1
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024:107907. [PMID: 39433125 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the post-translational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modifications (PTMs) govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including Heat Shock Protein 70 (HSP70), Heat Shock Protein 90 (HSP90), Carboxyl-terminus of HSC70 Interacting Protein (CHIP), and Heat Shock Protein Organizing Protein (HOP). This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from HOP to CHIP in association with HSP70 and HSP90-which could influence cellular growth and survival pathways. A comprehensive examination of PTM-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Sak F, Sengul F, Vatansev H. The Role of Endoplasmic Reticulum Stress in Metabolic Diseases. Metab Syndr Relat Disord 2024; 22:487-493. [PMID: 38666441 DOI: 10.1089/met.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The endoplasmic reticulum (ER), the center of protein folding, also controls the cell's life-and-death signaling mechanisms. ER stress caused by unfolded or misfolded proteins leads to the activation of the unfolded protein response (UPR) in the cell. The UPR utilizes three main signaling pathways to restore disrupted ER homeostasis. These signaling pathways are protein kinase R-like endoplasmic reticulum kinase, inositol-requiring enzyme 1, and activating transcription factor 6. Studies have reported that ER stress (ERS) plays a role in the pathogenesis of metabolic disorders such as diabetes, obesity, atherosclerosis, and nonalcoholic liver disease. This review will briefly discuss the ERS response in these metabolic diseases.
Collapse
Affiliation(s)
- Firdevs Sak
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| | - Fatma Sengul
- Faculty of Pharmacy, Department of Biochemistry, University of Adiyaman, Adiyaman, Turkey
| | - Husamettin Vatansev
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| |
Collapse
|
3
|
Rinaldi S, Colombo G, Morra G. Exploring Mutation-Driven Changes in the ATP-ADP Conformational Cycle of Human Hsp70 by All-Atom MD Adaptive Sampling. J Phys Chem B 2024; 128:7770-7780. [PMID: 39091167 DOI: 10.1021/acs.jpcb.4c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hsp70 belongs to a family of molecular chaperones ubiquitous through organisms that assist client protein folding and prevent aggregation. It works through a tightly ATP-regulated allosteric cycle mechanism, which organizes its two NBD and SBD into alternate open and closed arrangements that facilitate loading and unloading of client proteins. The two cytosolic human isoforms Hsc70 and HspA1 are relevant targets for neurodegenerative diseases and cancer. Illuminating the molecular details of Hsp70 functional dynamics is essential to rationalize differences among the well-characterized bacterial homologue DnaK and the less explored human forms and develop subtype- or species-selective allosteric drugs. We present here a molecular dynamics-based analysis of the conformational dynamics of HspA1. By using an "allosterically impaired" mutant for comparison, we can reconstruct the impact of the ADP-ATP swap on interdomain contacts and dynamic coordination in full-length HspA1, supporting previous predictions that were, however, limited to the NBD. We model the initial onset of the conformational cycle by proposing a sequence of structural steps, which reveal the role of a specific human sequence insertion at the linker, and a modulation of the angle formed by the two NBD lobes during the progression of docking. Our findings pinpoint functionally relevant conformations and set the basis for a selective structure-based drug discovery approach targeting allosteric sites in human Hsp70.
Collapse
Affiliation(s)
- Silvia Rinaldi
- Institute for the Chemistry of Organometallic Compounds (ICCOM)─National Research Council (CNR), Via Madonna del Piano, 10, Sesto Fiorentino, Firenze 50019, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia Via Taramelli 12, Pavia 27100, Italy
| | - Giulia Morra
- Institute of Chemical Sciences and Technologies (SCITEC)─National Research Council (CNR), Via Mario Bianco 9, Milano 20131, Italy
| |
Collapse
|
4
|
Panda P, Sarohi V, Basak T, Kasturi P. Elucidation of Site-Specific Ubiquitination on Chaperones in Response to Mutant Huntingtin. Cell Mol Neurobiol 2023; 44:3. [PMID: 38102300 DOI: 10.1007/s10571-023-01446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Huntington's disease (HD) is one of the prominent neurodegenerative diseases, characterized by the progressive decline of neuronal function, due to the accumulation and aggregation of misfolded proteins. Pathological progression of HD is hallmarked by the aberrant aggregation of the huntingtin protein (HTT) and subsequent neurotoxicity. Molecular chaperones (heat shock proteins, HSPs) play a pivotal role in maintaining proteostasis by facilitating protein refolding, degradation, or sequestration to limit the accumulation of misfolded proteins during neurotoxicity. However, the role of post-translational modifications such as ubiquitination among HSPs during HD is less known. In this study, we aimed to elucidate HSPs ubiquitin code in the context of HD pathogenesis. In a comprehensive proteomic analysis, we identified site-specific ubiquitination events in HSPs associated with HTT in HD-affected brain regions. To assess the impact of ubiquitination on HSPs during HD, we quantified the abundance of ubiquitinated lysine sites in both the rat cortex/striatum and in the mouse primary cortical neurons. Strikingly, we observed highly tissue-specific alterations in the relative ubiquitination levels of HSPs under HD conditions, emphasizing the importance of spatial perturbed post-translational modifications (PTMs) in shaping disease pathology. These ubiquitination events, combined with other PTMs on HSPs, are likely to influence the phase transitions of HTT. In conclusion, our study uncovered differential site-specific ubiquitination of molecular chaperones and offers a comprehensive view of the intricate relationship between protein aggregation, and PTMs in the context of Huntington's disease.
Collapse
Affiliation(s)
- Prajnadipta Panda
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
5
|
Ham BK, Wang X, Toscano-Morales R, Lin J, Lucas WJ. Plasmodesmal endoplasmic reticulum proteins regulate intercellular trafficking of cucumber mosaic virus in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4401-4414. [PMID: 37210666 PMCID: PMC10838158 DOI: 10.1093/jxb/erad190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Xiaohua Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Roberto Toscano-Morales
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
7
|
Nordquist EB, Clerico EM, Chen J, Gierasch LM. Computationally-Aided Modeling of Hsp70-Client Interactions: Past, Present, and Future. J Phys Chem B 2022; 126:6780-6791. [PMID: 36040440 PMCID: PMC10309085 DOI: 10.1021/acs.jpcb.2c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hsp70 molecular chaperones play central roles in maintaining a healthy cellular proteome. Hsp70s function by binding to short peptide sequences in incompletely folded client proteins, thus preventing them from misfolding and/or aggregating, and in many cases holding them in a state that is competent for subsequent processes like translocation across membranes. There is considerable interest in predicting the sites where Hsp70s may bind their clients, as the ability to do so sheds light on the cellular functions of the chaperone. In addition, the capacity of the Hsp70 chaperone family to bind to a broad array of clients and to identify accessible sequences that enable discrimination of those that are folded from those that are not fully folded, which is essential to their cellular roles, is a fascinating puzzle in molecular recognition. In this article we discuss efforts to harness computational modeling with input from experimental data to develop a predictive understanding of the promiscuous yet selective binding of Hsp70 molecular chaperones to accessible sequences within their client proteins. We trace how an increasing understanding of the complexities of Hsp70-client interactions has led computational modeling to new underlying assumptions and design features. We describe the trend from purely data-driven analysis toward increased reliance on physics-based modeling that deeply integrates structural information and sequence-based functional data with physics-based binding energies. Notably, new experimental insights are adding to our understanding of the molecular origins of "selective promiscuity" in substrate binding by Hsp70 chaperones and challenging the underlying assumptions and design used in earlier predictive models. Taking the new experimental findings together with exciting progress in computational modeling of protein structures leads us to foresee a bright future for a predictive understanding of selective-yet-promiscuous binding exploited by Hsp70 molecular chaperones; the resulting new insights will also apply to substrate binding by other chaperones and by signaling proteins.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Lila M. Gierasch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
8
|
Baloji G, Jagtap S, Talakayala A, Kolli M, Lingfa L, Garladinne M, Ankanagari S. Insights from the protein sequence and structure analysis of PgHsc70 and OsHsp70 genes. Bioinformation 2022; 18:88-102. [PMID: 36420430 PMCID: PMC9649495 DOI: 10.6026/97320630018088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 09/19/2023] Open
Abstract
Heat shock proteins are induced in a wide range of abiotic and biotic stresses. They are well known for cellular chaperone activities and play an important role in protecting plants through regulation of homeostasis and survival. A comprehensive characterization and comparative analysis of the Hsp70 family members within the closely related plant species helps in better interpretation of these proteins' contribution to cell function and response to specific environmental stresses. Therefore, it is of interest to glean insights from the protein sequence analysis of PgHsc 70 and OsHsp70 genes. Thus, we document data from the sequence and structure analysis of PgHsc 70 and OsHsp 70 gene a.
Collapse
Affiliation(s)
- Gugulothu Baloji
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Sandhya Jagtap
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Ashwini Talakayala
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Meghana Kolli
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Lali Lingfa
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Mallikarjuna Garladinne
- Plant Molecular Biology Laboratory, Agri Biotech Foundation, Rajendra Nagar, Hyderabad (T.S) 500 030, India
| | | |
Collapse
|
9
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Pan J, Ma N, Zhong J, Yu B, Wan J, Zhang W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:970-986. [PMID: 34760339 PMCID: PMC8561003 DOI: 10.1016/j.omtn.2021.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) dysfunction is associated with an accumulation of neurotoxic molecules and increased infiltration of peripheral cells within the brain parenchyma. Accruing evidence suggests that microglia and astrocytes play a crucial role in the recovery of BBB integrity and the corralling of infiltrating cells into clusters after brain damage, but the mechanisms involved remain unclear. Intriguingly, the results of flow cytometry and immunofluorescence analyses have shown that BBB permeability to peripheral cells is substantially enhanced during normal aging at 12 months in mice. Thus, we used the SMART-seq2 method to perform RNA sequencing of microglia and astrocytes at five time points before and immediately after the BBB permeability change. Our comprehensive analyses revealed that microglia are characterized by marked alterations in the negative regulation of protein phosphorylation and phagocytic vesicles, whereas astrocytes show elevated enzyme or peptidase-inhibitor activity in the recovery of BBB function. Moreover, we identified a cassette of key genes that might ameliorate the insults of pathophysiological events in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jie Pan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Pathology and Neuropathology, Stanford University School of Medicine, CA 94305, USA
| | - Nana Ma
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Wan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, PRC
| | - Wei Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
11
|
Mühlhofer M, Peters C, Kriehuber T, Kreuzeder M, Kazman P, Rodina N, Reif B, Haslbeck M, Weinkauf S, Buchner J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nat Commun 2021; 12:6697. [PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
Collapse
Affiliation(s)
- Moritz Mühlhofer
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Carsten Peters
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Thomas Kriehuber
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.420061.10000 0001 2171 7500Present Address: Boehringer Ingelheim, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Marina Kreuzeder
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Pamina Kazman
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.424277.0Present Address: Roche Diagnostics, Nonnenwald 2, 82377 Penzberg, Germany
| | - Natalia Rodina
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bernd Reif
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Sevil Weinkauf
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
12
|
Chen P, Paschoal Sobreira TJ, Hall MC, Hazbun TR. Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets. J Proteome Res 2021; 20:4231-4247. [PMID: 34382793 DOI: 10.1021/acs.jproteome.1c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1. NTMT1/2 are implicated in cancer and aging processes but have unclear and context-dependent roles. Moreover, α-N-methylation of noncanonical sequences was surprisingly prevalent, suggesting unappreciated and cryptic methylation events. Analysis of the amino acid frequencies of α-N-methylated peptides revealed a [S]1-[S/A/Q]2 pattern in yeast and [A/N/G]1-[A/S/V]2-[A/G]3 in humans, which differs from the canonical motif. We delineated the distribution of the two types of prevalent N-terminal modifications, acetylation and methylation, on amino acids at the first position. We tested three potentially methylated proteins and confirmed the α-N-terminal methylation of Hsp31 by additional proteomic analysis and immunoblotting. The other two proteins, Vma1 and Ssa3, were found to be predominantly acetylated, indicating that proteomic searching for α-N-terminal methylation requires careful consideration of mass spectra. This study demonstrates the feasibility of reprocessing proteomic data for global α-N-terminal methylome investigations.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020; 11:2396. [PMID: 32409666 PMCID: PMC7224190 DOI: 10.1038/s41467-020-16271-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response. Protein arginine methyltransferases (PRMTs) are increasingly recognized as potential therapeutic targets but PRMT7 remains an understudied member of this enzyme family. Here, the authors develop a chemical probe for PRMT7 and apply it to elucidate the role of PRMT7 in the cellular stress response.
Collapse
|
15
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
16
|
Astl L, Verkhivker GM. Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks. J Chem Inf Model 2020; 60:1614-1631. [DOI: 10.1021/acs.jcim.9b01045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|