynamic parameters and indicators of oxidative stress at the point of stabilization, at the 1st and 30th minutes of reperfusion.Results. With the impact of creatine phosphate at the 30th minute of reperfusion in the group 2 in comparison with group 1, there was found an increase in the maximum and minimum speed of pressure elevation in the left ventricle (1.7 and 1.9 times, respectively), and of systolic and diastolic pressure in the left ventricle (1.5 and 1.6 times, respectively). Biomarkers of oxidative stress (lipid peroxidation index, nitrites, superoxide anion radical and hydrogen peroxide) were also statistically significantly lower in the group 2 after the 1st minute of reperfusion (by 1.2 times, by 1.4 times, by 2.8 times and 1.9 times, respectively), and after the 30th minute (1.3 times, 2.1 times, 1.9 times and 2.1 times, respectively).Conclusion. The administration of creatine phosphate into the coronary flow 5 minutes before the onset of ischemia has a protective effect on myocardial contractility. Reduction of oxidative stress and damage can be considered as a protective effect of creatine phosphate.
Collapse
Affiliation(s)
- L. A. Gadjieva
- Medical and Sanitary Unit of the Ministry of Internal Affairs of Russia in the Republic of Dagestan
| | - S. B. Bolevich
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V. Jakovlevich
- Sechenov First Moscow State Medical University (Sechenov University); University of Kragujevac
| | - I. A. Omarov
- Health-Related Center of Ministry of External Affairs of Russian Federation
| | | | - M. K. Kartashova
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
12
|
Protective Effects of Sauropus Androgynus Leaf Extract against Isoproterenol Induced Cardiotoxicity. Cardiovasc Toxicol 2022; 22:579-591. [DOI: 10.1007/s12012-022-09739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
|
13
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
14
|
Uddin ME, Moseley A, Hu S, Sparreboom A. Contribution of membrane transporters to chemotherapy-induced cardiotoxicity. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:36-47. [PMID: 34237188 DOI: 10.1111/bcpt.13635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/30/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
Membrane transporters play a key role in determining the pharmacokinetic profile, therapeutic safety, and efficacy of many chemotherapeutic drugs by regulating cellular influx and efflux. Rapidly emerging evidence has shown that tissue-specific expression of transporters contributes to local drug accumulation and drug-drug interactions and that functional alterations in these transporters can directly influence an individual's susceptibility to drug-induced toxicity. Comprehending the complex mechanism of transporter function in regulating drug distribution in tissues, such as the heart, is necessary in order to acquire novel therapeutic strategies aimed at evading unwanted drug accumulation and toxicities and to ameliorate the safety of current therapeutic regimens. Here, we provide an overview of membrane transporters with a role in chemotherapy-induced cardiotoxicity and discuss novel strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Angie Moseley
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Torregroza C, Glashoerster CO, Feige K, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R. Mediation of the Cardioprotective Effects of Mannitol Discovered, with Refutation of Common Protein Kinases. Int J Mol Sci 2021; 22:ijms222212471. [PMID: 34830353 PMCID: PMC8625521 DOI: 10.3390/ijms222212471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023] Open
Abstract
The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG—as possible targets of known protective signaling cascades—are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.
Collapse
Affiliation(s)
- Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Chiara O. Glashoerster
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
- Correspondence:
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
- Department of Anesthesiology, Kerckhoff-Clinic GmbH, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| |
Collapse
|
16
|
Paulino ET, Rodrigues AKBF, Machado MLDP, de Oliveira KRV, Bernardino AC, Quintans-Júnior LJ, Oliveira AP, Ribeiro ÊAN. Alpha-terpineol prevents myocardial damage against isoproterenol-MI induced in Wistar-Kyoto rats: New possible to promote cardiovascular integrity. Life Sci 2021; 290:120087. [PMID: 34740575 DOI: 10.1016/j.lfs.2021.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Alpha-terpineol (TPN) is one of the major components of the resin obtained from Protium heptaphyllum. This plant has been utilized as medicine by Brazilian indigenous tribes to treat cardiovascular diseases. Scientific reports have shown that the TPN possesses vasorelaxant and antihypertensive effects. This study was conducted to assess the cardioprotective action of TPN against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups. Rats were orally administered with TPN (25, 50, and 75 mg/kg, respectively) for 15 days, and ISO was administered (85 mg/kg, subcutaneously) on the 14th and 15th days. At the end of the experiment, the hemodynamic, baroreflex test, ECG, biochemical, histological, and morphometric changes were monitored from control and experimental groups, i.e., on the 15th day. ISO-induced myocardial infarcted rats showed an increase in mortality rates, cardiac marker enzymes, tachycardia, hypertrophy, myocardium necrosis, edema, hemorrhagic areas, infiltration of inflammatory cells like lymphocytes, and increased myocardial infarct size. However, pretreatment with TPN significantly inhibited these effects of ISO. The histopathological findings obtained for the myocardium further confirmed the biochemical results. Thus, the present study provides evidence for the efficacy of TPN against ISO-induced myocardial infarction in rats.
Collapse
Affiliation(s)
- Emanuel Tenório Paulino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil.
| | | | - Maria Luiza Dal Pont Machado
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Alessando César Bernardino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Aldeídia Pereira Oliveira
- Medicinal Plants Research Center, Institute of Biology and Health Science, Federal University of Piauí, Brazil
| | | |
Collapse
|
17
|
Histochrome Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death. Antioxidants (Basel) 2021; 10:antiox10101624. [PMID: 34679760 PMCID: PMC8533175 DOI: 10.3390/antiox10101624] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species (ROS) and intracellular iron levels are critical modulators of lipid peroxidation that trigger iron-dependent non-apoptotic ferroptosis in myocardial ischemia-reperfusion (I/R) injury. Histochrome (HC), with a potent antioxidant moiety and iron-chelating capacity, is now available in clinical practice. However, limited data are available about the protective effects of HC on ferroptotic cell death in myocardial I/R injury. In this study, we investigated whether the intravenous administration of HC (1 mg/kg) prior to reperfusion could decrease myocardial damage by reducing ferroptosis. Rats undergoing 60 min of ischemia and reperfusion were randomly divided into three groups as follows: (1) Sham, (2) I/R control, and (3) I/R + HC. Serial echocardiography up to four weeks after I/R injury showed that intravenous injection of HC significantly improved cardiac function compared to the I/R controls. In addition, the hearts of rats who received intravenous injection of HC exhibited significantly lower cardiac fibrosis and higher capillary density. HC treatment decreased intracellular and mitochondrial ROS levels by upregulating the expression of nuclear factor erythroid 2-related factor (Nrf2) and its downstream genes. HC also inhibited erastin- and RSL3-induced ferroptosis in rat neonatal cardiomyocytes by maintaining the intracellular glutathione level and through upregulated activity of glutathione peroxidase 4. These findings suggest that early intervention with HC before reperfusion rescued myocardium from I/R injury by preventing ferroptotic cell death. Therefore, HC is a promising therapeutic option to provide secondary cardioprotection in patients who undergo coronary reperfusion therapy.
Collapse
|
18
|
Gurevich KG, Urakov AL, Fisher EL, Abzalilov TA, Khairzamanova KA, Yagudin TA, Samorodov AV. Possibilities of pharmacological correction of reperfusion injury of ischemic myocardium (review). REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2021; 19:259-267. [DOI: 10.17816/rcf193259-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Timely and effective reperfusion in ischemia and reoxygenation in hypoxia of the heart muscle prevent myocardial infarction. Delayed reperfusion and reoxygenation in myocardial ischemia and hypoxia can cause reversible damage in it, which, with a favorable outcome, disappear without a trace. Excessively late reperfusion and reoxygenation inevitably ends with irreversible damage to the myocardium, which is widely known as a myocardial infarction, and which, together with other complications of cardiac ischemia, can cause disability and death of the patient. In recent years, reperfusion injury of the ischemic heart muscle has been recognized as an independent link in the pathogenesis of myocardial infarction. The mechanisms of this link of pathogenesis have been partially studied in experimental conditions. The phenomena of preconditioning and post-conditioning have been discovered, the effects of which are currently determined fairly reliably. After determining the mechanisms of reperfusion injury of the ischemic myocardium, the search and development of pharmacological agents capable of inducing such a phenomenon as cardioprotection began. In parallel, studies of specific microRNAs that claim to be diagnostic markers are being conducted, as well as the search for drugs that affect the level of their expression is being conducted. The information about the achieved successes in this direction is given.
Collapse
|
19
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
20
|
Combination of the Phosphodiesterase Inhibitors Sildenafil and Milrinone Induces Cardioprotection With Various Conditioning Strategies. J Cardiovasc Pharmacol 2021; 76:684-691. [PMID: 33002964 DOI: 10.1097/fjc.0000000000000919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemic preconditioning and postconditioning are strong measures preserving the heart against ischemia-reperfusion injury in experimental setting but are too invasive and impractical for clinical routine. The cardioprotective effects of ischemic preconditioning and postconditioning can be imitated pharmacologically, for example, with the phosphodiesterase inhibitors sildenafil and milrinone. We hypothesize that sildenafil-induced preconditioning is concentration dependent and further that a combined treatment of "nonprotective" versus "protective" concentrations of sildenafil and milrinone leads to a significant infarct size reduction. Experiments were performed on isolated hearts of male Wistar rats, randomized into 12 groups, mounted onto a Langendorff system, and perfused with Krebs-Henseleit buffer. All hearts underwent 33 minutes ischemia and 60 minutes of reperfusion. For determination of a concentration-dependent effect of sildenafil, hearts were perfused with increasing concentrations of sildenafil (0.1-1 µM) over 10 minutes before ischemia. In a second series of experiments, hearts were treated with 0.3 µM sildenafil or 1 µM milrinone as the "protective" concentrations. A higher concentration of respective drugs did not further reduce infarct size. In addition, a combination of "protective" and "nonprotective" concentrations of sildenafil and milrinone was applied. Sildenafil and milrinone in lower concentrations led to significant infarct size reduction, whereas combining both substances in cardioprotective concentrations did not enhance this effect. Sildenafil in a concentration of 0.3 µM induces myocardial protection. Furthermore, treatment with sildenafil and milrinone in lower concentrations had an equally strong cardioprotective effect regarding infarct size reduction compared with the administration of "protective" concentrations.
Collapse
|
21
|
Farag MM, Khalifa AA, Elhadidy WF, Rashad RM. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1787-1801. [PMID: 34216225 DOI: 10.1007/s00210-021-02087-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
As rats develop myocardial infarction (MI) like lesions when injected with large doses of isoproterenol (ISO), this investigation was designed to evaluate the dose-dependent effects of thymoquinone (TQ) on ISO-induced myocardial injury in rats. Adult male rats were divided into negative control, TQ20 (20 mg/kg/day), TQ50 (50 mg/kg/day), ISO positive control, TQ20 + ISO, and TQ50 + ISO groups. In these rats, biochemical, immunobiochemical, and histopathological studies were carried out to evaluate myocardial oxidative stress, inflammation, apoptosis, fibrosis, and autophagy, and the changes in serum cardiac biomarkers. The results showed that TQ pretreatment in ISO-administered rats produced a dose-dependent significant reduction of the myocardial infarct size, markedly reduced the ISO-induced elevation in serum cardiac markers and demonstrated several other important findings related to the cardioprotective efficacy of TQ. First, this study is the first reported research work showing that TQ treatment could increase the myocardial reduced glutathione baseline level, adding an indirect antioxidant effect to its known direct free radical scavenging effect. Second, pretreatment with TQ significantly reduced the markers of myocardial oxidative stress, inflammation, fibrosis, and apoptosis. Third, TQ acted as an autophagy enhancer ameliorating myocardial cell damage and dysfunction. Thus, the morphological and biochemical changes associated with ISO-induced myocardial injury were ameliorated with TQ pretreatment. The extent of this improvement was significantly greater in the TQ50 + ISO group than in the TQ20 + ISO group. The present study, for the first time, demonstrates these dose-dependent effects of TQ in experimentally induced myocardial injury. These findings raise the possibility that TQ may serve as a promising prophylactic cardioprotective therapy for patients who are at risk of developing myocardial injury and against the progression of existent myocardial injury as in cases of MI.
Collapse
Affiliation(s)
- Mahmoud M Farag
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt.
| | - Asmaa A Khalifa
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Wessam F Elhadidy
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Radwa M Rashad
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Boovarahan SR, Venkatasubramanian H, Sharma N, Venkatesh S, Prem P, Kurian GA. Inhibition of PI3K/mTOR/K ATP channel blunts sodium thiosulphate preconditioning mediated cardioprotection against ischemia-reperfusion injury. Arch Pharm Res 2021; 44:605-620. [PMID: 34170496 DOI: 10.1007/s12272-021-01339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Recent studies have shown that pre and postconditioning the heart with sodium thiosulfate (STS) attenuate ischemia-reperfusion (IR) injury. However, the underlying mechanism involved in the cardioprotective signaling pathway is not fully explored. This study examined the existing link of STS mediated protection (as pre and post-conditioning agents) with PI3K, mTOR, and mPTP signaling pathways using its respective inhibitors. STS was administered to the isolated perfused rat heart through Kreb's Heinselit buffer before ischemia (precondition: SIPC) and reperfusion (postcondition: SPOC) in the presence and absence of the PI3K, mTOR, and mPTP signaling pathway inhibitors (wortmannin, rapamycin, and glibenclamide respectively). SIPC failed to improve the IR injury-induced altered cardiac hemodynamics, increased infarct size, and the release of cardiac injury markers in the presence of these inhibitors. On the other hand, the SPOC protocol effectively rendered the cardioprotection even in the PI3K/mTOR/KATP inhibitors presence. Interestingly, the SIPC's identified mode of action viz reduction in oxidative stress and the preservation of mitochondrial function were lost in the inhibitors' presence. Based on the above results, we conclude that the underlying mechanism of SIPC mediated cardioprotection works via the PI3K/mTOR/KATP signaling pathway axis activation.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Harini Venkatasubramanian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Nidhi Sharma
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Sushma Venkatesh
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Priyanka Prem
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Gino A Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
23
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
24
|
Menezes-Rodrigues FS, Errante PR, Araújo EA, Fernandes MPP, Silva MMD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir Bras 2021; 36:e360306. [PMID: 33978062 PMCID: PMC8112107 DOI: 10.1590/acb360306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the preventive cardioprotective effects of resveratrol and grape products, such as grape juice and red wine, in animal model of cardiac ischemia and reperfusion. METHODS Male Wistar rats orally pretreated for 21-days with resveratrol and grape products were anesthetized and placed on mechanical ventilation to surgically induce cardiac ischemia and reperfusion by obstruction (ischemia) followed by liberation (reperfusion) of blood circulation in left descending coronary artery. These rats were submitted to the electrocardiogram (ECG) analysis to evaluate the effects of pretreatment with resveratrol and grape products on the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB) and lethality (LET) resulting from cardiac ischemia and reperfusion. RESULTS It was observed that the incidence of AVB was significantly lower in rats pretreated with resveratrol (25%), grape juice (37.5%) or red wine (12.5%) than in rats treated with saline solution (80%) or ethanol (80%). Similarly, incidence of LET was also significantly lower in rats pretreated with resveratrol (25%), grape juice (25%) or red wine (0%) than in rats treated with saline solution (62.5%) or ethanol (75%). CONCLUSIONS These results indicate that the cardioprotective response stimulated by resveratrol and grape products prevents the lethal cardiac arrhythmias in animal model of ischemia and reperfusion, supporting the idea that this treatment can be beneficial for prevention of severe cardiac arrhythmias in patients with ischemic heart disease.
Collapse
|
25
|
Feige K, Rubbert J, Raupach A, Stroethoff M, Heinen A, Hollmann MW, Huhn R, Torregroza C. Cardioprotective Properties of Mannitol-Involvement of Mitochondrial Potassium Channels. Int J Mol Sci 2021; 22:2395. [PMID: 33673646 PMCID: PMC7957595 DOI: 10.3390/ijms22052395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac preconditioning (PC) and postconditioning (PoC) are powerful measures against the consequences of myocardial ischemia and reperfusion (I/R) injury. Mannitol-a hyperosmolar solution-is clinically used for treatment of intracranial and intraocular pressure or promotion of diuresis in renal failure. Next to these clinical indications, different organ-protective properties-e.g., perioperative neuroprotection-are described. However, whether Mannitol also confers cardioprotection via a pre- and/or postconditioning stimulus, possibly reducing consequences of I/R injury, remains to be seen. Therefore, in the present study we investigated whether (1) Mannitol-induced pre- and/or postconditioning induces myocardial infarct size reduction and (2) activation of mitochondrial ATP-sensitive potassium (mKATP) channels is involved in cardioprotection by Mannitol. Experiments were performed on isolated hearts of male Wistar rats via a pressure controlled Langendorff system, randomized into 7 groups. Each heart underwent 33 min of global ischemia and 60 min of reperfusion. Control hearts (Con) received Krebs-Henseleit buffer as vehicle only. Pre- and postconditioning was achieved by administration of 11 mmol/L Mannitol for 10 min before ischemia (Man-PC) or immediately at the onset of reperfusion (Man-PoC), respectively. In further groups, the mKATP channel blocker 5HD, was applied with and without Mannitol, to determine the potential underlying cardioprotective mechanisms. Primary endpoint was infarct size, determined by triphenyltetrazolium chloride staining. Mannitol significantly reduced infarct size both as a pre- (Man-PC) and postconditioning (Man-PoC) stimulus compared to control hearts (Man-PC: 31 ± 4%; Man-PoC: 35 ± 6%, each p < 0.05 vs. Con: 57 ± 9%). The mKATP channel inhibitor completely abrogated the cardioprotective effect of Mannitol-induced pre- (5HD-PC-Man-PC: 59 ± 8%, p < 0.05 vs. Man-PC) and postconditioning (5HD-PoC-Man-PoC: 59 ± 10% vs. p < 0.05 Man-PoC). Infarct size was not influenced by 5HD itself (5HD-PC: 60 ± 14%; 5HD-PoC: 54 ± 14%, each ns vs. Con). This study demonstrates that Mannitol (1) induces myocardial pre- and postconditioning and (2) confers cardioprotection via activation of mKATP channels.
Collapse
Affiliation(s)
- Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| | - Janine Rubbert
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| | - Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (K.F.); (J.R.); (A.R.); (M.S.); (C.T.)
| |
Collapse
|
26
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
27
|
Herrera-Zelada N, Zuñiga-Cuevas U, Ramirez-Reyes A, Lavandero S, Riquelme JA. Targeting the Endothelium to Achieve Cardioprotection. Front Pharmacol 2021; 12:636134. [PMID: 33603675 PMCID: PMC7884828 DOI: 10.3389/fphar.2021.636134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Despite considerable improvements in the treatment of myocardial infarction, it is still a highly prevalent disease worldwide. Novel therapeutic strategies to limit infarct size are required to protect myocardial function and thus, avoid heart failure progression. Cardioprotection is a research topic with significant achievements in the context of basic science. However, translation of the beneficial effects of protective approaches from bench to bedside has proven difficult. Therefore, there is still an unmet need to study new avenues leading to protecting the myocardium against infarction. In line with this, the endothelium is an essential component of the cardiovascular system with multiple therapeutic targets with cardioprotective potential. Endothelial cells are the most abundant non-myocyte cell type in the heart and are key players in cardiovascular physiology and pathophysiology. These cells can regulate vascular tone, angiogenesis, hemostasis, and inflammation. Accordingly, endothelial dysfunction plays a fundamental role in cardiovascular diseases, which may ultimately lead to myocardial infarction. The endothelium is of paramount importance to protect the myocardium from ischemia/reperfusion injury via conditioning strategies or cardioprotective drugs. This review will provide updated information on the most promising therapeutic agents and protective approaches targeting endothelial cells in the context of myocardial infarction.
Collapse
Affiliation(s)
- Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Ramirez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Raupach A, Karakurt E, Torregroza C, Bunte S, Feige K, Stroethoff M, Brandenburger T, Heinen A, Hollmann MW, Huhn R. Dexmedetomidine Provides Cardioprotection During Early or Late Reperfusion Mediated by Different Mitochondrial K+-Channels. Anesth Analg 2021; 132:253-260. [PMID: 32889843 DOI: 10.1213/ane.0000000000005148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cardioprotective interventions-such as pharmacological postconditioning-are a promising strategy to reduce deleterious consequences of ischemia and reperfusion injury (I/RI) in the heart, especially as timing and onset of myocardial infarction are unpredictable. Pharmacological postconditioning by treatment with dexmedetomidine (Dex), an α2-adrenoreceptor agonist, during reperfusion protects hearts from I/RI, independently of time point and duration of application during the reperfusion phase. The mitochondrial ATP-sensitive K (mKATP) and mitochondrial large-conductance calcium-sensitive potassium channel (mBKCa) play a pivotal role in mediating this cardioprotective effect. Therefore, we investigated whether Dex-induced cardioprotection during early or late reperfusion is mediated variously by these mitochondrial K-channels. METHODS Hearts of male Wistar rats were randomized into 8 groups and underwent a protocol of 15 minutes adaption, 33 minutes ischemia, and 60 minutes reperfusion in an in vitro Langendorff-system. A 10-minute treatment phase was started directly (first subgroup, early reperfusion) or 30 minutes (second subgroup, late reperfusion) after the onset of reperfusion. Control (Con) hearts received vehicle only. In the first subgroup, hearts were treated with 3 nM Dex, 100 µM mKATP-channel blocker 5-hydroxydecanoate (5HD) or 1 µM mBKCa-channel blocker Paxilline (Pax) alone or with respective combinations (5HD + Dex, Pax + Dex). Hearts of the second subgroup received Dex alone (Dex30') or in combination with the respective blockers (5HD + Dex30', Pax + Dex30'). Infarct size was determined with triphenyltetrazoliumchloride staining. Hemodynamic variables were recorded during the whole experiment. RESULTS During early reperfusion (first subgroup), the infarct size reducing effect of Dex (Con: 57% ± 9%, Dex: 31% ± 7%; P< .0001 versus Con) was completely abolished by 5HD and Pax (52% ± 6%; Pax + Dex: 53% ± 4%; each P< .0001 versus Dex), while both blockers alone had no effect on infarct size (5HD: 54% ± 8%, Pax: 53% ± 11%). During late reperfusion (second subgroup) the protective effect of Dex (Dex30': 33% ± 10%, P< .0001 versus Con) was fully abrogated by Pax (Pax + Dex30': 58% ± 7%, P < .0001 versus Dex30'), whereas 5HD did not block cardioprotection (5HD + Dex30': 36% ± 7%). Between groups and within each group throughout reperfusion no significant differences in hemodynamic variables were detected. CONCLUSIONS Cardioprotection by treatment with Dex during early reperfusion seems to be mediated by both mitochondrial K-channels, whereas during late reperfusion only mBKCa-channels are involved.
Collapse
Affiliation(s)
- Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Elif Karakurt
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Carolin Torregroza
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sebastian Bunte
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Internal Medicine, Elbe Clinics Stade-Buxtehude, Stade, Germany
| | - Katharina Feige
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Stroethoff
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Timo Brandenburger
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
29
|
[Perioperative cardioprotection - From bench to bedside : Current experimental evidence and possible reasons for the limited translation into the clinical setting]. Anaesthesist 2021; 70:401-412. [PMID: 33464375 PMCID: PMC8099823 DOI: 10.1007/s00101-020-00912-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Hintergrund Ziel der perioperativen Kardioprotektion ist es, die Auswirkungen eines Ischämie- und Reperfusionsschadens zu minimieren. Aus anästhesiologischer Sicht spielt dieser Aspekt insbesondere in der Herzchirurgie bei Patienten mit Einsatz der Herz-Lungen-Maschine, aber auch allgemein bei längerfristigen hypotensiven Phasen oder perioperativen ischämischen Ereignissen im nichtkardiochirurgischen Setting eine wichtige Rolle. Im Laufe der letzten Jahre konnten diverse pharmakologische sowie nichtpharmakologische Strategien der Kardioprotektion identifiziert werden. Die Ergebnisse von Studien an isoliertem Gewebe sowie von tierexperimentellen In-vivo-Studien sind vielversprechend. Eine Translation dieser kardioprotektiven Strategien in die klinische Praxis ist bislang jedoch nicht gelungen. Große klinische Studien konnten keine signifikante Verbesserung des Outcome der Patienten zeigen. Ziel der Arbeit Dieser Übersichtsartikel gibt einen Überblick über die aktuelle experimentelle Evidenz pharmakologischer und nichtpharmakologischer Kardioprotektion. Außerdem sollen mögliche Gründe für die limitierte Translation diskutiert werden. Schließlich werden Möglichkeiten aufgezeigt, wie der Schritt „from bench to bedside“ in Zukunft doch noch gelingen könnte. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse und Diskussion Trotz der vielversprechenden präklinischen experimentellen Ansätze zum Thema Kardioprotektion besteht nach wie vor eine große Diskrepanz zu den Ergebnissen aus großen klinischen Studien in der perioperativen Phase. Mögliche Gründe für die limitierte Translation könnten insbesondere Komorbiditäten und Komedikationen, die Wahl des Anästhesieverfahrens, aber auch die Wahl des Studiendesigns sein. Eine sorgfältige Studienplanung mit Berücksichtigung der genannten Probleme sowie ein simultaner Einsatz mehrerer kardioprotektiver Strategien mit dem Ziel eines additiven bzw. synergistischen Effekts stellen mögliche Ansätze für die Zukunft dar.
Collapse
|
30
|
Mitochondrial proteomics alterations in rat hearts following ischemia/reperfusion and diazoxide post‑conditioning. Mol Med Rep 2020; 23:161. [PMID: 33355377 PMCID: PMC7789131 DOI: 10.3892/mmr.2020.11800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Diazoxide post-conditioning (D-Post) has been shown to be effective in alleviating myocardial ischemia/reperfusion (I/R) injury; however, the specific mechanisms are not fully understood. In the present study, isolated rat hearts were subjected to I/R injury and D-Post. The mitochondria were extracted, and mitochondrial protein expression was detected in normal, I/R and D-Post hearts using two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Differentially expressed proteins were then identified using comparative proteomics. In total, five differentially expressed proteins were identified between the I/R and D-Post hearts. Compared with the I/R hearts, the expression of NADH dehydrogenase (ubiquinone) flavoprotein 1 (NDUFV1), NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1), 2-oxoglutarate dehydrogenase (OGDH) and ATP synthase α subunit (isoform CRA_b, gi|149029482) was increased in D-Post hearts. In addition, the expression of another isoform of ATP synthase α subunit (isoform CRA_c, gi|149029480) was decreased in the D-Post group compared with the I/R group. The expression profiles of NDUFV1, NDUFS1 and OGDH in the two groups were further validated via western blotting. The five differentially expressed proteins may be protective effectors in D-Post, as well as potential targets for the treatment of cardiac I/R injury.
Collapse
|
31
|
Abstract
Perioperative cardioprotection aims to minimize the consequences of myocardial ischemia-reperfusion injury. In isolated tissue and animal experiments, several treatments have been identified providing cardioprotection. Some of these strategies have been confirmed in clinical proof-of-concept studies. However, the final translation of cardioprotective strategies to really improve clinical outcome has been disappointing: large randomized controlled clinical trials mostly revealed inconclusive, neutral, or negative results. This review provides an overview of the currently available evidence regarding clinical implications of perioperative cardioprotective therapies from an anesthesiological perspective, highlighting nonpharmacological as well as pharmacological strategies. We discuss reasons why translation of promising experimental results into clinical practice and outcome improvement is hampered by potential confounders and suggest future perspectives to overcome these limitations.
Collapse
|
32
|
Severino P, D’Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, Netti L, Montefusco G, Chimenti C, Lavalle C, Maestrini V, Mancone M, Chilian WM, Fedele F. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int J Mol Sci 2020; 21:E8118. [PMID: 33143256 PMCID: PMC7663258 DOI: 10.3390/ijms21218118] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic heart disease still represents a large burden on individuals and health care resources worldwide. By conventions, it is equated with atherosclerotic plaque due to flow-limiting obstruction in large-medium sized coronary arteries. However, clinical, angiographic and autoptic findings suggest a multifaceted pathophysiology for ischemic heart disease and just some cases are caused by severe or complicated atherosclerotic plaques. Currently there is no well-defined assessment of ischemic heart disease pathophysiology that satisfies all the observations and sometimes the underlying mechanism to everyday ischemic heart disease ward cases is misleading. In order to better examine this complicated disease and to provide future perspectives, it is important to know and analyze the pathophysiological mechanisms that underline it, because ischemic heart disease is not always determined by atherosclerotic plaque complication. Therefore, in order to have a more complete comprehension of ischemic heart disease we propose an overview of the available pathophysiological paradigms, from plaque activation to microvascular dysfunction.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Mariateresa Pucci
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Fabio Infusino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Francesco Adamo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Lucrezia Netti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Giulio Montefusco
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| | - William M. Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (F.A.); (L.I.B.); (L.N.); (G.M.); (C.C.); (C.L.); (V.M.); (M.M.)
| |
Collapse
|
33
|
Pečan P, Hambalkó S, Ha VT, Nagy CT, Pelyhe C, Lainšček D, Kenyeres B, Brenner GB, Görbe A, Kittel Á, Barteková M, Ferdinandy P, Manček-Keber M, Giricz Z. Calcium Ionophore-Induced Extracellular Vesicles Mediate Cytoprotection against Simulated Ischemia/Reperfusion Injury in Cardiomyocyte-Derived Cell Lines by Inducing Heme Oxygenase 1. Int J Mol Sci 2020; 21:ijms21207687. [PMID: 33081396 PMCID: PMC7589052 DOI: 10.3390/ijms21207687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
Cardioprotection against ischemia/reperfusion injury is still an unmet clinical need. The transient activation of Toll-like receptors (TLRs) has been implicated in cardioprotection, which may be achieved by treatment with blood-derived extracellular vesicles (EVs). However, since the isolation of EVs from blood takes considerable effort, the aim of our study was to establish a cellular model from which cardioprotective EVs can be isolated in a well-reproducible manner. EV release was induced in HEK293 cells with calcium ionophore A23187. EVs were characterized and cytoprotection was assessed in H9c2 and AC16 cell lines. Cardioprotection afforded by EVs and its mechanism were investigated after 16 h simulated ischemia and 2 h reperfusion. The induction of HEK293 cells by calcium ionophore resulted in the release of heterogenous populations of EVs. In H9c2 and AC16 cells, stressEVs induced the downstream signaling of TLR4 and heme oxygenase 1 (HO-1) expression in H9c2 cells. StressEVs decreased necrosis due to simulated ischemia/reperfusion injury in H9c2 and AC16 cells, which was independent of TLR4 induction, but not that of HO-1. Calcium ionophore-induced EVs exert cytoprotection by inducing HO-1 in a TLR4-independent manner.
Collapse
Affiliation(s)
- Peter Pečan
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (P.P.); (V.T.H.); (D.L.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
| | - Van Thai Ha
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (P.P.); (V.T.H.); (D.L.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Csilla T. Nagy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
| | - Duško Lainšček
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (P.P.); (V.T.H.); (D.L.)
- Centre of Excelence EN-FIST, SI-1000 Ljubljana, Slovenia
| | - Bence Kenyeres
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
| | - Gábor B. Brenner
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, ELRN, 1083 Budapest, Hungary;
| | - Monika Barteková
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia;
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Mateja Manček-Keber
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (P.P.); (V.T.H.); (D.L.)
- Centre of Excelence EN-FIST, SI-1000 Ljubljana, Slovenia
- Correspondence: (M.M.-K.); (Z.G.); Tel.: +386-1-476-0393 (M.M.-K.); +36-1-210-4416 (Z.G.)
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (S.H.); (C.T.N.); (C.P.); (B.K.); (G.B.B.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
- Correspondence: (M.M.-K.); (Z.G.); Tel.: +386-1-476-0393 (M.M.-K.); +36-1-210-4416 (Z.G.)
| |
Collapse
|
34
|
The Role of Cardiac N-Methyl-D-Aspartate Receptors in Heart Conditioning-Effects on Heart Function and Oxidative Stress. Biomolecules 2020; 10:biom10071065. [PMID: 32708792 PMCID: PMC7408261 DOI: 10.3390/biom10071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 μmol/L) and the NMDAR antagonists memantine (100 μmol/L) and MK-801 (30 μmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Collapse
|
35
|
Meng Z, Gai W, Song D. Postconditioning with Nitrates Protects Against Myocardial Reperfusion Injury: A New Use for an Old Pharmacological Agent. Med Sci Monit 2020; 26:e923129. [PMID: 32516304 PMCID: PMC7299064 DOI: 10.12659/msm.923129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early reperfusion remains the key therapy to salvage viable myocardium and must be applied as soon as possible following an acute myocardial infarction (AMI) to attenuate the ischemic insult. However, reperfusion injury may develop following reintroduction of blood and oxygen to vulnerable myocytes, which results in more severe cell death than in the preceding ischemic episode. Ischemic postconditioning (I-PostC) provides a cardioprotective effect in combination with pharmacological agents. Although nitrates have been tested in many experimental and clinical studies of acute AMI to evaluate the cardioprotective effect, few investigations have been focused on nitrates postconditioning in patients undergoing percutaneous coronary intervention (PCI). This review presents the manifestations of myocardial reperfusion injury (RI) and potential mechanisms underlying it, and provides the mechanisms involved in the cardioprotection of I-PostC. We also present a new therapeutic approach to attenuate RI by use of an ‘old’ agent – nitrates – in AMI patients.
Collapse
Affiliation(s)
- Zhu Meng
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Weili Gai
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Dalin Song
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| |
Collapse
|
36
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
37
|
Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32:1115-1134. [PMID: 31892282 DOI: 10.1089/ars.2019.8009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.
Collapse
Affiliation(s)
- Claudia Penna
- National Institute for Cardiovascular Research (INRC), Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
38
|
Influence of Hyperglycemia on Dexmedetomidine-Induced Cardioprotection in the Isolated Perfused Rat Heart. J Clin Med 2020; 9:jcm9051445. [PMID: 32413983 PMCID: PMC7290666 DOI: 10.3390/jcm9051445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological preconditioning (PC) and postconditioning (PoC), for example, by treatment with the α2-adrenoreceptor agonist Dexmedetomidine (Dex), protects hearts from ischemia-reperfusion (I/R) injury in experimental studies, however, translation into the clinical setting has been challenging. Acute hyperglycemia adversely affects the outcome of patients with myocardial infarction. Additionally, it also blocks cardioprotection by multiple pharmacological agents. Therefore, we investigated the possible influence of acute hyperglycemia on Dexmedetomidine-induced pre- and postconditioning. Experiments were performed on the hearts of male Wistar rats, which were randomized into 7 groups, placed in an isolated Langendorff system and perfused with Krebs-Henseleit buffer. All hearts underwent 33 min of global ischemia, followed by 60 min of reperfusion. Control (Con) hearts received Krebs-Henseleit buffer (Con KHB), glucose (Con HG) or mannitol (Con NG) as vehicle only. Hearts exposed to hyperglycemia (HG) received KHB, containing 11 mmol/L glucose (an elevated, but commonly used glucose concentration for Langendorff perfused hearts) resulting in a total concentration of 22 mmol/L glucose throughout the whole experiment. To ensure comparable osmolarity with HG conditions, normoglycemic (NG) hearts received mannitol in addition to KHB. Hearts were treated with 3 nM Dexmedetomidine (Dex) before (DexPC) or after ischemia (DexPoC), under hyperglycemic or normoglycemic conditions. Infarct size was determined by triphenyltetrazoliumchloride staining. Acute hyperglycemia had no impact on infarct size compared to the control group with KHB (Con HG: 56 ± 9% ns vs. Con KHB: 56 ± 7%). DexPC reduced infarct size despite elevated glucose levels (DexPC HG: 35 ± 3%, p < 0.05 vs. Con HG). However, treatment with Dex during reperfusion showed no infarct size reduction under hyperglycemic conditions (DexPoC HG: 57 ± 9%, ns vs. Con HG). In contrast, hearts treated with mannitol demonstrated a significant decrease in infarct size compared to the control group (Con NG: 37 ± 3%, p < 0.05 vs. Con KHB). The combination of Dex and mannitol presents exactly opposite results to hearts treated with hyperglycemia. While DexPC completely abrogates infarct reduction through mannitol treatment (DexPC NG: 55 ± 7%, p < 0.05 vs. Con NG), DexPoC had no impact on mannitol-induced infarct size reduction (DexPoC NG: 38 ± 4%, ns vs. Con NG). Acute hyperglycemia inhibits DexPoC, while it has no impact on DexPC. Treatment with mannitol induces cardioprotection. Application of Dex during reperfusion does not influence mannitol-induced infarct size reduction, however, administering Dex before ischemia interferes with mannitol-induced cardioprotection.
Collapse
|
39
|
Hu X, Liu B, Wu P, Lang Y, Li T. LncRNA Oprm1 overexpression attenuates myocardial ischemia/reperfusion injury by increasing endogenous hydrogen sulfide via Oprm1/miR-30b-5p/CSE axis. Life Sci 2020; 254:117699. [PMID: 32437793 DOI: 10.1016/j.lfs.2020.117699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) injury largely limits the efficacy of revascularization in acute myocardial infarction. Long noncoding RNA (lncRNA) Oprm1 is protective in cerebral I/R injury. This study aimed to investigate the effect of lncRNA Oprm1 on myocardial I/R injury and its mechanism. MAIN METHODS We ligated and then released the left anterior descending coronary artery of adult male rats to build the I/R model in vivo. At the same time, an H9c2 cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, histology, TUNEL staining, cell viability, and vital protein expression was conducted and compared. KEY FINDINGS LncRNA Oprm1 was significantly down-regulated in the I/R injury model. When administered with the AAV9-Oprm1 vector, the myocardial injury and cardiac function were mitigated and preserved, with apoptosis reduced. The cystathionine-γ-lyase (CSE) expression and hydrogen sulfide (H2S) expression were increased. The dual-luciferase reporter gene revealed the targeted relationship between lncRNA Oprm1 and miR-30b-5p. In H9c2 cardiomyocytes models, the miR-30b-5p blocked the protective effect of lncRNA Oprm1 on H/R injury, when Bcl-2, Bcl-xl was down-regulated, and HIF-1α, Bnip-3, Caspase-3, and Caspase-9 up-regulated. SIGNIFICANCE LncRNA Oprm1can competitively combines with miR-30b-5p, which down-regulates the expression of CSE. When administered with lncRNA Oprm1, increased endogenous H2S can reduce apoptosis and protect the myocardium from I/R injury via activating PI3K/Akt pathway and inhibiting HIF1-α activity.
Collapse
Affiliation(s)
- Xiaomin Hu
- The Heart Center of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Bojiang Liu
- The Heart Center of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Peng Wu
- The Heart Center of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yuheng Lang
- The Heart Center of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Tong Li
- The Heart Center of Tianjin Third Central Hospital, Tianjin 300170, China.
| |
Collapse
|
40
|
Activation of PKG and Akt Is Required for Cardioprotection by Ramelteon-Induced Preconditioning and Is Located Upstream of mKCa-Channels. Int J Mol Sci 2020; 21:ijms21072585. [PMID: 32276406 PMCID: PMC7177737 DOI: 10.3390/ijms21072585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ramelteon is a Melatonin 1 (MT1)—and Melatonin 2 (MT2)—receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs–Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.
Collapse
|
41
|
A Comprehensive Review on Schisandrin B and Its Biological Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2172740. [PMID: 32256947 PMCID: PMC7102409 DOI: 10.1155/2020/2172740] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver's stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.
Collapse
|
42
|
Zhu PC, Tong Q, Zhuang Z, Wang ZH, Deng LH, Zheng GQ, Wang Y. Ginkgolide B for Myocardial Ischemia/Reperfusion Injury: A Preclinical Systematic Review and Meta-Analysis. Front Physiol 2019; 10:1292. [PMID: 31681006 PMCID: PMC6807679 DOI: 10.3389/fphys.2019.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/25/2019] [Indexed: 12/09/2022] Open
Abstract
Ginkgolide B (GB) is an extract of dried Ginkgo biloba leaves and possesses various pharmacological activities in the cardiovascular system. Herein, we aim to assess the available preclinical evidence and possible mechanisms of GB for myocardial ischemia/reperfusion injury. The study quality score was assessed using the CAMARADES 10-item checklist. Rev-Man 5.3 software was used for data analyses. Nineteen studies with total 437 animals were included for analysis. Meta-analyses indicated that GB interventions significantly reduce myocardial infarct size and cardiac markers when compared with control (P < 0.05). The possible mechanisms via which GB exerts cardioprotective effects are mainly associated with anti-oxidation, anti-inflammation, anti-apoptosis, and improvement of energy metabolism. Our study indicates that GB might be a promising cardioprotective agent for myocardial ischemia/reperfusion injury and may contribute to future clinical trial design.
Collapse
Affiliation(s)
- Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|