1
|
Pelaez-Aguilar AE, Mata-Salgado F, Morales-Ortiz A, Millán-Pacheco C, Olvera-Carranza C, Salgado-Delgado J, Pastor N, Rivillas-Acevedo L. Cu(II) binding to the λ6aJL2-R24G antibody light chain protein associated with light chain amyloidosis disease: The role of histidines. Int J Biol Macromol 2024; 270:132393. [PMID: 38761898 DOI: 10.1016/j.ijbiomac.2024.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.
Collapse
Affiliation(s)
- Angel E Pelaez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernanda Mata-Salgado
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Alan Morales-Ortiz
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Jesus Salgado-Delgado
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
2
|
Meunier-Carmenate Y, Valdés-García G, Maya-Martinez R, French-Pacheco L, Fernández-Silva A, González-Onofre Y, Millan-Pacheco C, Pastor N, Amero C. Unfolding and Aggregation Pathways of Variable Domains from Immunoglobulin Light Chains. Biochemistry 2023; 62:1000-1011. [PMID: 36802343 DOI: 10.1021/acs.biochem.2c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Light chain amyloidosis is the most common form of systemic amyloidosis. This disease is caused by the formation and deposition of amyloid fibers made from immunoglobulin light chains. Environmental conditions such as pH and temperature can affect protein structure and induce the development of these fibers. Several studies have shed light on the native state, stability, dynamics, and final amyloid state of these proteins; however, the initiation process and the fibril formation pathway remain poorly understood structurally and kinetically. To study this, we analyzed the unfolding and aggregation process of the 6aJL2 protein under acidic conditions, with temperature changes, and upon mutation, using biophysical and computational techniques. Our results suggest that the differences in amyloidogenicity displayed by 6aJL2 under these conditions are caused by traversing different aggregation pathways, including unfolded intermediates and the formation of oligomers.
Collapse
Affiliation(s)
- Yadira Meunier-Carmenate
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Gilberto Valdés-García
- Centro de Investigacion en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Roberto Maya-Martinez
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Leidys French-Pacheco
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Arline Fernández-Silva
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Yoselin González-Onofre
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Cesar Millan-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigacion en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
3
|
Absmeier RM, Rottenaicher GJ, Svilenov HL, Kazman P, Buchner J. Antibodies gone bad - the molecular mechanism of light chain amyloidosis. FEBS J 2023; 290:1398-1419. [PMID: 35122394 DOI: 10.1111/febs.16390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Light chain amyloidosis (AL) is a systemic disease in which abnormally proliferating plasma cells secrete large amounts of mutated antibody light chains (LCs) that eventually form fibrils. The fibrils are deposited in various organs, most often in the heart and kidney, and impair their function. The prognosis for patients diagnosed with AL is generally poor. The disease is set apart from other amyloidoses by the huge number of patient-specific mutations in the disease-causing and fibril-forming protein. The molecular mechanisms that drive the aggregation of mutated LCs into fibrils have been enigmatic, which hindered the development of efficient diagnostics and therapies. In this review, we summarize our current knowledge on AL amyloidosis and discuss open issues.
Collapse
Affiliation(s)
- Ramona M Absmeier
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Georg J Rottenaicher
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hristo L Svilenov
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Pamina Kazman
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
4
|
Cárdenas R, Martínez-Seoane J, Amero C. Combining Experimental Data and Computational Methods for the Non-Computer Specialist. Molecules 2020; 25:E4783. [PMID: 33081072 PMCID: PMC7594097 DOI: 10.3390/molecules25204783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Experimental methods are indispensable for the study of the function of biological macromolecules, not just as static structures, but as dynamic systems that change conformation, bind partners, perform reactions, and respond to different stimulus. However, providing a detailed structural interpretation of the results is often a very challenging task. While experimental and computational methods are often considered as two different and separate approaches, the power and utility of combining both is undeniable. The integration of the experimental data with computational techniques can assist and enrich the interpretation, providing new detailed molecular understanding of the systems. Here, we briefly describe the basic principles of how experimental data can be combined with computational methods to obtain insights into the molecular mechanism and expand the interpretation through the generation of detailed models.
Collapse
Affiliation(s)
| | | | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (R.C.); (J.M.-S.)
| |
Collapse
|