1
|
Oh MA, Park JE, Kim JY, Kang HM, Min Oh SS, Mansoor S, Chung YS. Seed traits inheritance in Fagopyrum esculentum Moench. based on image analysis method. FRONTIERS IN PLANT SCIENCE 2024; 15:1445348. [PMID: 39445143 PMCID: PMC11496140 DOI: 10.3389/fpls.2024.1445348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Common buckwheat (Fagopyrum esculentum Moench.) is one of the most important orphan crops worldwide. Various research efforts have been done to improve cultivation methods to enhance important agronomic traits such as productivity and biotic/abiotic resistance. One important aspect is the seed trait, which has not been extensively studied due to the time-consuming and tedious nature of its examination. Despite this, understanding seed traits is crucial for meeting consumer needs and optimizing crop yields. Therefore, the aim of the study is to investigate the inheritance of common buckwheat seed traits-such as shape, size, and coat color-using an image-based approach. This method allows for the analysis of a large number of seeds with a level of accuracy and precision that was previously unattainable. The results indicate that seed coat color is inherited maternally. Notably, the parameters in size had substantial increases acting like overdominance. The number of seeds that were harvested from F1s of each cross differed a lot depending on the cross combinations and pin/thrum type. In addition, seed size had large reduction in F1s from the different seed-sized parents, especially in thrum type. These may show that there could be cross barriers. The results revealed trends of maternal inheritance for seed shape and coat color in buckwheat, an area that has not been extensively studied. These findings could support buckwheat breeding efforts, helping to address market needs and food demands in the face of significant climate change.
Collapse
Affiliation(s)
- Min Ah Oh
- Jeju Agricultural Research and Extension Services, Jeju, Republic of Korea
| | - Ji Eun Park
- National Agrobiodiversity Center, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Jae Young Kim
- Gene Engineering Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
| | - Ho-Min Kang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - San Su Min Oh
- Department of Horticulture, Jeju National University, Jeju, Republic of Korea
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
2
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Aziza N, Khaydarov K, Zafar M, Alsakkaf WAA, Alkahtani J, Ahmad M, Makhkamov T, Djumayeva Z, Zengin G, Eshboyevich TK, Beilerli A, Gareev I, Ochilov U, Sultanovich IB, Iskandarovna UZ, Wibawa IPAH. Chromatographic authentication of botanical origin: Herbaceous pollen profiling with HPLC, HPTLC and GC-MS analysis. Biomed Chromatogr 2024; 38:e5852. [PMID: 38382499 DOI: 10.1002/bmc.5852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
This study describes a robust chromatographic authentication methodology for herbaceous pollen, employing gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC) and high-performance thin liquid chromatography (HPTLC) protocols. The comprehensive profiling of organic compounds not only distinguishes between different botanical sources but also establishes a reliable framework for quality control and assessment of herbaceous pollen authenticity. Traces of quercetin were detectable using HPTLC in Chaenomeles japonica, and the composition of the mobile phase led to distinct phenolic acid tracks in the extracts of free phenolic compounds. In Lonicera nummulariifolia, prominent chlorogenic acid signal and traces of 3,4-dihydroxybenzoic acid were identified, along with the presence of vanillic, trans-ferulic, p-coumaric and p-hydroxybenzoic and sinapic as phenolic acid standards. The HPLC chromatogram identified six peaks representing bioactive phenolic compounds such as gallic acid measuring 5.89 ± 0.56 mg g-1, hydroxybenzoic acid 2.39 ± 0.78 mg g-1 and caffeic acid 2.83 ± 0.11 mg g-1. The combined use of GC-MS, HPTLC and HPLC techniques provides a powerful and reliable means of authenticating the botanical origin of herbaceous pollen, offering valuable insights for quality control and ensuring the accuracy of botanical source identification.
Collapse
Affiliation(s)
- Nozimova Aziza
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Khislat Khaydarov
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Muhammad Zafar
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waleed A A Alsakkaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad
- College of Life Science, Neijiang Normal University, Neijiang, China
| | - Trobjon Makhkamov
- Department of Forestry and Landscape Design, Tashkent State Agrarian University, Tashkent Region, Uzbekistan
| | - Zamira Djumayeva
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Gokhan Zengin
- Department of Biology, University of Selcuk, Konya, Turkey
| | | | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ulugbek Ochilov
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | | | | | - I Putu Agus Hendra Wibawa
- Research Center for Applied Botany, Nasional Research and Innovation Agency BRIN, Bogor, Jawa Barat, Indonesia
| |
Collapse
|
4
|
Xu Y, Shang W, Li L, Song Y, Wang G, Shi L, Shen Y, Sun Y, He S, Wang Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int J Mol Sci 2023; 24:10715. [PMID: 37445891 DOI: 10.3390/ijms241310715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryogenesis is a critical process during seed development, and it can provide a basis for improving the efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo development was performed to investigate gene expression profiling in P. ostii and identified Differentially expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes. The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH (Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Abscisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes' activity was the highest in early embryos and an important participant in embryo formation. The high expression of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened. Our results provided new insights into the formation of embryo development and even somatic embryo development in tree peonies.
Collapse
Affiliation(s)
- Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Linda Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
- Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Samuels ME, Lapointe C, Halwas S, Worley AC. Genomic Sequence of Canadian Chenopodium berlandieri: A North American Wild Relative of Quinoa. PLANTS (BASEL, SWITZERLAND) 2023; 12:467. [PMID: 36771551 PMCID: PMC9920564 DOI: 10.3390/plants12030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Chenopodium berlandieri (pitseed goosefoot) is a widespread native North American plant, which was cultivated and consumed by indigenous peoples prior to the arrival of European colonists. Chenopodium berlandieri is closely related to, and freely hybridizes with the domesticated South American food crop C. quinoa. As such it is a potential source of wild germplasm for breeding with C. quinoa, for improved quinoa production in North America. The C. berlandieri genome sequence could also be a useful source of information for improving quinoa adaptation. To this end, we first optimized barcode markers in two chloroplast genes, rbcL and matK. Together these markers can distinguish C. berlandieri from the morphologically similar Eurasian invasive C. album (lamb's quarters). Second, we performed whole genome sequencing and preliminary assembly of a C. berlandieri accession collected in Manitoba, Canada. Our assembly, while fragmented, is consistent with the expected allotetraploid structure containing diploid Chenopodium sub-genomes A and B. The genome of our accession is highly homozygous, with only one variant site per 3-4000 bases in non-repetitive sequences. This is consistent with predominant self-fertilization. As previously reported for the genome of a partly domesticated Mexican accession of C. berlandieri, our genome assembly is similar to that of C. quinoa. Somewhat unexpectedly, the genome of our accession had almost as many variant sites when compared to the Mexican C. berlandieri, as compared to C. quinoa. Despite the overall similarity of our genome sequence to that of C. quinoa, there are differences in genes known to be involved in the domestication or genetics of other food crops. In one example, our genome assembly appears to lack one functional copy of the SOS1 (salt overly sensitive 1) gene. SOS1 is involved in soil salinity tolerance, and by extension may be relevant to the adaptation of C. berlandieri to the wet climate of the Canadian region where it was collected. Our genome assembly will be a useful tool for the improved cultivation of quinoa in North America.
Collapse
Affiliation(s)
- Mark E. Samuels
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Cassandra Lapointe
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Sara Halwas
- Department of Anthropology, University of Manitoba, Winnipeg, MB R3T 2M8, Canada
| | - Anne C. Worley
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M8, Canada
| |
Collapse
|
6
|
Deng J, Zhao J, Huang J, Damaris RN, Li H, Shi T, Zhu L, Cai F, Zhang X, Chen Q. Comparative proteomic analyses of Tartary buckwheat (Fagopyrum tataricum) seeds at three stages of development. Funct Integr Genomics 2022; 22:1449-1458. [DOI: 10.1007/s10142-022-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.
Collapse
|
7
|
Guo X, Luo Z, Zhang M, Huang L, Wang H, Li Y, Qiao X, Li A, Wu B. The spatiotemporal regulations of epicatechin biosynthesis under normal flowering and the continuous inflorescence removal treatment in Fagopyrum dibotrys. BMC PLANT BIOLOGY 2022; 22:379. [PMID: 35906545 PMCID: PMC9336051 DOI: 10.1186/s12870-022-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flowering is a critical physiological change that interferes with not only biomass yield but also secondary metabolism, such as the biosynthesis of flavonoids, in rhizome/root plants. The continuous inflorescence removal (CIR) treatment is frequently conducted to weaken this effect. Fagopyrum dibotrys (D.Don) H.Hara (Golden buckwheat) is a kind of rhizome medicinal plant rich in flavonoids and is widely used for the treatment of lung diseases. The CIR treatment is usually conducted in F. dibotrys because of its excessive reproductive growth. To uncover the molecular mechanisms, comprehensive analysis was performed using metabolome and transcriptome data obtained from normally bloomed and the CIR treated plants. RESULTS Metabolome results demonstrated that in the rhizomes of F. dibotrys, its bioactive compound called epicatechin has higher amount than most of the detected precursors. Compared with the normally bloomed plants, the level of epicatechin in the rhizomes of the CIR group increased by 25% at the withering stage. Based on 96 samples of the control and the CIR groups at 4 flowering stages for 4 tissues, RNA-Seq results revealed a 3 ~ 5 times upregulations of all the key enzyme genes involved in the biosynthesis of epicatechin in both time (from the bud stage to the withering stage) and spatial dimensions (from the top of branch to rhizome) under the CIR treatment compared to normal flowering. Integrated analysis of LC-MS/MS and transcriptome revealed the key roles of several key enzyme genes besides anthocyanidin reductase (ANR). A total of 93 transcription factors were identified to co-expressed with the genes in epicatechin biosynthetic pathway. The flowering activator SQUAMOSA promoter-binding protein like (SPLs) exhibited opposite spatiotemporal expression patterns to that of the epicatechin pathway genes; SPL3 could significantly co-express with all the key enzyme genes rather than the flowering repressor DELLA. Weighted gene co-expression network analysis (WGCNA) further confirmed the correlations among chalcone synthases (CHSs), chalcone isomerases (CHIs), ANRs, SPLs and other transcription factors. CONCLUSIONS SPL3 might dominantly mediate the effect of normal flowering and the CIR treatment on the biosynthesis of epicatechin in rhizomes mainly through the negative regulations of its key enzyme genes including CHS, CHI and ANR.
Collapse
Affiliation(s)
- Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Min Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hui Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, China
| | - Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu Qiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ailian Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Bin Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
8
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
9
|
Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, Lv Q, Chen Q. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2021; 21:132. [PMID: 33750309 PMCID: PMC7941931 DOI: 10.1186/s12870-021-02914-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Hengling Meng
- Key Laboratory of High-Quality Crops Cultivation and Safety Control of Yunnan Province, Honghe University, Honghe, 661100, China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
10
|
Hornyák M, Słomka A, Sychta K, Dziurka M, Kopeć P, Pastuszak J, Szczerba A, Płażek A. Reducing Flower Competition for Assimilates by Half Results in Higher Yield of Fagopyrum esculentum. Int J Mol Sci 2020; 21:ijms21238953. [PMID: 33255746 PMCID: PMC7728371 DOI: 10.3390/ijms21238953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.
Collapse
Affiliation(s)
- Marta Hornyák
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-(126)-645-020
| | - Klaudia Sychta
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Michał Dziurka
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Przemysław Kopeć
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Jakub Pastuszak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Anna Szczerba
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Agnieszka Płażek
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| |
Collapse
|
11
|
Li HY, Wu CX, Lv QY, Shi TX, Chen QJ, Chen QF. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of rice-tartary buckwheat (Fagopyrum Tararicum). BMC PLANT BIOLOGY 2020; 20:505. [PMID: 33148168 PMCID: PMC7640676 DOI: 10.1186/s12870-020-02715-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.
Collapse
Affiliation(s)
- Hong-You Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Chao-Xin Wu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiu-Yu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Tao-Xiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qi-Jiao Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qing-Fu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
12
|
Wang T, Song H, Li P, Wei Y, Hu N, Chen Z, Wang W, Liu J, Zhang B, Peng R. Transcriptome Analysis Provides Insights into Grain Filling in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2020; 21:ijms21145031. [PMID: 32708737 PMCID: PMC7403974 DOI: 10.3390/ijms21145031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Grain filling is an importantly developmental process which is associated with the yield and quality of foxtail millet (Setaria italic L.). However, the molecular mechanisms of grain filling are rarely reported in foxtail millet. In our study, RNA-seq was performed to investigate the transcriptional dynamics and identify the key genes involved in grain filling in foxtail millet at five different developmental stages. A total of 11,399 differentially expressed genes (DEGs), including 902 transcription factors (TFs), were identified. Certain important genes involved in grain filling were discovered through a function annotation and temporal expression patterns analysis. These genes included genes associated with starch biosynthesis, cell-wall invertases, hormone signal transduction, and polyamine metabolism pathways. The expression levels of seven randomly selected DEGs were validated by a quantitative real-time polymerase chain reaction (qRT-PCR). This study provides the first insight into the changes in the gene expression of grain filling at different developmental stages in foxtail millet. These results could help understand the complex molecular mechanisms of the panicle formation in foxtail millet and other cereal crops.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
- Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang 455000, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang 455000, China; (H.S.); (J.L.)
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Zhenwen Chen
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Weiqi Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang 455000, China; (H.S.); (J.L.)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence: (B.Z.); (R.P.); Tel.: +1-252-328-2021 (B.Z.); +86-372-2909279 (R.P.)
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
- Correspondence: (B.Z.); (R.P.); Tel.: +1-252-328-2021 (B.Z.); +86-372-2909279 (R.P.)
| |
Collapse
|